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Intended Learning Outcomes

After this lecture, you will be able to:
@ explain why continuous-time dynamic models need to be
discretized in practice
@ construct discrete-time dynamic models from linear ODE
and SDE state-space models

@ construct approximate discrete-time dynamic models from
non-linear ODE and SDE models
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Recap

@ Nonlinear continuous-time state-space model:

x(t) = f(x(t)) + Bw(x(t))w(t)
Yn=9(Xn) +Fn

@ Linear discrete-time state-space model:

Xn = FXp_1 +BgQn
Yn=GXp +1p

@ Nonlinear discrete-time state-space model:

Xn = f(Xp—1) + Bg(Xp—1)dn
Yn=9(Xn) +1n
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Discretization of Continuous-Time Models: Why?

@ Sensor fusion is implemented in digital computers
@ Datais only processed at ty, by, ..., In

@ Discretized continuous-time models are closely related to
discrete-time models

@ Example: Vehicle tracking

Discretization of continuous-time models is
equivalent to solving the ODE/SDE model
between t,_1 and t,
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Solving Linear First Order ODEs (1/2)
@ Goal: Solve the first order ODE
x(t) = ax(t) + bu(t),
on the interval (t,_1, tn].
@ Ansatz: Multiply by the integrating factor =2
e ¥ x(t) = e~ ax(t) + e ¥bu(t)
ie.

—alx(t) — e ?ax(t) = e ¥bu(t)

@ We can then identify the derivative on the left hand side:
Ll
dt

@ Thus we have

e
[e7¥x(t)] = e ¥x(t) — e~ *ax(t).

c(ijt [e™@x(t)] = e~ bu(t).
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Solving Linear First Order ODEs (2/2)
@ We can now integrate the both sides:
th d

¢ (o) ai= [ o sbu

th—1 th—1

@ Solution:

tn
e~ x(ty) — &A1 x(t, 1) = / e~ bu(t)dt

th—1

@ Rearranged:

tn
x(ty) = et x(t,_ 1) + / 2= py(t)dt

th—1

@ Defining At = t, — t,_4 this is

th_1+At
x(tn) = €®!x(th_1) + / g1 TA=D by (1)dt

2‘n—1
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Vector-Valued Linear First Order ODE

@ General linear dynamic model:
x(t) = Ax(t) + Byu(t)

@ This is a vector-valued first order ODE

What is the integrating factor for vector-valued first
order ODEs?
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Matrix Exponential
@ Definition of the exponential:

@ Definition of the matrix exponential:
N1
A _ k
f=>" A
k=0

@ Derivative of matrix exponential w.r.t. scalar t:

(;jteAt _ eAIA
@ Matrix exponential of AT:
(eA)T — eAT
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Solving Linear First Order Vector ODEs (1/2)

@ General linear dynamic model:
x(t) = Ax(t) + Byu(t)
@ Multiplication by the integrating factor AL
e Alx(t) = e A AX(t) + e A'Bu(t)
@ Rearranging:

—Aty

e Alx(t) — e AAX(t) = e ABLu(t)

@ Substituting $eAx(t) = e~Ax(t) — e AAX(1):

CcljteAtx(t) = e A'B,u(t)
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Solving Linear First Order Vector ODEs (2/2)
@ We now have the ODE:
d Aty p _ At
ai€ x(t) = e M'Byu(t)
@ Integration w.r.t. t:

/tn d [e‘“x(t)] = /tn e AB,u(t)dt

tn—1 tn—1
Aty " b At
[e x(t)] = e 'Byu(t)dt
t=th—1 th—1

tn
e Alx(t,) — e Alr-1x(t,_1) :/ e A'B,u(t)dt

th—1
@ Rearranging:

tn
X(tn) — eA(tn—tn1)x(tn_1)+/ eA(tn—t)Buu(t)dt

th—1
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Zero-Order-Hold Inputs

@ Solution:
tn
X(ty) = eMb=t)x(t, ) +/ eAt=DB u(t)dt,
th—1

@ The input u(t) can be often assumed to be constant
between sampling instants (zero-order-hold; ZOH)

@ Then:

tn tn
/ M08, u(1)dt = / A-0B dtu(t, 1)
th—1 th—1

School of Electrical Simo Sérkka

— e ———
A Aalto University Discretization of Continuous-Time Dynamic Models
Engineering 14/52



Discretized Deterministic Linear Dynamic Model
@ Linear continuous-time dynamic model:

x(t) = Ax(t) + Byu(t)
@ Discretized dynamic model:
Xn = FnXp_1 + LoUp_1,

where

(1>

eA(tn—tn_1)

tn
/ Al-DB dt
tn—1

The discretized dynamic model is completely
equivalent to the continuous-time model

Fn

(1>

Ln
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Example: Deterministic 1D Motion Model (1/4)

@ Dynamic model:

)-8 1) Bl

o 1
Fn = e Z _|
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Example: Deterministic 1D Motion Model (2/4)

@ Powers of A:

A° —|
A=A
A=0j>2
@ Hence:
Fn:il A(Aaty = 1I(At) lAAt
c— 0! 1|

Jj=0

1 At

|0 1
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Example: Deterministic 1D Motion Model (3/4)

@ Input matrix:

tn
Ln - / eA(tn_t)Budt
th—1

where:
Aty _ (1 t—t] g |0
e = u=

0 1] 1
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Example: Deterministic 1D Motion Model (4/4)

@ Continuous-time model:

- o ) e

@ Discretized model:

1 At (a1)?
n = 0 1 Xp—1 + 2 Up_1
At
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Stochastic Linear Dynamic Model
@ Stochastic linear dynamic model:
x(t) = Ax(t) + Byw(t),

@ The only difference to the deterministic model is the input
u(t) (w(t))

@ w(t) is a zero-mean white stochastic process

@ Auto-correlation function:

Ruw(7) = E{w(t + 7)W(t)"} = Z,6(7)

@ Here ¥, is the spectral density of the white noise.
@ Hence:

tn
x(ty) = eAl=b-1)x(t,_4) +/ eAlh=0B,, w(t)dt

tn—1
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Integration of the Stochastic Process
@ Model:
tn
x(ty) = eAl=b-1)x(t,_4) +/ eAlh=0B,, w(t)dt
th—1

@ w(t) is stochastic; not ZOH and not even integrable (with
standard tools)

@ Define a random variable as the process noise:
tn
qn 2 / eAl-DB  w(t)dt
th—1

@ Then:
Xn=FpXp_1+qn
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Mean of the Process Noise
@ Process noise:

tn
qn 2 / eAt—DB,, w(t)dt.
th—1

@ We get
tn
E{qn} =E / eAt—OB,, w(t)dt
tn—1
tn
:/ E{eA(’"*’)BWw(t)}dt
th—1
tn
_ / A-DB,, E {w(1)} dt
th—1



Covariance of the Process Noise (1/2)
@ Process noise:

A

th

qn:/ eAh=DB, w(t)dt
th—1

@ Covariance:

Cov{qn}

= E{(dn — E{dn})(an — E{qQn})"}
= E{a.an}

tn tn T
(L ) e
th—q th—1

tn tn
= / / eAMin—0B,, E {w(t)w(T)T} BT (eA—NTdrdt . ..
th1 Jithq
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Covariance of the Process Noise (2/2)
@ Process noise:

tn
qnﬁ/ ert=0B, w(t)dt
th—1

@ Covariance:
tn

tn
Cov{qn} = /t eAi—0B,, E {w(t)w(T)T} BT (eAl—"\Tdrdt
n—1

tn—1
th th

- / / Ar=0B, Ryny(t — 7)BL (A7) Tdrdt
th—1 Jth_1

th th
_ / / A-0B,, 5, 5(t — )BT (eM—")Tdrdt
th1 Jitq 1

ta
:/ eA(tn—T)BWZWBIVeAT(tn—T)dT

th—1
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Properties of the Process Noise

@ Process noise:

tn
qné/ eA=0B, w(t)dt

th—1
@ Mean and covariance:
E{qn} =0
Cov{qn} = eA(t”*T)BWZWBT gh (h—7)gr 2 Q,
tn—1
@ Distribution:
qn ~ N(Oa Qn)
_A Aalto University_ Dm
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Discretized Stochastic Linear Dynamic Model
@ Discretized stochastic dynamic model:
Xn=FpXp_1 +dn
where:
F, 2 gAlti—t1)
an ~ N(0,Qp)
0y [ B, 5, Bl (e

th—1

The discretized stochastic dynamic model is
completely equivalent to the continuous-time
model
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Example: 1D Wiener Velocity Model (1/3)

@ Dynamic model:
8- ) (e

with white noise process w(t) and Ryw(7) = 02,6(7)
@ Process noise covariance:

tn
Q,= / eAt-")B, 5, By, er (- Tdr

tn—1

@ Recall:

A(th—7) - 1 tn*T 0 o tn*T
oo [y ] 0] -
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Example: 1D Wiener Velocity Model (2/3)

@ Process noise covariance:

tn . T
Qn = / |:tn1 T:| O'a/ |:tn 1 T:| dr
th—1

1 1 27
o[- N 3t -7) |
- Yw
—5(th —7) T —t
(A (A?
= ol (A3t)2 2
A At
_A Aalto University_ m
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Example: 1D Wiener Velocity Model (3/3)

@ Dynamic model:
()< )l
@ Discretized model:
o =lo ST e
with q, ~ N (0,Qp) and

, [0 @y
Qn = o U

mo; »
Top
gss

o
= c|
eme

g
23
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Discretization of Nonlinear Dynamic Models

@ Objective: Discretization of nonlinear models
X(t) = f(x(t)) + Bu(x(t))u(t)

and

x(t) = f(x(t)) + Bw(x(t))w(t)

@ Problem: In most cases, no exact approach exists
@ A few possible approaches:

e Linearization of the nonlinear model followed by
discretization

e Approximation of the derivative (integral)

o Exact integration (of at least the dynamics)

e & many more...
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Linearization of Nonlinear Models

@ Nonlinear dynamic model:
x(t) = f(x(t)) + Bu(x(t))u(?)

@ 1st order Taylor series approximation of f(x(t)) around
X(t) = X(tn_1):

f(x(1)) ~ f(xp—1) + Ax(X(t) — Xp_1)
@ Approximation of the ODE:

(1) ~ f(Xp_1) + Ax(X(t) — Xn_1) + Buu(?)
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Discretization of Linearized Models (1/2)
@ Approximation of the ODE:
X(t) ~ f(xp-_1) + Ax(X(t) — Xp—1) + Buu(t)
@ Reuwritten approximation of the ODE
X(t) ~ Axx(t) + f(Xxp_1) — AxXp_1 + Buu(t)

@ Solution of the approximation:

tn
Xp &~ eAXAtxn—1 +/ eAX(tn_t)d”(xn—1)

th—1

tn tn
/ A= dtA, X, 1 Jr/ eAx(tn—t)Buu(t)dt

tn—1 tn—1
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Discretization of Linearized Models (2/2)

@ Solution of the approximation:

tn
Xp &~ eAXAtxn—1 +/ eAX(tn_t)dﬂ(xn—1)

th—1

tn tn
/ A =DdtA, X, 1 +/ eAx(tn—t)Buu(t)dt

tn—1 tn—1

@ Simplified solution:

tn tn
Xn 2 X1 +/ eAX(t"t)dtf(x,,1)+/ M (=0B u(t)dt

th—1 th—1
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Discretization of Linearized Models (Stochastic)
@ Stochastic nonlinear model:

x(t) = f(x(t)) + Bw(x(t))w(t)

@ Discretization is the same as for the ODE model:

tn tn
Xn ~ Xp_1 +/ M =Ddtf(x,_1) +/ M =B w(t)dt
tn—1 tn

-1
tn
= Xp-1+ / eAX(tn_t)d”(xn—1) +dn
th—1
with
dn ~ N(0,Qp),

tn
i
Q, ~ / eMt-B,, ¥, Bl et (""dr
tn—1
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Properties of the Discretization
@ Stochastic nonlinear model:

X(t) = f(x(t)) + Bu(x(t))w(t)

Linearized model:

X(1) ~ f(Xp_1) + Ax(X(t) — Xn_1) + BuW(?)

Discretized model:

tn
Xp = Xp_1 + / eAx(’"")dtf(x,,,1) +qn
tn—1

Integration is exact, model is not
Discretization is not exact
Linearization is local, may cause problems
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Example: Quasi-Constant Turn Model (1/5)
@ Model:
p*(t) v(t) cos(p(t))
PO | _ | v(t)sin(p(t))
v(t) 0
¢(1) 0
@ Jacobian of f(x(t)):

0 0 cos(p(t)) —v(t)sin(e(t))
A, — |0 0 sin(e(f))  v(t)cos(p(1))
X 00 0 0
0 0 0 0
[0 0 cos(pn—1) —Va_1sin(¢n_1)
_ 0 O sin(pp_1) Vn_1cos(en_1)
00 0 0
00 0 0




Example: Quasi-Constant Turn Model (2/5)

@ Powers of Ay:

Al =1
Al =A,
A2 =0

@ Matrix exponential:

eAx(tn_t) = I + Ax(tn - t)

1 0 cos(pn_1)(th—1) —Vp_qsin(en_1)(th—1)
0 1 sin(pn_1)(th—1) Vvp_qcos(en_1)(th —1)
00 1 0

00 0 1
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Example: Quasi-Constant Turn Model (3/5)

@ Integral:
t 10 c95(¢n_1)(tn — 1) —Vp_ysin(gn_1)(th — 1)
/" 0 1 sin(pp_1)(th—1) Vvp_qcos(on_1)(th —1) di
00 1 0
tn
"lo o 1
B _1)2 Y ) tn
t 0 —“"Tt)z cos(pn_1) %2%_1 sin(¢n_1)
_ |0 t @ sin(¢n_1) —@an cos(pn_1)
00 t 0
0 0 0 t =t
r 2
At 0 (ATUZ cos(¢n—1) (Ag) Vn—1sin(©n—1)
_ [0 at B sin(en 1) EEv i cos(pn)
0 O At 0
0 O 0 At

— e ———
Aalto University Discretization of Continuous-Time Dynamic Models
School of Electrical Simo Sérkka
Ei

ngineering 40/52



Example: Quasi-Constant Turn Model (4/5)

@ Discretized model:
tn
Xp = Xp_1 + / eAX(’"")dtf(x,,,1) +qn
tn 1

@ Second term:

At 0 B cos(pn_1) — 5 v 1sin(pn_1)] [Va1 cos(¢nr)
0 At &) t) sin(¢n_1) (Azt)z Vo1 cos(on_1) Vn—1sin(®@n_1)
0 0 At 0 0
0 0 0 At 0

Atvp_1cos(pn_1)
Atvy_qsin(epn_1)
0
0
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Example: Quasi-Constant Turn Model (5/5)

@ Discretized model:
t
Xn = Xp—1 + / eAX(tn_t)dtf(xn—1) +Qn
th—1

@ Discretization of Linearized Model:

Py Pp_1 Atvy_1 cos(pn—1)

,O% _ P%_1 T Atvy_qsin(en_1) 1q
Vn Vi1 0 n
¥n ¥n—1 0

@ What about Q,?

tn
T
Qn ~ / eAX(tniT)szwB-lL-/eAX(tniT)dT
th—1
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Euler Approximation

@ Dynamic model:

X(t) = f(x(1)) + Bu(x(t))u(t)
@ Integral equation:
tn tn
Xn = Xp_1 +/ f(x(t))dt + Bu(x(t))u(t)dt

th—1 th—1

@ |dea: Approximate the integral rather than the model
@ Euler approximation:

Xn ~ Xp_1+ AH(Xp_1) + AtBy(Xp_1)Up_1.
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Euler—-Maruyama Discretization (1)

@ Stochastic dynamic model:
X(f) = f(x(1)) + Bw(x())w(?)

@ Integral representation:

th tn
X5 = X1 + / fx(O)dt+ [ Bu(x(1))w(t)dt
th—1

th—1

@ Process noise definition:

a2 [ Bux(t)w(t)dt

zln—1
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Mean of the Process Noise

@ Process noise:

a2 [ Bux(O)w(t)dt

th—1

@ Mean:

tn
E{qn} = E { /t BW(x(t))w(t)dt}

[ Bu(x(t) E(w(t)} it

th—1
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Covariance of the Process Noise (1/2)

@ Process noise:
tn
qn = B (x(t))w(t)dt

th—1
@ Covariance:

tn . T
Cov{qn} =E { ( /t BWW(t)dt> ( /t ’ wa(T)dT> }

_ / norr B, (x(1)) E{w()W(7)T} B (x(t))Tdrdt
th—1

th—1

_ / L B (1)Ew(t - 1)Bu(x(1)))Tdrdt
th—1

tn—1

B /tn Bu (x(1)))ZwB,, (x(1))dr

th—1
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Covariance of the Process Noise (2/2)

@ Covariance:

th
Covign} = | Buw(X(t))ZwBw(x(t))Tdr

th—1
@ Rectangle approximation of the integral:

tn
Cov{dn} = [ Bu(X(t)ZwBj (x(t))d7

th—1

~ Bw(xn—1)Zwa(xn—1)T(tn —th—1)
= AtBy(Xp—1)ZwBw(Xn_1 )T

L Q

- n
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Euler—Maruyama Discretization (2)
@ Dynamic model:
X(t) = f(x(1)) + Bw(x(1))w(t)
@ Euler-Maruyama discretization:
Xn = Xp_1 + Ath(Xp_1) + dn

Wlth qn ~ N(O, Qn), Qn =~ Ath(Xn_1 )ZWBW(XH—1 )T
@ ...or equivalently:

Xn = Xp_1 + AH(Xp_1) + VAIBR(Xp_1)dn

with q, ~ NV (0, XZy)
@ Discretization is not exact
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Summary (1/3)

@ The discretization of the linear ODE model
x(t) = Ax(t) + Byu(t)

Xp = FnXp_1 4+ LoUp_q
tn
Fp2 ghltnmto) 1, 2 / erl=0B,dt
th—1

@ The discretization of the linear SDE model
x(t) = Ax(t) + Byw(t)

is
Xp = FnXp_1 +dn, dn ~ N(0,Qp)
" AG T AT(4
Qn == / e ( n_T)BszBWe ( n_T)dT
tn—1
B Aalto University Dm
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Summary (2/3)
@ Nonlinear dynamic model:
X(1) = H(x(1)) + Bu (x(£))W(1)
@ Discretization of the linearized model:
x(1) = f(x(1)) + Bww(t)
~ f(Xp_1) + Ax(X(f) — Xp_1) + Buw(?)
J

tn
Xn = Xp_1 +/ eM=0Ddtf(x,_1) + qn
th—1

with
" A T AL
Qo ~ A(0,Qy), Qp ~ / Ai-B, 5, BT lln—)g
th—1
B Aalto University Dm
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Summary (3/3)

@ Euler-Maruyama discretization:

X(t) = f(x(1)) + Bw(x(t))w(t)
4
Xp = Xp_1 + Atf(Xp_1) +dn

with
dn ~ N(0,Qn),
T
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