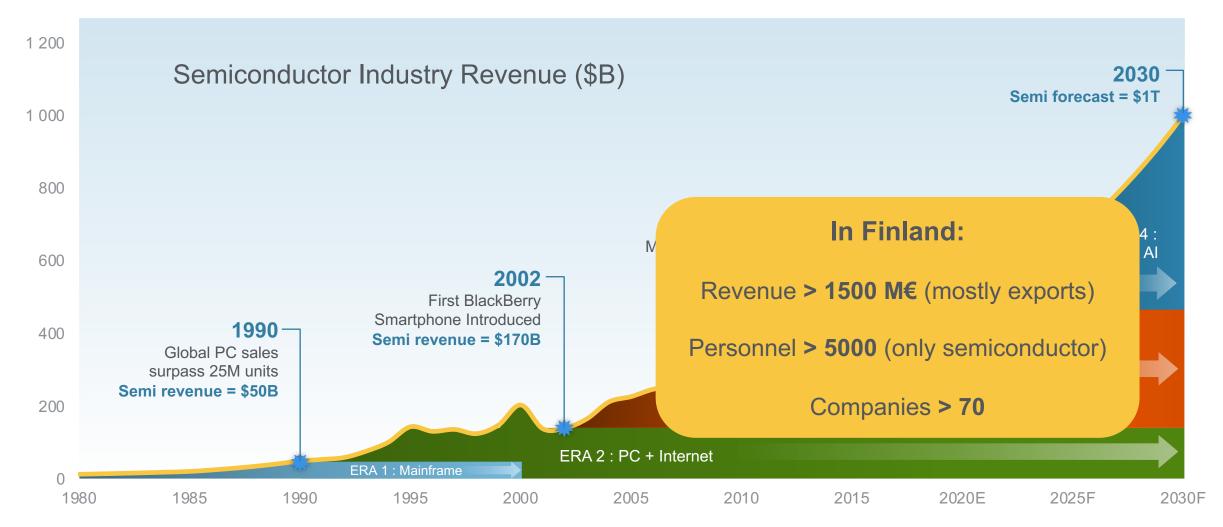
Semiconductor Industry – a fascinating and large career opportunity

D.Sc. Jani Kivioja

CTO Picosun BU

Aalto University 23rd of November 2022

Semiconductor Industry


Picosun and Applied Materials – Just Married!

How to make chips and what is ALD

What does it mean?

Semiconductor industry is large and growing – also in Finland

Al Era is the 4th and Biggest Age of Computing

Source: SIA, Applied Materials - SMI

- ALD production started in 2004
- 200+ employees, 19 different nationalities
- HQ and factory in Finland
- 30+ sales partners on six continents
- Order intake 2021 €42,5M
- Turnover 2021 €38,4M
- R&D investment around 15% of revenues
- Significant annual growth sustained for several years

FROM MARKET LEADERS IN R&D TO PRODUCTION-PROVEN INDUSTRIAL ALD

THE ONLY ALD
COMPANY IN THE
WORLD with full range
of ALD solutions from
basic R&D to fully
automated high volume
industrial
manufacturing.

SERVICE PORTFOLIO

covering customer's whole ALD journey, from initial applications consultancy to turn-key system delivery, training and full lifecycle management.

FOUNDED IN 1967

Applied Materials - World's #1

semiconductor and display equipment company

\$25.79 billion revenue

TOTAL FISCAL 2022

\$2.8 billionR&D spending

~15,700 patents*

~33,300 employees in 19* countries

Data as of fiscal year end, October 30, 2022 except * which are as of fiscal year end, October 31, 2021

- Applied Materials acquired Picosun June this year we are part of Applied now!
- The most leading edge technologies are developed in Finland as well

How to Make a Chip

FROM SAND TO WAFER

Silicon, the second most common element on Earth. is refined from sand into pure silicon dioxide, and then melted and pulled to form a cylinder called a crystal ingot.

> The ingot is polished and then sliced into thin wafers - typically 300mm or 12 inches in diameter.

PATTERN FORMATION

Circuit patterns are drawn on a clear stencil-like mask, and transferred to the photoresist using ultraviolet light.

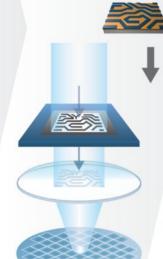
> Materials in unexposed areas are etched away, leaving a 3D pattern on the wafer. These steps repeat multiple times and require precise measurement.

WAFER PREP

A pure layer of silicon is

grown on the wafer

surface using a process


called Epi to protect the

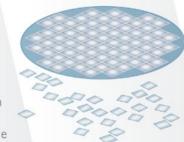
underlying silicon during

subsequent steps.

Next, the wafer is spun

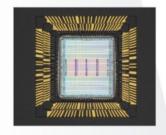
and uniformly coated with

TRANSISTOR FORMATION

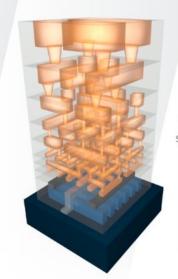

The transistor is the fundamental building block of electronics. It is a switch or gate that regulates voltage. Advanced chips can contain 12 billion transistors.

Switching a gate open allows current to flow through a channel from a source to a drain. Etch and deposition steps form the transistor. Ion implantation and thermal steps improve transistor speed by modifying the silicon to conduct current faster.

CONNECT **TRANSISTORS**


Wires connect transistors to route electronic signals out of the chip, and are created by patterning and etching circuit lines, then filling them with metal.

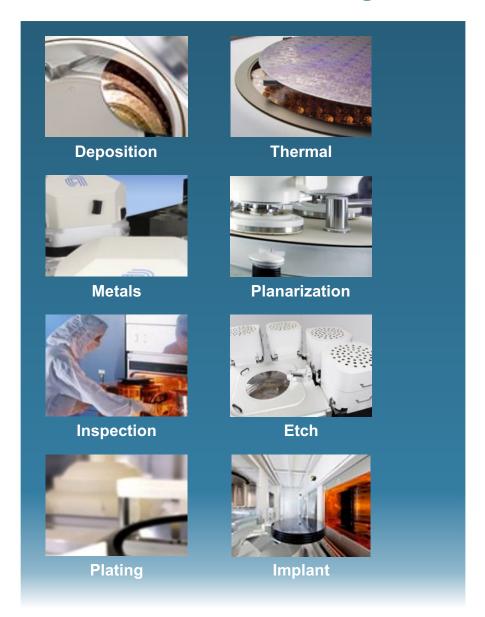
> A single chip can contain more than 12.5 miles of wiring spanning multiple levels.



PACKAGING

The chips are then placed in a lead frame forming a protective housing.

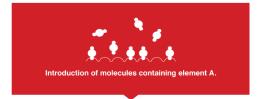
Each chip is tested before being packaged. They are now ready to be used in computers, mobile devices and many other products.


CUT INTO SINGLE CHIPS

When the wafer is finished being processed, the surface is now covered with multiple semiconductors. The wafer is sliced into individual semiconductor "chips."

Tools needed for high volume manufacturing

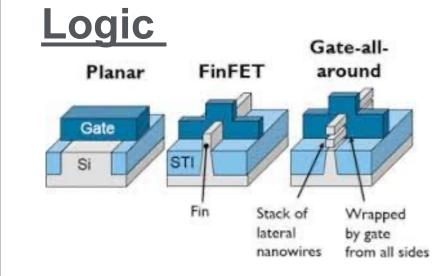
 In reality, the production flow requires multiple different tools

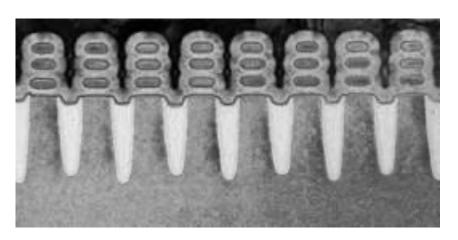

For instance, "Deposition" covers PVD,
 CVD and ALD tools

ALD – The Finnish innovation which is essential for modern leading edge components

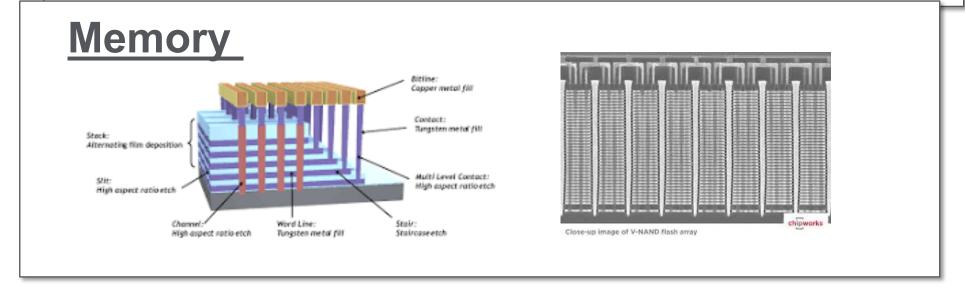
- The most advanced thin film coating technique of today
- Precise control of the film thickness and structure down to nanometer level
- The highest film uniformity and conformality over and inside the smallest nanoscale features
- Dense, pinhole-free and defectless films
- Digitally repeatable process
- Low process temperatures, gentle to sensitive substrates

Key enabling technology in modern IC industry!


Repeat cycle till desired film thickness is reached.



HOW THIS WOULD BE EVEN POSSIBLE WITHOUT ALD?



Other thin film coating methods



ALD

What kind of people and competences are needed – In Finland and globally

Physics (Semiconductor, plasma, nanotechnologies, quantum, etc.)

Chemistry

Simulations

Advanced mechanics

Electric design

SW developers

Automation

Machine learning

Data analysis

