

muRata

Rate

# **Murata MEMS**

Ville Kaajakari 25/11/2022





- MEMS = 'Micro Electro Mechanical Systems'
  - Micro: micrometer scale
  - Electro: electronic control, actuation, amplification
  - Mechanical: moving structures
  - System: electronics and mechanical parts combined into an integrated system
- Other equivalent terms:
  - Micromechanics
  - Micromachines
  - Micromachining
  - Microsystems

### Surface micromachining makes thin structures





Semi-3D structures are made, by repeating the steps of film deposition and film patterning.

# muRata Batch fabrication enables low cost INNOVATOR IN ELECTRONICS **Ultraviolet light** Optical mask

#### Thousands of devices are obtained from a single wafer!

#### Murata Facts & Figures





#### **Our Business**

We are worldwide leaders in the design, manufacture and supply of electronic components and solutions. We are Innovators in Electronics.

#### **Our Strengths**

- Advanced materials technology and expertise
- Broad product portfolio
- Extensive global manufacturing and sales network

#### **Our Figures**

- Net sales 1,575026 million JPY\* (about \$14B)
- Employees 77,571\*
- Number of subsidiaries 92\* (28 in Japan, 64 overseas)
- Established in 1944

\*as of March 31, 2019 \*Murata Manufacturing Co., Ltd. Is not included in the number of subsidiaries

# Murata Electronics Oy in brief





- Design and manufacturing of inertial motion sensors based on a unique 3D MEMS\* technology
- State-of-the-art clean room operations (ISO 4-8)
- ISO 9001:2015, IATF16949:2016, ISO 14001:2005 (all valid through 2021)
- 1165 employees\*\*



In red all countries where Murata has factories, R&D centers and sales offices.

# Main markets & applications



#### We contribute to safer driving, higher quality of life and increased efficiency

#### **AUTOMOTIVE**



#1 in acceleration sensors for automotive active safety systems



**Electronic Stability** Control (ESP/ESC)



Hill Start Assistance (HSA)



Transmission Control (TCM)



**Advanced Driver** Assistance Systems (ADAS)



**Electronically Controlled** Susp. (ECS)



Electric Parking Brake (EPB)

#### **HEALTHCARE & MEDICAL**



#1 in activity monitoring in Cardiac **Rhythm Management** 



Pacemakers and ICDs

Surgery tables and medical imaging



Vital signs



Bed occupancy



Sleep quality, stress, relaxation

#### **INDUSTRIAL**



Wide range of sensing solutions across industries





**Construction tools** and systems

**Heavy machines** 



Structural health monitoring



Airplane instrument systems



Weight scales



Robotics

#### Silicon and Si-wafer

- Excellent mechanical properties for springs
  - Elastic no plastic deformation
  - Brittle due to crystal structure
    - Enables self diagnostics (in-spec or broken)
- Low cost
- Wafers with accurate dimensions & excellent surface quality
- Manufacturing technologies "borrowed" from IC industry
  - Lithography and etching methods produce tiny structures





8



#### Copyright © Murata Manufacturing Co., Ltd. All rights reserved.

#### **Accelerometer Operation Principle**

- When Base accelerates (*a*), mass *m* requires Force *F* to accelerate due to inertia  $F = m \cdot a$
- Force displaces spring *k* to the opposite direction

$$F = k \cdot x$$

Displacement is sensed by change in Capacitance C





#### MEMS profit equation: profit = 1/size





Large dies:

- Low number of candidates (=possible working dies)
- Low number of dies without defects (=yielded dies)
- Large area lost at die edge



Small dies:

- Large number of candidates
- Large number of dies without
- defects (=> good yield)
- Less area lost at die edge

#### MEMS processing enables complexity ...







Analog devices 2-axis accelerometer (MEMS accelerometer price has dropped from \$1 per axis to less than \$0.50 for 6-axis sensor).

#### ... in tiny scale





# MFI MEMS Technology Platform Evolution





#### Element Structure - DEC platform (Dry-Etched Combs)









What happens when all dimensions are reduced 10x?



(Analog devices accelerometers measure 0.1 Å displacements!)

#### Scaling of noise with size









small, I like to stick to other small balls.



- To obtain "microintuition", we can study scaling laws ٠
- Example: volume scales as  $V \sim l^3$  but area scales as  $A \sim l^2$ . The • surface to volume ratio  $A/V \sim l^{-1}$  increases when the object size reduce.



Scaling laws: stiction

I have large mass! (I am happy alone)

I am a small ball, I have more surface than mass!



# surface to volume ratio $A/V \sim l^{-1}$ increases when the object size

Scaling laws: drag force (air damping)



I am a big ball, I have large mass! (I drop like a rock)



Example: volume scales as  $V \sim l^3$  but area scales as  $A \sim l^2$ . The

I am a small ball, I have more surface than mass! (I can float in air)

 $F_D = \frac{1}{2} C_D \rho A \dot{x}^n$ 

#### **MEMS** curses



Stiction (honey, I am stuck)



# Stiction (bumps help!)



Minimize contact area

#### Air damping (honey, I am in quick sand)





# Air damping





# Solition to air damping: microvacuum





#### Air damping (honey, I am in quick sand)



- Still one of the hardest problems in MEMS
- No such thing as perfect vacuum
- Every material outgassess
- Every material leaks (especially He)
- Packaging volumes are small (large surface to volume ratio)

Note: effective viscosity depends on the mechanical dimensions – no good way to simulate!

# Why Inertial Sensor in Autonomous Driving?





#### **Emerging Application – Autonomous Driving**

- Gyros have been compared with performance parameters like Offset stability over time and Temp
- In Autonomous Driving Relative
   Positioning becomes more important
- Allan variance plot shows Deviation of Output (noise) vs. Averaging Time on logarithmic scale axes
- Sensor performance in one single diagram

\*ARW= Angular Random Walk





#### The Effect of ARW in Vehicle Positioning

- IMU usage in navigation requires continuous error correction by the system based on GPS position
- Accumulated mean error is given by the gyro Angular Random Walk, directly related to gyro
  white noise level
- Calculated errors (1 sigma) in case of 80km/h 1 min driving
  - 1. ESC standard spec performance
  - 2. Murata Combo 2 ESC sensor
  - 3. Murata Combo 3 ESC sensor

Future AD target

ARW 0.04 deg/sqrt(h)  $\rightarrow$  error 12 cm

ARW 0.4 deg/sqrt(h)  $\rightarrow$  error 1.2 m

ARW 0.2 deg/sqrt(h)  $\rightarrow$  error 0.6 m

 $\rightarrow$  error 5 m

ARW 1.7deg/sqrt(h)



#### Functional safety = failing in a safe way



Example: Airbus uses 3 airflow sensor for autopiloting Counter example: Boeing 737 max relied on one sensor



MEMS fail (seldom but it happens). How to guarantee a safe failure?

# Safety illustrated: Electronic Stability Control

- ABS is not enough in a curve
- Electronic Stability Control (ESC) corrects for underand over- steering  $\frac{d \theta}{dt}$
- Yaw rate (Ω) from angular rate sensor and centripetal acceleration (a<sub>n</sub>) from lateral accelerometer are compared to calculated trajectory from wheel speed and steering wheel angle
- Control by applying brake force on individual wheels







#### MEMS experts needed in:







- Metal semiconductor junction
  - When is it diode and when ohmic contact?
- Force between electrodes
  - What is the difference between silicon-air-silicon and silicon-airmetal capacitor?
- Carrier density and resistivity
- Material engineering
  - Effect of doping on mechanical properties of silicon
- New materials
  - Piezoelectric
  - ALD

- ...



muRata

Rat

# Thank You

www.murata.com

