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Demo exercises
The goal is to build a regression model that explains alcohol consumption expenditures per capita Q1CPC
with the real price index of alcohol R1C and total consumption expenditures per capita QTOTALPC. The data
we use in these demo exercises is real data from Finland and the data consists of yearly time series between
1950 and 1981. The prices of different years have been inflation adjusted to be comparable with the fixed
prices of the year 1975.

An elementary model in economics is the log-linear regression model, defined as,
log(Q1CPC) = 𝛽0 + 𝛽1 log(R1C) + 𝛽2 log(QTOTALPC) + 𝜀, (1)

where log(⋅) denotes natural logarithm. Model (1) will be estimated in Exercise 5.1 for years 1950-1981.

A problem with Model (1) is that the alcohol legislation changed in the beginning of the year 1969. This
motivates us to add an indicator (or dummy) variable LAW to the Model (1). The variable LAW represents
the change in the legislation and it is defined as follows,

LAW𝑡 = {0, 1950 ≤ 𝑡 ≤ 1968
1, 1969 ≤ 𝑡 ≤ 1981,

where 𝑡 ∈ {1950, … , 1981} denotes the year. Hence, we obtain the model
log(Q1CPC) = 𝛽0 + 𝛽1 log(R1C) + 𝛽2 log(QTOTALPC) + 𝛽3LAW + 𝜀. (2)

The indicator variable LAW tries to take into account the jump in the level of the alcohol expenditures.
Namely, in Model (2) the constant term is of the form,

𝛽0, 1950 ≤ 𝑡 ≤ 1968
𝛽0 + 𝛽3, 1969 ≤ 𝑡 ≤ 1981.

The presumption is that the regression coefficient 𝛽3 is statistically significant and positive. Model (2) will
be estimated in Exercise 5.2 for the years 1950-1981.

However, by performing some regression diagnostics, we find that Model (2) is not satisfactory when trying
to describe the behavior of the variable log(Q1CPC). The problem with model (2) is that the residuals of the
estimated model are heavily correlated. We can sometimes get rid of the autocorrelation issue by utilizing
so-called difference models. Therefore, we try the following difference model to describe alcohol expenditures,

D log(Q1CPC) = 𝛽0 + 𝛽1D log(R1C) + 𝛽2D log(QTOTALPC) + 𝛽3D LAW + 𝜀. (3)
The difference operation on the dummy variable LAW produces a so called impulse dummy. Model (3) is
estimated in Exercise 5.3 for the years 1950-1981.

Note that, in Model (3) we have a different response variable than in Models (1) and (2). Thus, different
models are not directly comparable.

In Exercise 5.4, we modify Model (2) by adding dynamic components. We try the following regression model
for the alcohol expenditures,

log(Q1CPC𝑡) =𝛽0 + 𝛽1 log(Q1CPC𝑡−1)
+ 𝛽2 log(R1C𝑡) + 𝛽3 log(R1C𝑡−1)
+ 𝛽4 log(QTOTALPC𝑡) + 𝛽5 log(QTOTALPC𝑡−1)
+ 𝛽6LAW𝑡 + 𝛽7LAW𝑡−1 + 𝜀𝑡,

(4)
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where 𝑋𝑡−1 is the variable 𝑋𝑡 with lag one. Note that the explanatory variable log(Q1CPC𝑡−1) is not inde-
pendent of the error term 𝜀𝑡. Therefore, the standard assumptions are not satisfied and it is not possible to
draw conclusions from the coefficient of determination directly.

In Exercises 5.3 and 5.4, we study the autocorrelation of the residuals by using Breusch–Godfrey test, which
is similar to Ljung-Box test. In general, Ljung-Box can be applied to test autocorrelation of the residuals
of fitted SARIMA models. However, it is not justified to use Ljung-Box test in regression diagnostics, if the
model involves endogenous explanatory variables, that is, variables that are not independent of the residuals.
On the other hand, Breusch–Godfrey test is applicable in these situations. In the Breusch–Godfrey test, the
null hypothesis is that there is no autocorrelation up to the lag 𝑝. The test can be conducted in R with the
function bgtest, which is implemented in the package lmtest.

First, we attach relevant packages, read the data and create ts objects. Notice that variables LQ1CPC, LR1C
and LQTOTALPC are logaritms of variables Q1CPC, R1C and QTOTALPC, respectively.
library(car) # Calculate VIF
library(lmtest) # Breusch–Godfrey test

alko <- read.table("data/alcohol.txt", header = TRUE, sep = "\t")
alko <- alko[, 1:5]
head(alko)

## YEAR Q1CPC LQ1CPC LR1C LQTOTALPC
## 1 1950 148.0456 4.997520 4.614780 8.449157
## 2 1951 152.4226 5.026657 4.652774 8.510380
## 3 1952 168.9036 5.129328 4.605994 8.561820
## 4 1953 168.7201 5.128241 4.617447 8.546479
## 5 1954 169.6960 5.134008 4.630082 8.598005
## 6 1955 180.9960 5.198475 4.648004 8.659339
consumption <- ts(alko$LQ1CPC, start = 1950)
price <- ts(alko$LR1C, start = 1950)
total <- ts(alko$LQTOTALPC, start = 1950)

To ease our analysis, we make R functions for plotting diagnostics and performing Breusch–Godfrey test.
Many of the defined functions are just wrappers of familiar R functions.
#' Plot original time series and fit
#'
#' @param y Response variable.
#' @param model Linear regression model object of class lm.
#' @param name Name of the response variable.
plot_fit <- function(y, model, name) {
fit <- ts(model$fitted.values, start = start(y)[1])
plot(y, col = "red", xlab = "Time", ylab = "")
lines(fit, col = "blue")
legend("topleft", legend = c(name, "Fit"), col = c("red", "blue"),

lty = c(1, 1))
}

#' Plot Cook's distances
#'
#' @param y Response variable.
#' @param model Linear regression model object of class lm.
plot_cook <- function(y, model) {
cooksd <- cooks.distance(model)
plot(cooksd, xaxt = "n", type = "h", lwd = 3, xlab = NA,
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ylab = "Cook's distances")
axis(side = 1, at = seq(1, length(y), 5), cex.axis = 0.9,

labels = seq(start(y)[1], (start(y)[1] + length(y) - 1), 5))
}

#' Plot residuals versus time
#'
#' @param y Response variable.
#' @param model Linear regression model object of class lm.
plot_res <- function(y, model) {
res <- ts(model$residuals, start = start(y)[1])
plot(res, type = "p", pch = 16)

}

#' ACF plot of residuals
#'
#' @param model Linear regression model object of class lm.
#' @param lag_max Maximum lag at which to calculate the acf.
plot_acf <- function(model, lag_max = NULL){
acf(model$residuals, main = "", lag.max = lag_max)

}

#' Histogram of residuals (8 bins)
#'
#' @param model Linear regression model object of class lm.
plot_hist <- function(model) {
res <- model$residuals
breaks <- seq(min(res), max(res), length.out = 9)
hist(model$residuals, xlab = "Residuals", ylab = "Frequency", main = "",

breaks = breaks)
}

#' QQ plot
#'
#' @param model Linear regression model object of class lm.
plot_qq <- function(model) {
res <- model$residuals
qqnorm(res, pch = 16, main = "")
qqline(res, col = "red", lwd = 2)

}

#' Perform Breusch-Godfrey test
#'
#' Breusch-Godfrey can be performed up to order
#' 'sample size' - 'number of estimated parameters'.
#'
#' @param model Linear regression model object of class lm.
#' @param m Number of estimated parameters.
#'
#' @return Vector of p-values.
res_test <- function(model, m) {
n <- length(model$residuals)
pvalues <- rep(NA, n - m)

3 / 16



Prediction and Time Series Analysis
Department of Mathematics and Systems Analysis
Aalto University

Ilmonen / Shafik / Pere / Mellin
Fall 2022

Computer exercises 5

for (i in 1:(n - m)) {
pvalues[i] <- bgtest(model, order = i)$p.value

}
pvalues

}

5.1
Estimate Model (1) and study the goodness of fit.

Solution
Next, estimate Model (1).
model_log <- lm(consumption ~ price + total)
summary(model_log)

##
## Call:
## lm(formula = consumption ~ price + total)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.146202 -0.083305 -0.009638 0.082679 0.161945
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.89170 1.98506 -1.457 0.1559
## price -1.00346 0.37255 -2.693 0.0116 *
## total 1.46489 0.05904 24.813 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.09986 on 29 degrees of freedom
## Multiple R-squared: 0.9642, Adjusted R-squared: 0.9617
## F-statistic: 390.1 on 2 and 29 DF, p-value: < 2.2e-16

Comments about summary(model_log):

• The regression coefficients corresponding to the variable price and variable total are statistically
significant with 5% level of significance.

• The signs of the regression coefficients of the price and total expenditures variables are as expected:
the coefficient of the price variable (price) is negative and the coefficient of the total expenditures
variable (total) is positive.

• Interpretations of the regression coefficients as elasticities:

– If the price goes up by 1 %, then the alcohol expenditures are reduced by 1.003%.
– If the total expenditures are increased by 1 %, then the alcohol expenditures are increased by

1.465%.

• The coefficient of determination of the model is 96.42%.

Next, we study the normality of the residuals, Cook’s distances and compare the fitted model with the
original time series.
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plot_fit(consumption, model_log, name = "Consumption")
plot_cook(consumption, model_log)
plot_res(consumption, model_log)
plot_acf(model_log)
plot_hist(model_log)
plot_qq(model_log)
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(e) Histogram of the estimated residuals.
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(f) QQ-plot of the estimated residuals.

Figure 1: Diagnostic plots for Model (1).

vif(model_log)

## price total
## 1.16005 1.16005
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Comments about diagnostics of Model (1):

• By Figures 1(e) and 1(f), the residuals do not look normally distributed.

• By Figures 1(c) and 1(d), the residuals seem to be heavily correlated.

• By the variance inflation factor (VIF), multicollinearity is not a problem here.

• The reason for the correlatedness of the residuals can be seen from Figure 1(a), where the fitted curve
stays above and below the response variable consumption for long time periods.

• The model does not take account of the change in the legislation (the beginning of the year 1969). This
is also visible in the Cook’s distances (Figure 1(b)).

All in all, Model (1) cannot be considered to be sufficient.

5.2
Estimate and study Model (2).

Solution
First, let us fit Model (2).
law <- ts(c(rep(0, 19), rep(1, 13)), start = 1950)
model_law <- lm(consumption ~ price + total + law)

summary(model_law)

##
## Call:
## lm(formula = consumption ~ price + total + law)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.144576 -0.031179 0.008463 0.048923 0.086176
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.21798 1.40182 0.155 0.87754
## price -0.88570 0.24650 -3.593 0.00124 **
## total 1.04355 0.07818 13.349 1.16e-13 ***
## law 0.31738 0.05106 6.216 1.03e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.06588 on 28 degrees of freedom
## Multiple R-squared: 0.9849, Adjusted R-squared: 0.9833
## F-statistic: 610.5 on 3 and 28 DF, p-value: < 2.2e-16

Comments about summary(model_law):

• The regression coefficients corresponding to the price variable (price) and the total expenditures
variable (total) are statistically significant with 5% level of significance.

• The estimates for the regression coefficients differ from the estimates of Model (1).

• The signs of the regression coefficients for the price and total expenditures are as expected: the coeffi-
cient of the price variable is negative and the coefficient of the total expenditures variable is positive.
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• Interpretations of the regression coefficients as elasticities:

– If the price goes up by 1%, then the alcohol expenditures are reduced by 0.886%.

– If the total expenditures are increased by 1%, then the alcohol expenditures are increased by
1.044%.

• The regression coefficient 0.317 corresponding to law is statistically significant with 5% level of signif-
icance.

• The sign of the regression coefficient of law is as expected.

• The coefficient of determination has increased to 98.49%.

Next let us study the goodness of the fit.
plot_fit(consumption, model_law, name = "Consumption")
plot_cook(consumption, model_law)
plot_res(consumption, model_law)
plot_acf(model_law)
plot_hist(model_law)
plot_qq(model_law)
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(f) QQ-plot of the estimated residuals.

Figure 2: Diagnostic plots for Model (2).

vif(model_law)

## price total law
## 1.166943 4.674154 4.636612
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Comments about diagnostics of Model (2):

• By Figures 2e) and 2f), the distribution of the residuals does not seem to be normal. The histogram
of the residuals is skewed, which is evidence against normality.

• By Figures 2c) and 2d), the residuals are strongly correlated.

• By VIF, there is no problem with multicollinearity.

• The reason for the correlation of the residuals can be seen from Figure 2a). The fitted curve stays long
time periods above and below the values of the response variable consumption.

• The model takes into account the change in the legislation (beginning of 1969).

By the regression diagnostics, this model is not satisfactory in explaining the alcohol expenditures.

5.3
Estimate and study Model (3).

Solution
First, we compute differenced variables and fit Model (3).
consumption_d <- diff(consumption)
price_d <- diff(price)
total_d <- diff(total)
law_d <- diff(law)

model_diff <- lm(consumption_d ~ price_d + total_d + law_d)
summary(model_diff)

##
## Call:
## lm(formula = consumption_d ~ price_d + total_d + law_d)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.08272 -0.01250 0.00000 0.02027 0.05541
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.010343 0.009273 -1.115 0.275
## price_d -0.816697 0.133193 -6.132 1.50e-06 ***
## total_d 1.372390 0.225936 6.074 1.74e-06 ***
## law_d 0.196386 0.037765 5.200 1.78e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03383 on 27 degrees of freedom
## Multiple R-squared: 0.8264, Adjusted R-squared: 0.8071
## F-statistic: 42.84 on 3 and 27 DF, p-value: 2.113e-10

Comments about summary(model_diff):

• All the coefficients of Model (3) are statistically significant (with the exception of the constant term)
with 5% level of significance.

• The estimates for Model (3) are clearly different when compared to the estimates of Model (2).
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• The signs of the regression coefficients of the price variable (price_d) and total expenditures variable
(total_d) are as expected: the coefficient of the price variable is negative and the coefficient of the
total expenditures variable is positive.

• Interpretations of the regression coefficients as elasticities:

– If the price goes up by 1%, then the alcohol expenditures are reduced by 0.817%.

– If the total expenditures are increased by 1%, then the alcohol expenditures are increased by
1.372%.

• The coefficient of the instant effect of the dummy variable law_d is 0.196.

• The coefficient of determination is 82.64%.

• The coefficient of determination of the Model (3) is not comparable with the coefficients of determina-
tions corresponding to Models (1) and (2), since the response variable is not the same.

Next, let us study goodness of the fit. Here we also use Breusch–Godfrey test to study autocorrelations of
the residuals.
plot_fit(consumption_d, model_diff, name = "D(Consumption)")
plot_cook(consumption_d, model_diff)
plot_res(consumption_d, model_diff)
plot_acf(model_diff)
plot_hist(model_diff)
plot_qq(model_diff)
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(f) QQ-plot of the estimated residuals.

Figure 3: Diagnostic plots for Model (3).

vif(model_diff)

## price_d total_d law_d
## 1.061327 1.273221 1.206251
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res_test(model_diff, m = 4) > 0.05

## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Comments about diagnostics of Model (3):

• By Figures 3e) and 3f), the residuals could be normally distributed.

• By Figures 3c) and 3d), the residuals are not correlated.

• By the Breusch-Godfrey test, the residuals are not correlated, since the null hypothesis is accepted
with 5% level of significance for all lags.

• By VIF, multicollinearity is not a problem.

• By plotting residuals against time (Figure 3c)), there does not seem to be evidence of heteroscedasticity.

All in all, by diagnostics Model (3) seems satisfactory.

5.4
Estimate and study Model (4).

Solution
First, we fit Model (4). Note that, when variables of the form 𝑋𝑡−1 and 𝑋𝑡 are considered, the last and the
first observation are omitted, respectively, when Model (4) is estimated.
n <- length(consumption)
model_lag <- lm(consumption[-1] ~ consumption[-n] + price[-1] + price[-n] +

total[-1] + total[-n] + law[-1] + law[-n])
summary(model_lag)

##
## Call:
## lm(formula = consumption[-1] ~ consumption[-n] + price[-1] +
## price[-n] + total[-1] + total[-n] + law[-1] + law[-n])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.073939 -0.013803 0.002322 0.013555 0.071924
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.36137 0.86190 -0.419 0.678911
## consumption[-n] 0.91197 0.10461 8.718 9.52e-09 ***
## price[-1] -0.82927 0.16234 -5.108 3.57e-05 ***
## price[-n] 0.71352 0.17579 4.059 0.000486 ***
## total[-1] 1.46946 0.24887 5.905 5.10e-06 ***
## total[-n] -1.31522 0.27235 -4.829 7.13e-05 ***
## law[-1] 0.17751 0.04468 3.973 0.000602 ***
## law[-n] -0.19188 0.04707 -4.077 0.000465 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.03442 on 23 degrees of freedom
## Multiple R-squared: 0.9964, Adjusted R-squared: 0.9954
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## F-statistic: 922.3 on 7 and 23 DF, p-value: < 2.2e-16

Comments about summary(model_lag):

• It is not possible to draw direct conclusions regarding the significance of the regression coefficients
based on the 𝑡-tests. However, the results give some general direction, and the results indicate that all
regression coefficients would be statistically significant (with the exception of the constant).

• The coefficient of the variable consumption with lag 1 is 0.912, which implies that the adjustment to
changes in prices and total expenditures is rather fast.

• The signs of the coefficients of variables price and total with lag 0 are as expected: the coefficient
-0.829 of the price variable is negative and the coefficient 1.469 of the total expenditures variable is
positive. These coefficients describe the instant effects of changes in prices and total expenditures.

• The signs of the coefficients of the price and total expenditures variables with lag 1 are also as expected.

• Long term elasticities are:

Price: 𝛽2 + 𝛽3
1 − 𝛽1

≈ −1.31,

Total expenditures: 𝛽4 + 𝛽5
1 − 𝛽1

≈ 1.75.

• Interpretations of the regression coefficients of price and total expenditures variables with lag 0:

– If the price goes up by 1%, then the alcohol expenditures are instantly reduced by (without a lag)
0.829%.

– If the total expenditures are increased by 1%, then the alcohol expenditures are increased by
1.469%.

Interpretations of the long term elasticities of price and total expenditures variables:

• If the price goes up by 1%, then the alcohol expenditures are reduced by 1.31% in the long term.

• If the total expenditures are increased by 1%, then the alcohol expenditures are increased by 1.75% in
the long term.

• The coefficient of the instant effect of the dummy variable law is 0.177 and the long term coefficient
is small ((𝛽6 + 𝛽7)/(1 − 𝛽1) ≈ −0.16). Hence, the change in the legislation has rather minor effect on
the behaviour of the consumers in a long term, which seems plausible.

• Additionally, it is not possible to draw conclusions from the coefficient of the determination.

Next, let us study goodness of the fit. Here we also use Breusch–Godfrey test to study autocorrelations of
the residuals.
y <- ts(consumption[-1], start = 1951)
plot_fit(y, model_lag, name = "Consumption")
plot_cook(y, model_lag)
plot_res(y, model_lag)
plot_acf(model_lag)
plot_hist(model_lag)
plot_qq(model_lag)
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(f) QQ-plot of the estimated residuals.

Figure 4: Diagnostic plots for Model (3).

vif(model_lag)

## consumption[-n] price[-1] price[-n] total[-1] total[-n]
## 70.276140 1.846537 2.128280 158.246107 192.764336
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## law[-1] law[-n]
## 12.720381 13.752088
res_test(model_lag, m = 8) > 0.05

## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Comments about diagnostics of Model (3):

• By Figures 4e) and 4f), the residuals could be normally distributed. However, tails of the distribution
seem to be heavier than tails of the normal distribution.

• By Figures 4c) and 4d), the residuals are not correlated.

• By the Breusch-Godfrey test, the residuals are not correlated. The null hypothesis is accepted with
5% level of significance for all lags.

• By VIF, there is strong multicollinearity in the model. This is unsurprising, as the model involves
same variables with different lags.

• By Figure 4c), there is no evidence of heteroscedasticity.

• The model takes into account the change in the legislation.

• By Figure 4a), the fitted model coincides better with the original time series than the fits of Models
(1) and (2).

We consider this model to be sufficient in explaining the alcohol expenditures.

Homework
5.5
The file t38.txt contains three quarterly time series. The time series start from the first quarter of the year
1953 and the corresponding time series are,

CONS = total consumption (billions)
INC = income (billions)
INFLAT = inflation (%)

The time series CONS and INC represent the observed total consumption and income in an imaginary country.
The time series INFLAT represents inflation. The goal is to estimate a so-called consumption function that
explains the time series CONS with the time series INC and INFLAT.

a) Estimate the static linear regression model

CONS𝑡 = 𝛽0 + 𝛽1INC𝑡 + 𝛽2INFLAT𝑡 + 𝜀𝑡.

and study the goodness of fit.

b) Estimate the difference model

D(CONS𝑡) = 𝛽0 + 𝛽1D(INC𝑡) + 𝛽2D(INFLAT𝑡) + 𝜀𝑡.

and study the goodness of fit.

c) Estimate the dynamic linear regression model

CONS𝑡 = 𝛽0 + 𝛽1CONS𝑡−1 + 𝛽2INC𝑡 + 𝛽3INC𝑡−1 + 𝛽4INFLAT𝑡 + 𝛽5INFLAT𝑡−1 + 𝜀𝑡

and study the goodness of fit.
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