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Exercise 10 – Solutions                     22.11.2022 

 

#1 Finding Pareto-optimal solutions with MATLAB 

a) The problem can be formulated as a 2-objective integer linear programming model: 

v-max
𝑥∈ℕ𝑚

[
 
 
 
 
 ∑𝜇𝑗𝑥𝑗

𝑚

𝑗=1

∑−𝜎𝑗
2𝑥𝑗

𝑚

𝑗=1 ]
 
 
 
 
 

 

s.t. 

∑𝑐𝑗𝑥𝑗 ≤ 𝑏

𝑚

𝑗=1

 

∑(−𝑟𝑘𝑗𝑐𝑗)𝑥𝑗 ≤ −0.2𝑏 ∀ 𝑘 = 1,2,3

𝑚

𝑗=1

 

0 ≤ 𝑥𝑗 ≤ 1 ∀ 𝑗 = 1,… ,𝑚 

Using the matrix form  

v-max
𝑥∈ℕ𝑚

{𝐶𝑥|𝐴𝑥 ≤ 𝐵}, C ∈ ℝn×m, 𝐴 ∈ ℝq×m, 𝐵 ∈ ℝq 

we get 

𝐶 = [
𝜇1 … 𝜇𝑚

−𝜎1
2 … −𝜎𝑚

2 ] ∈ ℝ2×𝑚 

 

𝐴 =

[
 
 
 
 
 

𝑐1 … 𝑐𝑚

−𝑟11𝑐1 … −𝑟1𝑚𝑐𝑚

−𝑟21𝑐1 … −𝑟2𝑚𝑐𝑚
−𝑟31𝑐1 … −𝑟3𝑚𝑐𝑚

𝐼
𝑚×𝑚

−𝐼
𝑚×𝑚 ]

 
 
 
 
 

∈ ℝ(2𝑚+4)×𝑚 

 

𝐵 =

[
 
 
 
 
 
 

𝑏
−0.2𝑏
−0.2𝑏
−0.2𝑏

1
𝑚×1

0
𝑚×1 ]

 
 
 
 
 
 

∈ ℝ2𝑚+4 

 

where I is the identity matrix, 1 a vector of ones, 0 a vector of zeros. 
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b)  

i) Weighted sum –algorithm (see also slide 16 of Lecture 8) 

 

1. Set X =  

2. Take random points �̃�1, �̃�2~U(0, 1) , and define 𝜆1 =
�̃�1

�̃�1+�̃�2
, 𝜆2 =

�̃�2

�̃�1+�̃�2
. 

3. Solve 

max
𝑥∈ℕ𝑚

{�̃�𝑥|𝐴𝑥 ≤ 𝐵}, 

where �̃� = [𝜆1 𝜆2]𝐶 and 𝐶, 𝐴 and 𝐵 are defined above. 

4. 𝑋 = 𝑋 ∪ {𝑥∗}, where 𝑥∗ is the optimum point obtained in step 3. 

5. Return to step 2. 

 

ii) Weighted max-norm –algorithm (see also slides 20-21 of Lecture 8) 

 

1. Set X =  

2. Solve utopian vector f ∗ = (μ∗, 𝜎2∗) (two ILP problems): 

(I) 

𝜇∗ = max
𝑥∈ℕ𝑚

{[µ1 …µ𝑚]𝑥|𝐴𝑥 ≤ 𝐵} + 𝜀, 𝜀 > 0, 

(II) 

𝜎2∗ = max
𝑥∈ℕ𝑚

{[−𝜎1
2 …−𝜎𝑚

2 ]𝑥|𝐴𝑥 ≤ 𝐵} − 𝜀, 𝜀 > 0, 

where 𝐴 and 𝐵 are defined above. 

 

3. Take random points �̃�1, �̃�2~U(0, 1) , and define 𝜆1 =
�̃�1

�̃�1+�̃�2
, 𝜆2 =

�̃�2

�̃�1+�̃�2
. 

4. Solve MILP: 

 

max
𝑥∈ℕ𝑚,∆∈ℝ

{[ 0
1×𝑚

− 1] [
𝑥
∆
] | �̃� [

𝑥
∆
] ≤ [−𝜆1μ

∗ −𝜆2𝜎
2∗  𝐵]𝑇}, 

where 

�̃� = [

−𝜆1[µ1 …µ𝑚] −1

𝜆2[𝜎1
2 …𝜎𝑚

2 ] −1
𝐴 0

(2𝑚+4)×1

], 

and 𝐴 and 𝐵 are defined above. 

5. 𝑋 = 𝑋 ∪ {𝑥∗}, where (𝑥∗, ∆∗) is the optimum point obtained in step 4. 

6. Return to step 3. 
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Note that the MILP solved in step 4 is equivalent to the problem 

 

(*) 

max
𝑥∈ℕ𝑚,∆∈ℝ

−∆ 

s.t. 

𝜆1(𝜇
∗ − 𝑓1(𝑥)) ≤ ∆, 

𝜆2(𝜎
2∗ − 𝑓2(𝑥)) ≤ ∆, 

𝐴𝑥 ≤ 𝐵, 

where 𝑓1(𝑥) = [µ1 …µ𝑚]𝑥 and 𝑓2(𝑥) = [−𝜎1
2 …−𝜎𝑚

2 ]𝑥.  

On the other hand, Problem (*) is equivalent to the following formulation (see slide 20 of Lecture 

8): 

(**) 

min
𝑥∈𝑋

‖𝑓∗ − 𝑓(𝑥)‖𝑚𝑎𝑥
𝜆 = min

𝑥∈𝑋
max{𝜆1(𝜇

∗ − 𝑓1(𝑥)), 𝜆2(𝜎
2∗ − 𝑓2(𝑥))} , 𝑋 = {𝑥 ∈ ℕ𝑚|𝐴𝑥 ≤ 𝐵} 

 

But why are the problems (*) and (**) equivalent? 

One way to understand it is this: Let 𝑥∗ be the optimal solution to (**). That is,  

‖𝑓∗ − 𝑓(𝑥∗)‖𝑚𝑎𝑥
𝜆 = min

𝑥∈𝑋
‖𝑓∗ − 𝑓(𝑥)‖𝑚𝑎𝑥

𝜆 =∆∗. 

Then, it applies that ∆∗≥ 𝜆1(𝜇
∗ − 𝑓1(𝑥

∗)) and ∆∗≥ 𝜆2(𝜎
2∗ − 𝑓2(𝑥

∗)). So, (𝑥∗, ∆∗) is a feasible 

solution to (*) as well. Suppose that (𝑥′, ∆′) is the optimal solution to (*). Then, 

∆′≥ ‖𝑓∗ − 𝑓(𝑥′)‖𝑚𝑎𝑥
𝜆 ≥ min

𝑥∈𝑋
‖𝑓∗ − 𝑓(𝑥)‖𝑚𝑎𝑥

𝜆 =∆∗. 

If ∆′> ∆∗, there would be a conflict, because then (𝑥′, ∆′) would be worse solution to (*) than 

(𝑥∗, ∆∗). Thus, it must be so that ∆′= ∆∗. Hence, the optimal solutions to (*) and (**) are the same. 

 

c)  

Note that intlinprog allows one to define the lower and upper bounds of the decision variables 

explicitly with the input variables “LB” and “UB”. Thus, one does not need to define the constraint 0 ≤

𝑥𝑖 ≤ 1 with the help of the identity matrices 𝐼
𝑚×𝑚

and −𝐼
𝑚×𝑚

 as was now done in part a). 

 

1000 repetitions with the both algorithms produce in total 77 Pareto optimal solutions that differ from 

each other. The projects that are included in all found Pareto-optimal solutions are 1, 2, 23, and 39. 

Note that these results are only examples of the results that one may obtain. The random nature of 

the parameters and on each iteration step changes the results on different runs. 
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