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State-Space Representation (recap)

- Often, physical equations that describe a system mathematically are already
available in state-space representation, where the states are some set of
physical variables (e.g., displacements, velocities, etc.), i.e.,

System model: x(t) = Ax(t) + Bu(t), x(0)= xg dim(x) =
Observation model: y(t) = Cx(t) + Du(t)



State-Space Representation (recap)

- Often, physical equations that describe a system mathematically are already
available in state-space representation, where the states are some set of
physical variables (e.g., displacements, velocities, etc.), i.e.,

System model: x(t) = Ax(t) + Bu(t), z(0) = xg d?m(x) —n
Observation model: y(t) = Cx(t) + Du(t) d%m(u) —r
dim(y) = p

« Advantages of the system description using the state-space representation in
comparison to the conventional methods are:

- Possibility to describe the state of the entire system each time; unlike the transfer
function, which connects the input u(t) with the output y(2)

- They facilitate the solution of control problems, such as stability and optimized
control

- The simulation and scheduling in computer systems is quite easy since they are
represented by a set of linear differential (later difference) equations

- They are also able to describe some nonlinear systems, which cannot be done
using the transfer function



State-Space Representation (recap)

4.[ L } ulk] >[ process } > ylk| = x[k]

- Designing controllers based on state-space models to obtain specific
closed-loop characteristics of the system

x[k 4+ 1] = &x[k] + Tufk]
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State-Space Representation (recap)

u[k’]—4>[ process } > y|k|
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- Designing observers based on state-space models to obtain specific closed-
loop characteristics of the estimation error




State-Space Representation (recap)
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* By combining the state-observer and state-feedback controller it is possible to
design a controller based on output measurements (feedback)

xk+1]| |e-rr 1L | |[x[K
xk+1]| | 0 ® - KC| |x[k]
<
o
\y[k] = [C 0} k]




Learning outcomes

By the end of this lecture, you should be able to:

- Understand the principle of optimality
- Understand the Dynamic Programming

- Design optimal controllers based on LQ problem formulation



Introduction

- Classical control system design - design parameters of an “acceptable”
system, defined in terms of time and frequency domain criteria, e.g.,
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Introduction

- Classical control system design - design parameters of an “acceptable”
system, defined in terms of time and frequency domain criteria, e.g.,

> rise time

> settling time

> peak overshoot

> gain and phase margin
> bandwidth

Eovershooté M,
i = ! 774;; I
m\t_/r/\/k* e
e s ey i ‘ “‘—————————ﬁ._.ﬁ._)T‘___

- The main design parameters (in this course, so far) have been the locations of

the closed-loop poles

» Results limited to single-input single-output (SISO) systems

- Different performance criteria must be satisfied by complex multi-input-multi-
output (MIMO) systems, e.g., the design of a spacecraft attitude that minimizes
fuel expenditure - not solvable by classical methods!

School of Electrical
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1) Optimization cost (time or frequency domain). In time domain:
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Motivation for optimal control

* Motivation for optimal control

> Get the best performance

> Learn the limits

- Control design as optimization

1) Optimization cost (time or frequency domain). In time domain:

15

0S5}t

.
=~ reference signal

SKp=1 Ki=1 Kd=1

A A A
14 16 18

> Lower rise time = bigger overshoot

> Lower overshoot = large rise time

Handle
by

> Imposing additional constraints

> Integral criteria



Motivation for optimal control (cont’d)

- Integral criteria: let the error e = r — y, then one can try and minimize the error,

e.g.,
/ le|dt, / tleldt, / e*dt
0) 0 0
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* Integral criteria: let the error e = r» — y, then one can try and minimize the error,
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* Integral criteria: let the error e = r» — y, then one can try and minimize the error,

e.g.,
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- However, there is a performance vs effort trade off; to balance it
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2) Optimization variables

> Controllers (intractable if we do not make restrictions) = we need to fix the
controllers and optimize over parameters (e.g., PID coefficients).
- Have to express the cost J as a function of the PID parameters, which is
hard and it results to numerical simulation solutions
- Need to impose conditions for closed loop stability, generally nonconvex
problem



Motivation for optimal control (cont’d)

* Integral criteria: let the error e = r» — y, then one can try and minimize the error,

e.g.,
/ le|dt, / tleldt, / e*dt
0) 0 0

- However, there is a performance vs effort trade off; to balance it

/ qge’ +fru dt

\/

weights

2) Optimization variables

> Controllers (intractable if we do not make restrictions) = we need to fix the
controllers and optimize over parameters (e.g., PID coefficients).
- Have to express the cost J as a function of the PID parameters, which is
hard and it results to numerical simulation solutions
- Need to impose conditions for closed loop stability, generally nonconvex
problem
> Control signals Not easy in continuous time, but in discrete-time it is just a
seguence of numbers!
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- Optimal control theory: a new and direct approach to the synthesis of these
complex systems

- Objective: determine the control signals that allow a process to satisfy the
physical constraints and at the same time optimize some performance criterion

 In this lecture:

- the process is still assumed to be linear, but it may be time-varying

- the process may have several inputs and outputs

* The problem is formulated to minimize a criterion: a quadratic function of the
states and the control signals - Linear Quadratic (LQ) control problem
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LQ problem (continuous-time)

« Continuous-time model:

« Criterion to be minimized:

min J £ mm {X x(t) +u(t)" R(t)u(t)} dt

u

l.e., find control law u, such that the criterion is minimized.
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« Continuous-time model:

« Criterion to be minimized:

min J £ mm {X x(t) +u(t)" R(t)u(t)} dt

u

l.e., find control law u, such that the criterion is minimized.

- Design parameters are: the matrices () and R in the cost function.

 The final time of the optimization horizon ¢ can be finite or oo.

Initial state x(z) is given.
Final state x(¢y) can be fixed or free
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LQ problem (continuous-time)

« Continuous-time model:

* Criterion to be minimized:
min J £ mm {X x(t) +u(t)" R(t)u(t)} dt
l.e., find control law u, such that the criterion is minimized.

- Design parameters are: the matrices () and R in the cost function.

 The final time of the optimization horizon ¢ can be finite or oo.
Initial state x(z) is given.

Final state x(¢y) can be fixed or free

- What is the role of ? What is the role of R?
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« Discrete-time model:



LQ problem (discrete-time)

« Discrete-time model:

« Criterion to be minimized:

m{jnJ = min k; (X[k]TQ[k]X[k] + u[k]TR[k]u[k]) + x[NF Q[N]x[N]

i.e., find control law (sequence) u, such that the criterion is minimized.



LQ problem (discrete-time)

« Discrete-time model:

x[k 4+ 1] = Ox[k] + Tulk], [ko] = o
y[k] = Cx[k] + Dulk]

Fl'na( L
0 L. Running Torminal Cos
* Criterion to be minimized: 5L Cost ermina
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i.e., find control law (sequence) u, such that the criterion is minimized.
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LQ problem (discrete-time)

« Discrete-time model:

« Criterion to be minimized:

m{jnJ = min k; (X[k]TQ[k]X[k] + u[k]TR[k]u[k]) + x[NF Q[N]x[N]

i.e., find control law (sequence) u, such that the criterion is minimized.

* The design parameters are: the matrices ) and R in the cost function and the
sampling period.

* The final time of the optimization horizon N can be finite or .
Initial state x[k,] is given.
Final state x| N] can be fixed or free
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Dynamic programming

Those who cannot remember the past
are condemned to repeat it.

-Dynamic Programming

Main idea of Dynamic Programming (DP):
to always remember answers to the sub-problems you've already solved

If you are given a problem, which can be broken down into smaller sub-
problems, and these smaller sub-problems can still be broken into smaller
ones - and if you manage to find out that there are some overlapping sub-
problems, then you've encountered a DP problem.

School of Electrical
Engineering



Dynamic programming

® “An optimal policy has the property that no matter what the previous decision
(i.e., controls) have been, the remaining decisions must constitute an optimal
policy with regard to the state resulting from those previous decisions.”

- Bellman, 1957
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* By applying this principle the number of candidates for the optimal solution
can be reduced.



Dynamic programming

® “An optimal policy has the property that no matter what the previous decision
(i.e., controls) have been, the remaining decisions must constitute an optimal
policy with regard to the state resulting from those previous decisions.”

- Bellman, 1957

—--~

Jab J, ab \

a e a 4

* By applying this principle the number of candidates for the optimal solution
can be reduced.

Dynamic Programming
and Optimal Control

- Recommended books for Dynamic Programming:
- Dimitri Bertsekas (2017), “Dynamic Programming and
Optlmal Control” CONTROL

THEORY

- Donald E. Kirk (1998), “Optimal Control Theory” e

OPTIMAL
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Principle of Optimality .

) LeF(H) F(Sj?
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F(1)=4 F(E)=)
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Principle of Optimality

F()=0  F(H):3 F(E)=4
F(1)=4  FLF)=7
F(Q)=6

A! 5'““"“5'”' https://www.youtube.com/watch?v=_zE5z-KZGRw



Principle of Optimality
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Principle of Optimality

3 F(Q=F F(A)= L1

A! gﬂfE'w' https://www.youtube.com/watch?v=_zE5z-KZGRw
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Discrete-time optimization problem

- Consider the following process (plant): zx.1 = fir(xk, uk)

_— ]

» Criterion/Cost to be minimized: J;(z;) = min Z g6 (Tr, ug) + gy (2 N)
Ugy--- UN -1

=i |

* Note that when the final state is free, there can be an additional cost related to
that state.



Discrete-time optimization problem

- Consider the following process (plant): zx.1 = fir(xk, uk)

N —1
» Criterion/Cost to be minimized: J;(z;) = min Z g6 (Tr, ug) + gy (2 N)
Ugy--- UN -1
=i |

* Note that when the final state is free, there can be an additional cost related to
that state.

- Let’s use the principle of optimality:

Ji(rr) = min [gk(xk, ug) + J];k+1($k+1)}

Uk

We want to find ur such that the expression is minimized and we get the
optimal cost at time k.



Example

A certain material is passed through a sequence of 2 ovens:

L0 g Oven 1 L1 N Oven 2 X2 R
Initial Temperature ug Temperature u; Final
Temperature Temperature
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A certain material is passed through a sequence of 2 ovens:

L0 g Oven 1 L1 N Oven 2 L2 R
Initial Temperature ug Temperature u; Final
Temperature Temperature

The temperature of the material evolves according to
Tri1 = (1 — a)xg + aug

where a is a known scalar from the interval (0,1).
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Example

A certain material is passed through a sequence of 2 ovens:

L0 g Oven 1 L1 N Oven 2 L2 R
Initial Temperature ug Temperature u; Final
Temperature Temperature

The temperature of the material evolves according to
Tri1 = (1 — a)xg + aug
where a is a known scalar from the interval (0,1).

The objective is to get the final temperature x2 close to a given target 7, while
expending relatively little energy.
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Example

A certain material is passed through a sequence of 2 ovens:

L0 N Oven 1 L1 N Oven 2 L2 R
Initial Temperature ug Temperature u; Final
Temperature Temperature

The temperature of the material evolves according to
Tri1 = (1 — a)xg + aug
where a is a known scalar from the interval (0,1).

The objective is to get the final temperature x2 close to a given target 7, while
expending relatively little energy.

. . Dyn.amic Programming
This is expressed by a cost function of the form o Optimal Control

J=r(xy —T)° +ui + u?
where r is a given scalar.
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- Solution:
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We have N = 2 and a terminal cost: Ja(z2) = r(ze — T

2

N\ T e

-~ For the next-to-last stage, we have:

Jl (5131) - mm[u% -+ JQ(ZIZQ)]

u1

= min
U1

= min
U1

u% + Jo((1 — a)xy + auq )]

u% +r((1 —a)xy + auy — T)Z]
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We have N = 2 and a terminal cost: J2(x2) = r(zo — T)°
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U1
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- Solution:

We have N = 2 and a terminal cost: J2(x2) = r(zo — T)°

-~ For the next-to-last stage, we have:
J1 (5131) = mm[u% —+ JQ(ZIZ‘Q)]
U1

= minfu? + Jo((1 — a)z1 + auy)]

Ui

= min[u? + r((1 — a)z1 + au; — T)?]
Ui

The minimization is done by setting to zero the derivative with respect to u;:

3]1 (331)
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U1=uj

ra(T — (1 — a)z)
1 4+ ra?

*
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- Solution:

We have N = 2 and a terminal cost: J2(x2) = r(zo — T)°

-~ For the next-to-last stage, we have:
J1 (5131) = mm[u% —+ JQ(ZIZ‘Q)]
U1

= minfu? + Jo((1 — a)z1 + auy)]

Ui

= min[u? + r((1 — a)z1 + au; — T)?]
Ui

The minimization is done by setting to zero the derivative with respect to u;:

3]1 (331)
(‘9u1

= 2u] +2ar((1 —a)xy +auj —T) =0

U1=uj

ra(T — (1 — a)z)
1 4+ ra?

*

iulz

Not a single control, but a control function for every possible state z;




By substituting ] in J;(z1), we obtain

r((1—a)z; — T)2

Ji(z1) = 15 ra?
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By substituting ] in J;(z1), we obtain

|

|

|

uo

Ji(z1) = Al _1 i)i(lzz_ d

W

We now go back one stage:

Jo(zo) = min [uf + Ji(21)]

= min [ug + J1((1 — a)zo + aug)]

97

(4
i r((1 —a)2zo + (1 — a)aug — T
— min |13+ (L= @V o0 + (1~ @)ao = T)
UQ 1+ ra




By substituting ] in J;(z1), we obtain

r((1—a)z; — T)2

Ji(z1) =
1(21) 1 + ra?
We now go back one stage:
Jo(zg) = min u% + Jl%(azl)}
Uo
= min [u2 + J7((1 — a)zo + aup)|
uo -
] ,  r((1—a)?zo+ (1 —a)aug — T)Q_
= min |ug +
o 1+ ra?

The minimization is done by setting to zero the derivative with respect to uo:

0Jo(x0) . 2a(1—a)r(1—a)?zo+ (1 —a)aul —T)
= 2ug +
Oug 1 4+ ra?

=0
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By substituting u; in Jy(xg), we obtain

Jo(z0) =

This is the optimal cost and this completes the solution of the problem!

r((l —a)?xy — T)2

1+ fraQ(l + (1 — a)2)

Engineering




By substituting u; in Jy(xg), we obtain

r((1—a)*zo —T)
1+ra?(1+(1—a)?)

2
Jo(x) =

This is the optimal cost and this completes the solution of the problem!

Given X, 5 Find uX and uf

a(l —a)r(T — (1 — a)*xo)

— Yo = 1—|—7“a2(1—|—(1—a,)2)

Tr+1 = (1 — a)zg + auy
Xy Xo Us

ra(T — (1 —a)z1)
1+ ra?

*

:>’U/1:




By substituting u; in Jy(xg), we obtain

| 5 2
1 Jﬁ(xo): r((l—a) :UO—T)

1+ fraQ(l + (1 — a)2)

This is the optimal cost and this completes the solution of the problem!

Remarks:

* In the example, we easily obtained an analytical solution - the quadratic nature
of the cost and the linearity of the system equation simplifies the solution



J

- By substituting ug in Jo(zo), we obtain
|

v r((1=a)’z —T)
\ Jo(xg) = 1+ ra2(1+4 (1 — a)?)

2

This is the optimal cost and this completes the solution of the problem!

Remarks:

* In the example, we easily obtained an analytical solution - the quadratic nature
of the cost and the linearity of the system equation simplifies the solution

* We will see next that, generally, when the system is linear and the cost is
quadratic, the optimal policy and the cost-to-go function are given by closed

form expressions, regardless of the number of stages V.



Solution of the discrete-time LQ problem
using Dynamic Programming

Process: ri11 = ®xp + T'ug, x; is given

N—1
. 1 1
Criterion: J = ix%SNxN + 5 Z {x%@xk + ugRuk}
k=3

(Sy > 0,0 >0, and R > 0 are symmetric)



Solution of the discrete-time LQ problem
using Dynamic Programming

Process: ri11 = ®xp + T'ug, x; is given

N—1
e 1 1
Criterion: J = §x%SNxN + 5 Z {x}f@xk + u{Ruk}
k=3

(Sy > 0,0 >0, and R > 0 are symmetric)

« xy Is free (and that is why there is a terminal cost associated with it)

* Find u;, in the interval [i,N] minimizing the criterion



Some matrix theory

 Definition: Let A be a symmetric matrix.
It is positive definite, if the scalar x! Ax > 0 for all non-zero vectors x
It is negative definite, if the scalar x! Ax < 0 for all non-zero vectors x
It is positive semidefinite, if the scalar x’ Ax > 0 for all non-zero vectors x

A
A
A
It is negative semidefinite, if the scalar x! Ax < 0 for all non-zero vectors x (A

0
0
0
0

INIV ANV

* [f a matrix A is not symmetric in xTAx, we can it symmetrize by (prove)

T
xT Ax = x* (A—;A )X

Hence, it can always be assumed that the weight matrices (¢ and R) are
symmetric

- From linear algebra:
The eigenvalues of symmetric matrices are real. A symmetric matrix is positive

definite, if and only if all eigenvalues are positive. The matrix is positive
semidefinite, if and only if the eigenvalues are nonnegative.



Some matrix theory

- Definition: L (/0] enge ACQ@P&J'

It is positive ¢ rs x (A >0)
:I !S negipve Z_e,ps Say Fis not Sqmme+ﬁc- :)I’StX Eﬁ ; 8;
is positive < /ectors x >
It is negative F= F+P E-F’ vectors x (A < 0)
2‘ T‘r\‘ l)eCnrv\e.s iero\
bo \-\.\.s *(‘\Ck—‘
° I T_. -l o
If d matrIX A )(TFX X /___t_(‘ X, + D [‘)< i 2} (prOVe)
g
d
~d €
= X F‘(‘F X + 2y
Hence, it car ;f f’ nd R) are
symmetric < §
Tz
* From linear |
The eigenvali ﬁ atrix is positive

definite, if an Dositive
semidefinite, IT ana only IT the eigenvaliues are nonnegative.



Some matrix theory

« Consider the vectors ¢ and x, the scalar f(x)=xTAx, and the vector Ax.
The following hold:

0x) _
I vec(I,)
o(x) I(x1)
oxT Ox = In
d(c!'x) _ o(x!c) e
Ox Ox
O(x"A)
Ox =4
o(Ax) _
I = vec(A)




Solution of the discrete-time LQ problem
using Dynamic Programming

« Cost of the final state:

« Backwards in time to time-instant N — 1:

« Minimize with respect to uy.;:
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Solution of the discrete-time LQ problem
using Dynamic Programming

« Cost of the final state:

1

« Backwards in time to time-instant N — 1:

1 1 1

T T T
JN—1 =N SNTN + zTn_1QTN-1+ zuny_;Run_1

2 2 2

1
- 5(cI)g;N_l +Tun_1)" Sy (®Pzy_1 +Tun_1)

« Minimize with respect to uy.;:

1
+ 5331]\}_1@56]\[_1 + §U%_1RUN_1



Solution of the discrete-time LQ problem
using Dynamic Programming

« Cost of the final state:

1

« Backwards in time to time-instant N — 1:

1 1 1
JN-1= 5967]\}51\7561\7 + 5557]\}—1QxN—1 + §U%_1RUN—1

1 1 1
= §(¢$N—1 +Tuy_ 1) Sy (Pxn_1 +Tuy_1) + §w%_1Q$N—1 + 5“1]\}_1RUN—1
« Minimize with respect to uy.;:
0JN_1

=TSN (®xn_1 +Tun_1) + Ruy_1 =0
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Solution of the discrete-time LQ problem
using Dynamic Programming

« Cost of the final state:

1

« Backwards in time to time-instant N — 1:

1 1 1
JN-1= 5967]\}51\7561\7 + 5557]\}—1QxN—1 + §U%_1RUN—1

1 1 1
= §(<I>:1:N_1 + FuN—1)TSN(‘I)$N—1 +Tuy_1) + §$%—1Q$N—1 + 5“%—1RUN—1

« Minimize with respect to uy.;:
0JN_1

=TSN (®xn_1 +Tun_1) + Ruy_1 =0 &
aUN—l M:—L.X

::>UE;&::'_(FTE%ﬂ?+_B»_yFTS%ﬂDxNL&::'TLNLJIALJ

Ln_1



Solution of the discrete-time LQ problem
using Dynamic Programming

« By substituting Ly.; into Jy.;:

« Backwards in time to time-instant N — 2:

1 1 1
JN-1= §$71\}SN33N + §x71\}_1QZEN_1 + §uﬁ_1RuN_1



Solution of the discrete-time LQ problem
using Dynamic Programming

« By substituting Ly.; into Jy.;:

. 1
T 4 = 53;%_1 [ECD —TLy_1)'SNy(®—TLy_1)+Q+ L%_lRLN_lja;N_l

1 %

— 5331]\}_15(]\[—137]\7—1 @\AO\APQ\-I-iC CRSON‘V\,J

-~

SN—1

« Backwards in time to time-instant N — 2:

1 1 1
JN-1= §$71\}SN33N + §x71\}_1QZEN_1 + §U%_1RUN—1



Solution of the discrete-time LQ problem
using Dynamic Programming
« By substituting Ly.; into Jy.;:

. 1
N 59;};_1 [@ —TLy_1)'Sn(® —TLn_1)+Q+ sz\}_lRLN_lij_l

-~

SN-1
= %377]\}_1SN—1$N—1
- Backwards in time to time-instant N — 2:
IN_2 = %331]\}_151\1—1351\7—1 + %ZE%_QQZEN—Q + %U%_QRUN—z

- Now, we want to determine uy_, ... but the equations have the same form as

Recall:
1 T 1 T 1 T
IN—1= zZNSNEZN + zxn_1QrN_1 + zuny_Run_1

2 2 2



Solution of the discrete-time LQ problem
using Dynamic Programming

* We obtain the general solution:
Ly=T"S, T +R)'TS, 1®

up = —Lpxy
Sp=(® —TL) Sp1(®—TLy)+Q+ L RLy,

1

(Riccati equation)



Solution of the discrete-time LQ problem
using Dynamic Programming

* We obtain the general solution:
Ly=T"S, T +R)'TS, 1®

uz = —Lka:k

Sp = (® —TLi) ' Sps1(® —TLi) +Q+ L RL;, (Riccati equation)

1

- Remarks:
- The Riccati equation can be written in a way that is independent of L,
Sk = & [Shy1 — S DTS T + R) TS 1]2 + Q

- Note that S, and L, are calculated “backwards in time”. They can be
calculated in advance and saved to be used when control starts at time k,

- The procedure matches exactly the principle of optimality!



Discussion on the solution

. . . 1
- The optimal cost is given by J& = 53:{30330

- Control law - simple and attractive in engineering applications: state x, is being
fed back as input through the linear feedback gain matrix - L;:

U ] Lk

>[ Trr1 = P + Lug J >

| —L, ]<




The Riccati Equation

 The discrete algebraic Riccati equation (DARE) is
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The Riccati Equation

 The discrete algebraic Riccati equation (DARE) is

Sk =& [Sky1 — S PTH S D + R) TS, 4]2 + Q

 Important role in control theory - its properties studied extensively.
One property: if matrices @, I';, O, and R, are constant and equal to ®, I', @

and R, respectively, then S, converges as k goes to infinity to a steady state
solution (provided some conditions hold!):

S=o![S - ST(I'Sr+ R)"'I''s|®+Q

* Hence, for infinite horizon problems we can use the stationary solution of the
Riccati equation, which also gives a constant L

L=T1'ST+R)"'I'Sd

This control law is stationary, i.e., it does not change over time



Example

* The linear discrete-time system

IS to be controlled to minimize the cost

i+ 1) = |

J ==

0.9974
—0.1078 1.1591

Determine the optimal control law.

0.0039

e |

> {0.2527[k] + 0.0523[k] + 0.05u°[k] }

0.0013
0.0539] ulk

- Solution:

+ We can write it in the form we know:

o

0.25
0

0
0.05

|

R =10.05




+ The optimal feedback gain matrix L is shown below for N=200. Looking
~ backwards, we observe that at £ around 130 L has reached its steady-state
~ value

|
|
L
0. 20 40 60 80 100 120 140 160 180 \ 200
t t t t t t + —~t t

7

~1} l;

[o

'+ The optimal trajectory has essentially reached 0 at k=100. Thus, we would
expect that the performance would not be reduced significantly by simply
using the steady-state value of L.




+ The optimal feedback gain matrix L is shown below for N=200. Looking
~ backwards, we observe that at £ around 130 L has reached its steady-state
~ value

|
|
L
0. 20 40 60 80 100 120 © 140 160 180 \ 200
t t t t t t + —~t t

7

~1} l;

[o

'+ The optimal trajectory has essentially reached 0 at k=100. Thus, we would
expect that the performance would not be reduced significantly by simply
using the steady-state value of L.
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Properties of the LQ-controller

- The pole-placement controller and the stationary LQ-controller have the same
structure. However, they are obtained differently, so there are some differences
In their properties.

* The pole-placement procedure is well suited for single-input single-output
systems. It is, however, difficult to compromise between the speed of the
system and the magnitude of the control signal.

- The LQ-controller has several good properties:
- It is applicable to multi-variable and time-varying systems

- changing the relative magnitude between the elements in the weighting
matrices means a compromise between the speed of the recovery and the
magnitudes of the control signals



How to find the weighting matrices?

« The weighting matrices should ideally come from physical arguments - not
usually the case

+ LQ control theory has found considerable use even when this cannot be done.
* The feedback law is obtained directly by solving the Riccati equation.

* The closed-loop system obtained is then analyzed with respect to transient
response, frequency response, robustness, and so on.

 The elements of the cost function are modified until the desired result is
obtained.

* |t has been found empirically that LQ-theory is quite easy to use in this way.
The search will automatically guarantee stable closed-loop systems with
reasonable margins.



Extension to Nonlinear Systems

Nonlinear system: Tyl = f(:vt,ut)

We can keep the system at the state x™ iff
Ju'st: #"= fl&".a")

Linearizing the dynamics around x™ gives:

zemr % F(@*u) + L (@, ut) (e — 2*) + (2%, ut) (e — u)

ox \ ou

\ )
!

|

Equivalently: A B
Tip1 —x =~ A(xy — ™) + B(ug — u™)

Let z, =X, — X, let v, = u,— u’, then:

2t+1 = Az + By, cost = 2z, Qz + v, Rv, [sstandard LQR]
nw=Kz=>u—u" =K, —2") = u =u" + K(z; — %)

AV SeoitrEca Pieter Abbeel, UC Berkeley EECS, CS287: Advanced Robotics, Fall 2019, Lecture 5 - LQR



