
ELEC-E8101 Digital and Optimal Control

1. In the diagram below, the costs for moving from one state to the other have been marked.
Time flows from left to right, and the controls have been restricted to two alternatives: “up
right” or “down right”. Calculate the optimum cost and path from point A to point B.
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Calculate the optimum cost and path from point A to B. 
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Solution. Use dynamic programming and the principle of optimality. Start from the end
point B and mark to each state (node) the optimal cost and optimal control.

Example: At time N − 1 there exist only two possible controls, and the optimal costs in the
corresponding nodes are 7 and 6. Then, go to time N−2. Now there are three possible states,
which are considered separately. The optimal cost from each state is obtained as the sum of
the “first” control and cost of the optimal control of the next state (calculated previously).
Choose the smallest cost, remember it and mark also the optimal control in that state. For
example, in the “state in the middle” there are two possible controls with the costs: 10 and
8. The optimal cost to state B is then the minimum of the sums (10 + 7) and (8 + 6). The
optimal control is “down right” and optimal cost is 14. See the solution diagram below. The
control has been marked with an arrow and the cost next to the state.

By proceeding in a similar way the starting point in the diagram is eventually reached. Then,
the optimal cost is already known, and by following the controls (arrays) the optimal route is
found out. By a coincide, two routes can be chosen in the beginning leading to the optimal
cost 42.

Exercise 10 - Solutions



optimal control in that state.  For example, in the  ”state in the middle” there are two 
possible controls with the costs 10 and 8.  The optimal cost to the state B is then the 
minimum of the sums (10+7) and (8+6).  The optimal control is  ”down right” and 
optimal cost is 14.  The control has been marked with an arrow and the cost next to 
the state. 
 
By proceeding in a similar way the starting point in the diagram is eventually reached.  
Then the optimal cost is already known, and by following the controls (arrays) the 
optimal route is found out.  By a coincide two routes can be chosen in the beginning 
leading to the optimal cost 42. 
 
 

  
 
 
An alternative solution method would be to calculate all possible routes and then choose the one with 
the minimum cost.  However, this would need a lot of work, and by using dynamic programming the 
calculation work can be reduced considerably.   
 
To demonstrate this point consider a similar square topology but with n  ”vertices” (in the actual 
problem there were four vertices).  For fun, calculate how many calculations are needed to consider all 
possible routes and how many by using dynamic programming (reasonably difficult but not impossible 
task).  Solution:  All possibilities 2)!/()!2( nn paths, in dynamic programming 1)1( 2 −+n  
calculations.   
 
Number of vertices (n) 3  4  5  6 
 
All paths   20  70  252  924 
 
Dynamic programming 15  24  35  48 
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An alternative solution method would be to calculate all possible routes and then choose the
one with the minimum cost. However, this would need a lot of work, and by using dynamic
programming the calculation work can be reduced considerably. To demonstrate this point
consider a similar square topology but with n “vertices” (in the actual problem there were
4 vertices). By considering all possible routes we need (2n)!/(n!)2 calculations and by using
dynamic programming we need (n + 1)2 − 1 calculations.

Number of vertices 3 4 5 6

All paths 20 70 252 924
Dynamic programming 15 24 35 48



2. The difference equation describing a system is

xk+1 = axk + buk, a, b constants.

By using dynamic programming calculate the controls u[k], k = 1, 2, 3, which minimize the
cost

J =
3∑

k=1

[
x2k + ru2k

]
, r constant.

when

a) x4 is free.

b) x4 = 0.

Solution.

a) We use dynamic programming and hence we start reverse in time.

Step 3: First, we compute the cost-to-go and action at step 3:

V3(x3) = min
u3

{
x23 + ru23

}
.

Since x4 is free, any action we apply it only adds on the cost. Hence, at this step u3 = 0.
Therefore, V3(x3) = x23.

Step 2: Next, we compute the cost-to-go and action at step 2:

V2(x2) = min
u2

{
x22 + ru22 + V3(x3)

}
= min

u2

{
x22 + ru22 + V3(ax2 + bu2)

}
= min

u2

{
x22 + ru22 + (ax2 + bu2)

2
}

= min
u2

{
x22 + ru22 + a2x22 + 2abx2u2 + b2u22

}
Take derivative w.r.t. u2:

dV2(x2)

du2
= 2ru2 + 2abx2 + 2b2u2

Minimization:
dV2(x2)

du2
= 0

⇒ 2ru2 + 2abx2 + 2b2u2 = 0⇒ u2 = − ab

b2 + r
x2

We substitute u2 into cost-to-go V2(x2):

V2(x2) = x22 + r

(
ab

b2 + r

)2

x22 + a2x22 − 2abx2
ab

b2 + r
x2 + b2

(
ab

b2 + r

)2

x22

=

(
1 +

ra2b2

(b2 + r)2
+ a2 − 2a2b2

b2 + r
+

a2b4

(b2 + r)2

)
x22

=

(
1 +

ra2b2 + a2(b2 + r)2 − 2a2b2(b2 + r) + a2b4

(b2 + r)2

)
x22

=

(
1 +

a2r

b2 + r

)
︸ ︷︷ ︸

,c

x22



Step 1: Next, we compute the cost-to-go and action at step 1:

V1(x1) = min
u1

{
x21 + ru21 + V2(x2)

}
= min

u1

{
x21 + ru21 + V2(ax1 + bu1)

}
= min

u1

{
x21 + ru21 + c(ax1 + bu1)

2
}

Take derivative w.r.t. u1:

dV1(x1)

du1
= 2ru1 + 2bc(ax1 + bu1)

Minimization:
dV2(x1)

du1
= 0

⇒ 2ru1 + 2bc(ax1 + bu1) = 0⇒ u1 = − abc

b2c + r
x1

We can substitute c in u1:

u1 = − ab(b2 + r + a2r)

r(b2 + r) + b2(b2 + r + a2r)
x1

Hence the optimal controls are:

u1 = − ab(b2 + r + a2r)

r(b2 + r) + b2(b2 + r + a2r)
x1

u2 = − ab

b2 + r
x2

u3 = 0

b) Now the final state is fixed to x4 = 0, and the direct solution formulas cannot be used,
dynamic programming can still be used.

Step 3: From the end condition:

x4 = ax3 + bu3 = 0⇒ u3 = −a

b
x3.

Therefore,

V3(x3) = min
u3

{
x23 + ru23

}
= x23 + r

(
−a

b
x3

)2
=

(
1 +

ra2

b2

)
︸ ︷︷ ︸

,B

x23

Step 2: Next, we compute the cost-to-go and action at step 2:

V2(x2) = min
u2

{
x22 + ru22 + V3(x3)

}
= min

u2

{
x22 + ru22 + V3(ax2 + bu2)

}
= min

u2

{
x22 + ru22 + B(ax2 + bu2)

2
}



Take derivative w.r.t. u2:

dV2(x2)

du2
= 2ru2 + 2bB(ax2 + bu2)

Minimization:
dV2(x2)

du2
= 0

⇒ 2ru2+2bB(ax2+bu2) = 0⇒ u2 = − abB

b2B + r︸ ︷︷ ︸
,C

x2

We substitute u2 into cost-to-go V2(x2):

V2(x2) = . . . = Dx22,

where D is a constant.

Step 1: Next, we compute the cost-to-go and action at step 1:

V1(x1) = min
u1

{
x21 + ru21 + V2(x2)

}
= min

u1

{
x21 + ru21 + V2(ax1 + bu1)

}
= min

u1

{
x21 + ru21 + D(ax1 + bu1)

2
}

Take derivative w.r.t. u1:

dV1(x1)

du1
= 2ru1 + 2bD(ax1 + bu1)

Minimization:
dV2(x1)

du1
= 0

⇒ 2ru1 + 2bD(ax1 + bu1) = 0⇒ u1 = − abD

b2D + r
x1

Hence the optimal controls are:

u1 = − abD

b2D + r
x1

u2 = − abB

b2B + r
x2

u3 = −a

b
x3.




