

ELEC-E8125 Reinforcement learning Partially observable Markov decision processes

Joni Pajarinen 22.11.2022

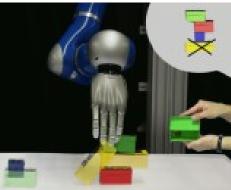
Partially observable Markov decision processes

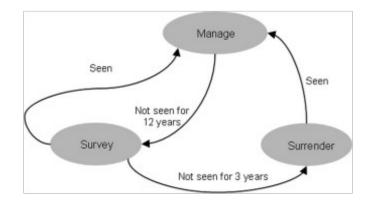
Learning goals

- Understand POMDPs and related concepts
- Be able to explain why solving POMDPs is difficult

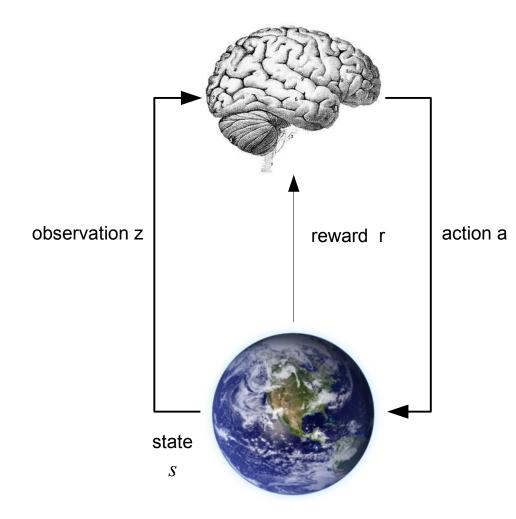
Motivation: POMDP application examples

- Autonomous driving
- Human-robot interaction
- Tiger reservation
- Robotic manipulation
- Teaching systems
- Target tracking
- Localization and Navigation
- Handwashing for dementia patients





Markov decision process (MDP)



MDP Environment observable z=s

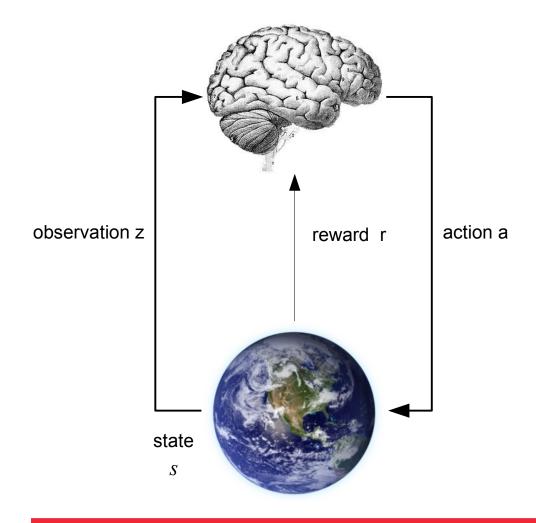
Defined by dynamics $P(s_{t+1}|s_t, a_t)$

And reward function $r_t = r(s_t, a_t)$

Solution, for example $a_{1,...,T}^* = arg \max_{a_1,...,a_T} \sum_{t=1}^T r_t$

Represented as policy $a = \pi(s)$

Partially observable MDP (POMDP)



POMDP Environment not directly observable

Defined by dynamics

 $P(s_{t+1}|s_t, a_t)$

reward function

$$r_t = r(s_t, a_t)$$

and observation model

 $P(z_{t+1}|s_{t+1},a_t)$

Solution, for example

$$a_{1,...,T}^* = arg max_{a_1,...,a_T} E\left[\sum_{t=1}^T r_t\right]$$

Agent does not directly observe environment state!

Example of partial observability

- Observe only adjacent walls
- Starting state unknown, in upper row of grid
- Assume perfect actions
- Give a policy as function of observations!
- Any problems?

Observations:

History and information state

- *History* (= Information state) is the sequence of actions and observations until time *t*.
- Information state is Markovian, i.e.,

$$P_{I}(I_{t+1}|z_{t+1}, a_{t}, I_{t}) = P_{I}(I_{t+1}|z_{t+1}, a_{t}, I_{t}, I_{t-1}, \dots, I_{0})$$

• POMDP thus corresponds to an Information state MDP

What is the largest feline species in the world?

Example: Tiger problem

r=-100

S = {Tiger left (TL), Tiger right (TR)}

A = {open right, open left, listen}

O = {Hear left (HL), Hear right (HR)}

P(HL|TL)=0.85 P(HR|TL)=0.15 P(HL|TR)=0.15 P(HR|TR)=0.85

What kind of policy would be reasonable?

Policy depends on history of observations and actions = information state.

Belief state, belief space MDP

- Belief state = distribution over states
 - Compresses information state

• Belief
$$b_t(s) \equiv p(s_t = s | I_t)$$

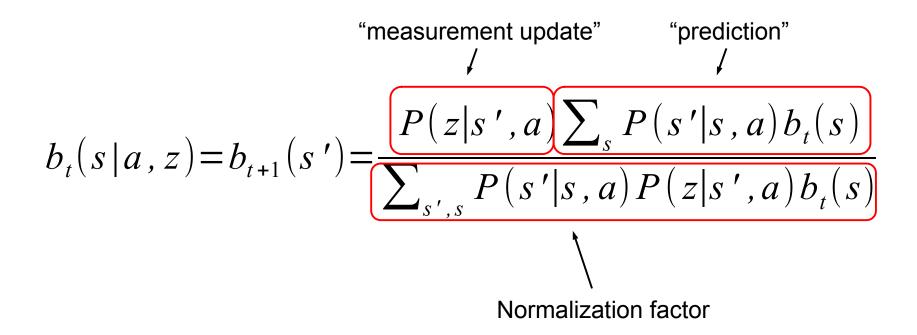
• Can be represented as a vector $\mathbf{b} = (b(s_1), b(s_2), ...)$

- POMDP corresponds to belief space MDP
- POMDP solution can be structured as
 - State estimation (of belief state) +
 - Policy on belief state

Belief update

Similar to state estimator, e.g. Kalman filter, particle filter:

= state estimation



Tiger example update

Value iteration on belief states

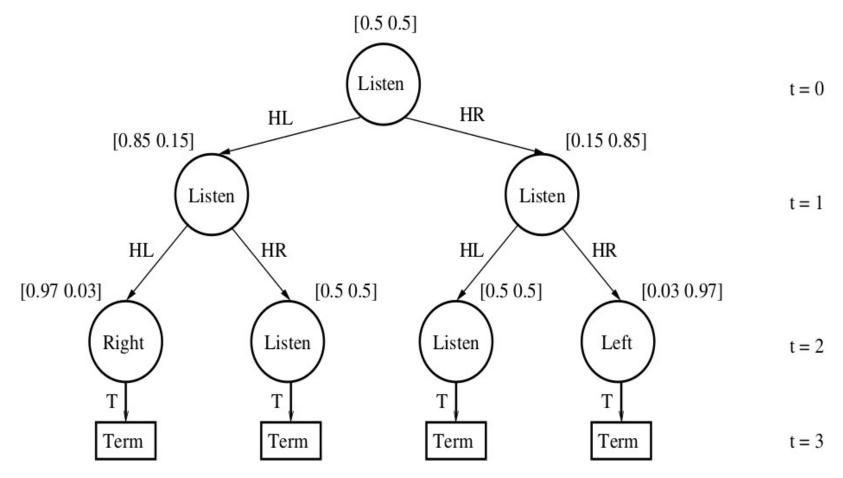
- For discrete actions, observations and states, value iteration in principle possible
- No trivial closed form solution (similar to MDP tabulation) because V(b) is a function of a continuous variable. In a POMDP, value function is a set of "alpha"-vectors:
- Bellman equation: $V_n^*(b) = max_i \sum_s \alpha_n^i(s) b(s)$

 $V_{n+1}^{*}(b) = \max_{a} E_{b(s)} \Big[r(s, a) + \gamma \sum_{z} \sum_{s'} P(z|s', a) P(s'|s, a) V_{n}^{*}(b_{z}^{a}) \Big]$ $V_{0}^{*}(b) = \max_{a} E_{b(s)} \Big[r(s, a) \Big] = \max_{a} \sum_{s} b(s) r(s, a) = \max_{a} \sum_{s} \alpha_{0}^{a}(s) b(s)$ $V_{n+1}^{*}(b) = \max_{a} E_{b(s)} \Big[r(s, a) + \gamma \sum_{z} \max_{i} \sum_{s'} P(z|s', a) P(s'|s, a) \alpha_{n,z}^{i}(s') \Big]$

 Using alpha-vectors as value function: details in https://www.pomdp.org/tutorial

Aalto University School of Electrical Engineering

Tree search starting from known belief



Computational complexity

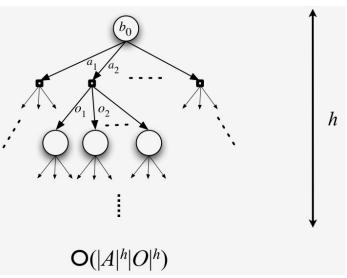
• For a known starting belief state and horizon *H*, the size of a full policy tree is $(|A||Z|)^H$

- Infinite horizon POMDPs thus not possible to construct in general
- Note: Linear systems with Gaussian uncertainty optimally solvable by Kalman filter + optimal control

Aalto University School of Electrical Engineering

"Curses" of POMDP

- Curse of dimensionality
 - Number of states exponential in number of state variables (similar to MDPs)
 - Complexity of accurate discretization exponential in belief dimensionality, that is, number of states
- Curse of history
 - Complexity exponential in length of history



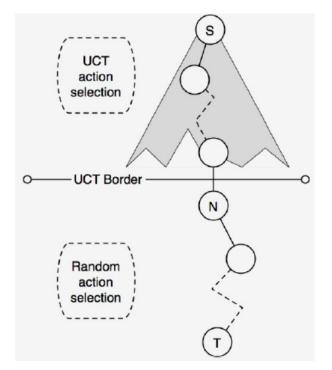
On-line planning with tree search

- Build a search tree from current belief
 - Start from a tree with one node corresponding to current belief
 - Choose a node to expand
 - Choose an action based on (optimistic) heuristic
 - Choose an observation based on another heuristic (or sample randomly)
 - Expand tree and backup back to root
 - Repeat
- Execute the best action
- Update belief
- Repeat

Does search sound familiar? Have we seen something similar on the course?

Reminder: Monte-Carlo tree search

- From start node S choose actions to walk down tree until reaching a leaf node
- Choose an action and create a child node *N* for that action
- Perform a random roll-out (take random actions) until end of episode (or for a fixed horizon)
- Record returns as value for *N* and back up value to root

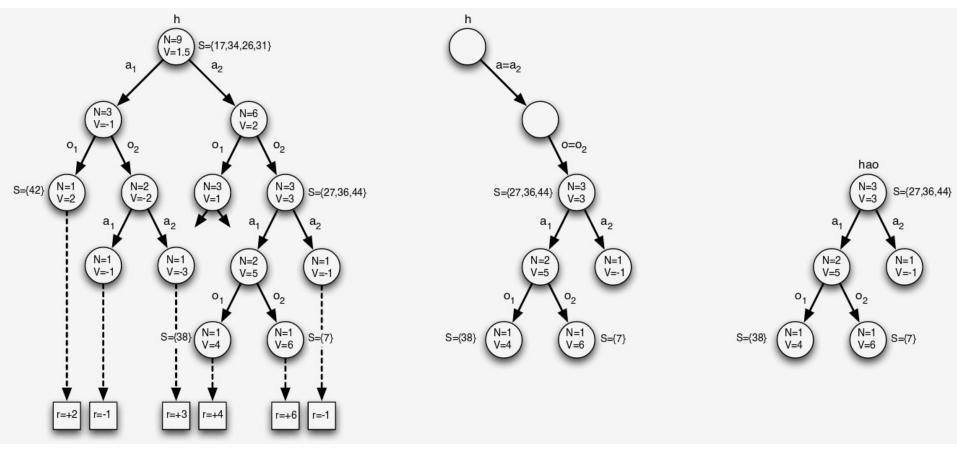


Aalto University School of Electrical Engineering Remember MDPs! In POMDPs, we do not know the state \rightarrow how to use MCTS with POMDPs?

From MCTS to POMCP (Silver & Veness, 2010)

- Extension of MCTS to POMDPs
- Search tree node represents a *history* (actions and observations) instead of a state
- Belief state approximated by a *particle filter*
 - After taking an action, update belief by sampling particles by using simulation and keeping ones with true observation
- Each node has visitation count, mean value and particles (states)

POMCP example



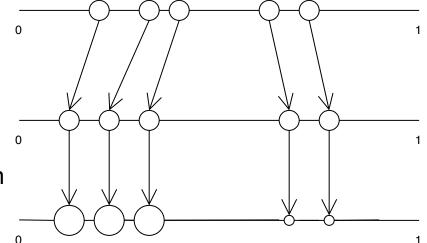
Silver & Veness, 2010

Particle filter for belief updates

Main idea: update *belief*, represented by a *finite set of states* (= *particles*), using *action* and *observation*

Using *action* sample next states from current belief

Weight sampled states using observation probabilities and normalize weights



If desired, resample particles to get rid of particles with very small probabilities

POMDPs with large action and observation spaces

- How to handle POMDPs with continuous observations and actions?
- How to handle POMDPs with high-dimensional, e.g. image, observations?
- Possible solutions:
 - Kalman filter + optimal control
 - Discretization / simplification of continuous / complex values
 - Policy gradient / value iteration / actor-critic (Lectures 1 8) but how?

Reinforcement learning with POMDPs

- Sufficient statistics for optimal decision making in POMDPs:
 - Belief, a probability distribution over states b(s)
 - Full history of actions and observations $a_0, z_1, ..., a_{t-1}, z_t$
- Problems:
 - Belief computation requires dynamics/observation model
 - History grows with each time step
- Solution:
 - Put history into a "*memory representation*" *m*
 - Replace $\pi(s)$, V(s), Q(s, a) with $\pi(m)$, V(m), Q(m, a) and apply policy gradient, value iteration, actor-critic, or other methods

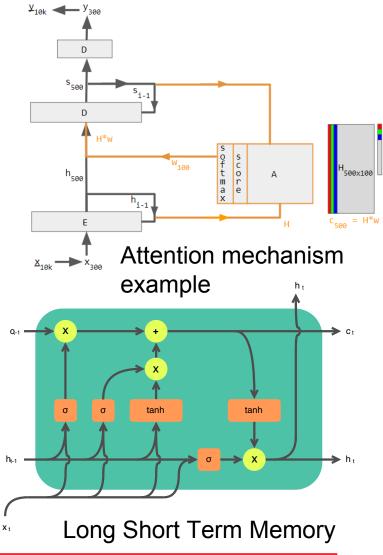
Full history may be too long?

Memory representations

- Direct mapping: $m_t = f(a_1, z_1, \dots, a_t, z_t)$
 - Truncated history

$$m_t = f(a_{t-N}, z_{t-N}, ..., a_t, z_t)$$

- Look at only parts of the history: *attention*
- Recurrent memory: $m_t = f(a_t, z_t, m_{t-1})$
 - Memory state part of neural network
 - External memory state



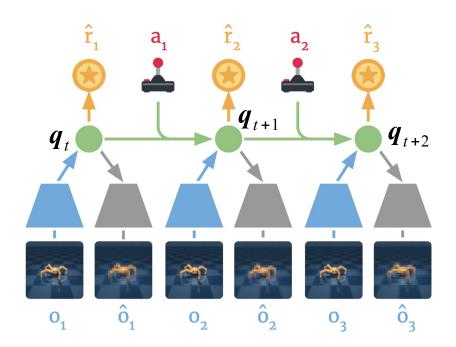
Remember? Learning latent dynamics

- For real world data tuples

 (*o_t*, *a_t*, *r_t*)update latent
 state using
 f(*q_t* | *q_{t-1}*, *a_{t-1}*, *o_{t-1}*)
- and to match real world data update latent models:

$$\begin{aligned} f(\boldsymbol{q}_{t} | \boldsymbol{q}_{t-1}, \boldsymbol{a}_{t-1}, \boldsymbol{o}_{t-1}) \\ f(\boldsymbol{q}_{t} | \boldsymbol{q}_{t-1}, \boldsymbol{a}_{t-1}) \\ r(r_{t} | \boldsymbol{q}_{t}) \end{aligned}$$

Here, latent state *q_t* is memory state *m_t* !

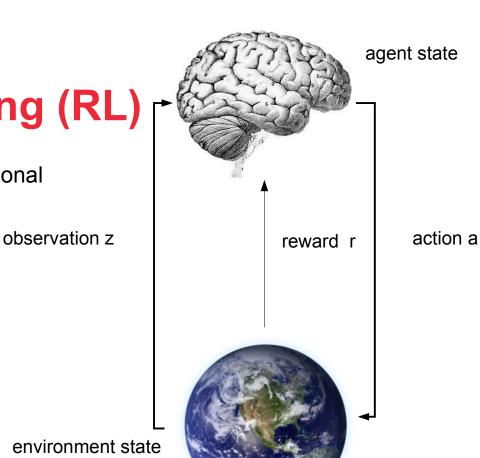


Picture adapted from Dream to Control: Learning Behaviors by Latent Imagination [Hafner et al., ICLR 2019]

- Partially observable MDPs are MDPs with observations that depend stochastically on state
- POMDP integrates optimal information gathering to optimal decision making
- POMDP = belief-state estimation + belief-state MDP
- POMDPs computationally challenging
 - Bellman equation
 - Tree search
 - Action-observation history / memory representations in reinforcement learning

Current directions in reinforcement learning (RL)

- Challenges: sample efficiency, computational efficiency, safety
- Offline RI
- Hierarchical RL
- Model-based RL
- Exploration in RL
- Multi-agent RL
- Safe RL
- POMDPs
- Deep RL
- Combining different approaches: offline/online, model-free/model-based, planning
- Many other topics



environment state

