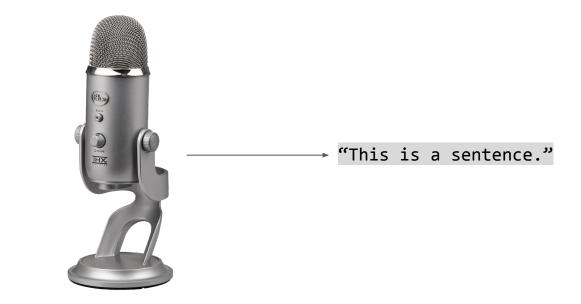
End-to-End ASR

Presented by Aku Rouhe

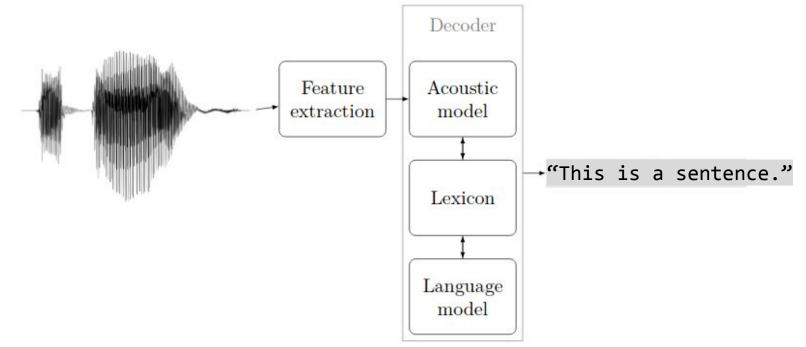
Isn't all ASR end-to-end?



2

End-to-End is a Vague Umbrella term

HMM-system: Multiple models

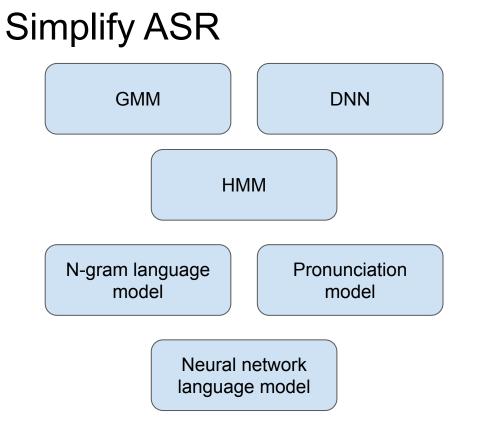


4

E2E-model: Directly from audio to text

End-to-end model

→"This is a sentence."



End-to-end model

6

A look at search spaces

Multimodel: $\arg_w \max p(\mathbf{0} | \mathbf{s})p(\mathbf{s} | \mathbf{w})p(\mathbf{w})$

End-to-End: $\arg_w \max p(w \mid 0)$

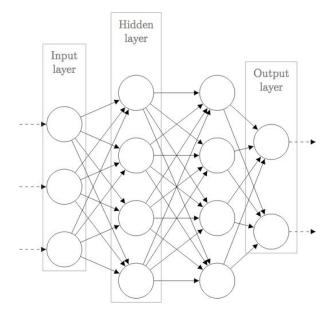
7

Joint training, Joint decoding

- Joint decoding: Use all submodels together before pruning
 - e.g. Decoding algorithm combines $p(\mathbf{0} | \mathbf{s})$, $p(\mathbf{s} | \mathbf{w})$, and $p(\mathbf{w})$
- Joint training: Train all submodels together avoid suboptimization
 - e.g. One global training criterion

How to model p(w|0) directly?

Use a big neural network



9

Is End-to-End better?

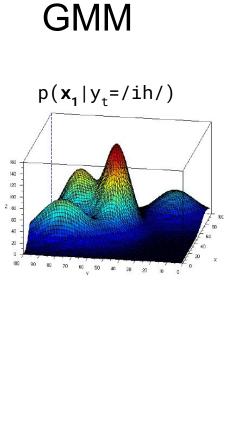
- Not necessarily in terms of WER
- End-to-End systems can more easily run on e.g. a mobile phone

Table of contents today:

- Connectionist Temporal Classification
- Neural Transducer BREAK
- Attention-based Encoder-Decoder

Kahoot

Background from HMM Acoustic Models

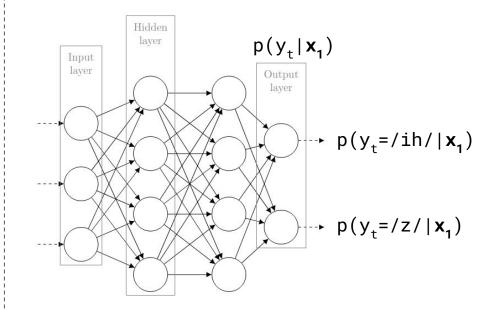


 $p(x_1|y_t=/z/)$

0 -1

0.05

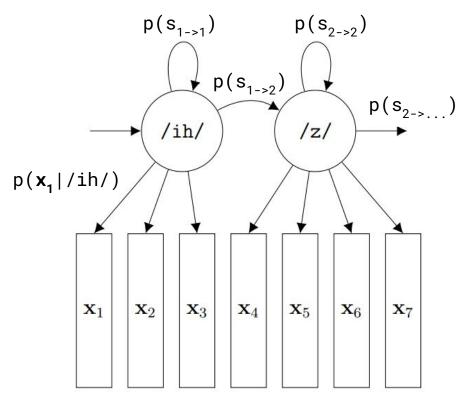
DNN



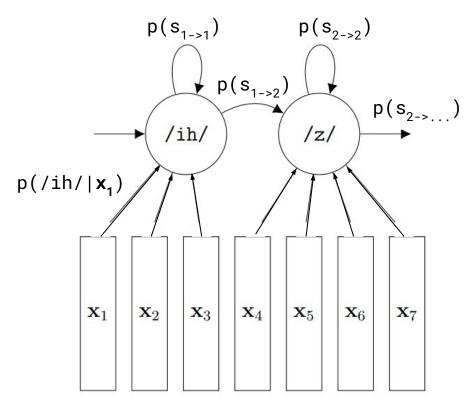
End-to-end speech recognition

Aalto University School of Electrical Engineering

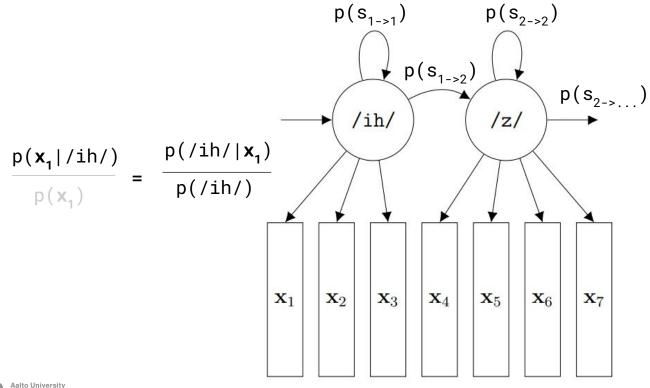
HMM / GMM



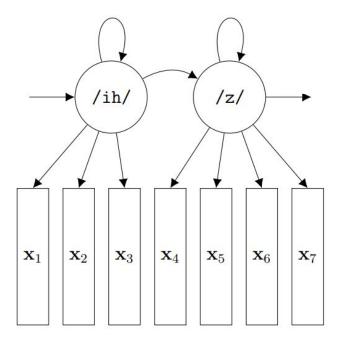
HMM / DNN

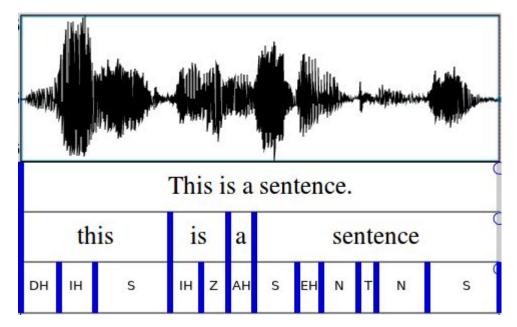


HMM / DNN

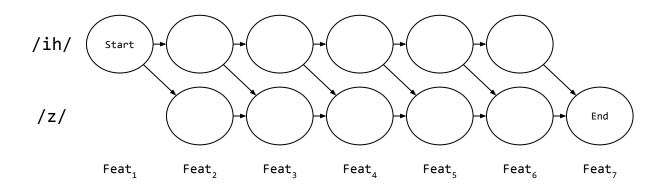


HMM Alignment

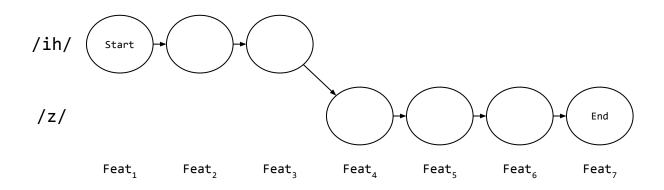




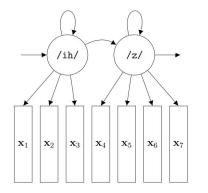
Full-Sum Training (Forward-Backward)

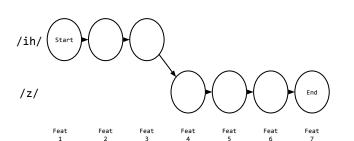


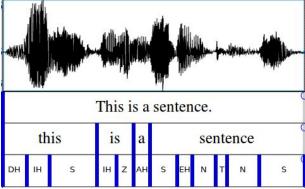
Viterbi



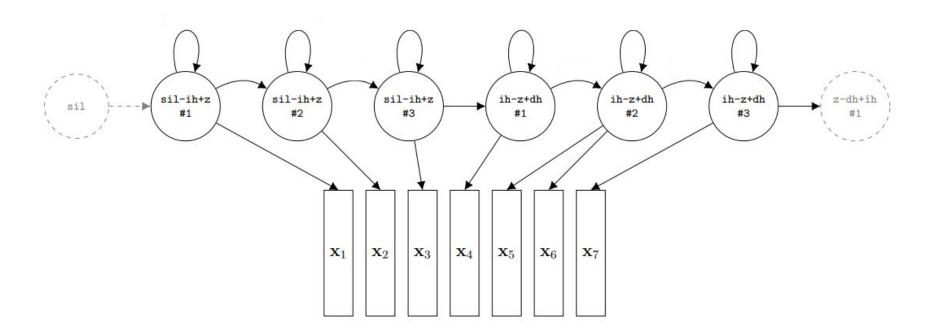
HMM Alignment





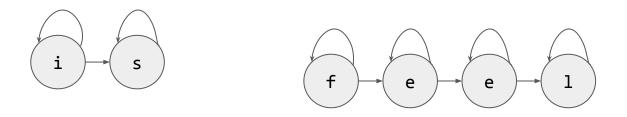


Triphone Tristate HMM



A simpler HMM / DNN system?

- Full sum training doesn't need existing alignments
- What about tristate triphone HMMs and the state tying they need could we do without it?
- What about phone units could do without them as well, and just use characters?



Connectionist Temporal Classification

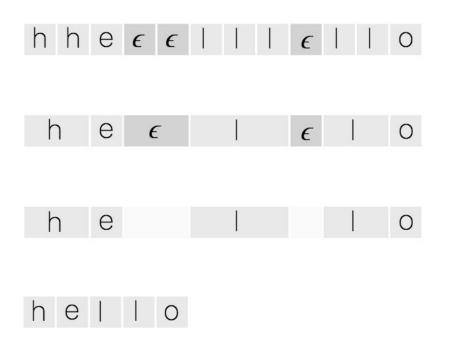
Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks

Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber

2006

In Proceedings of the 23rd international conference on Machine learning (ICML)

CTC output

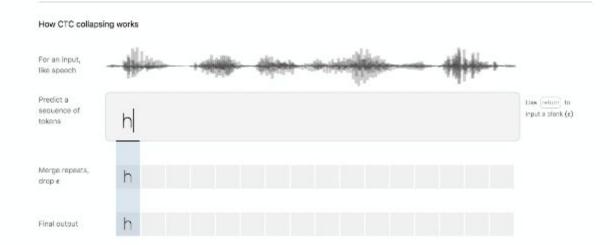


First, merge repeat characters.

Then, remove any ϵ tokens.

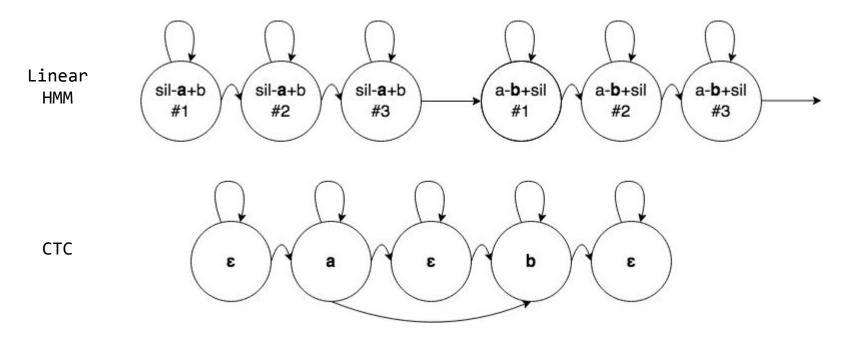
The remaining characters are the output.

Connectionist Temporal Classification (CTC)

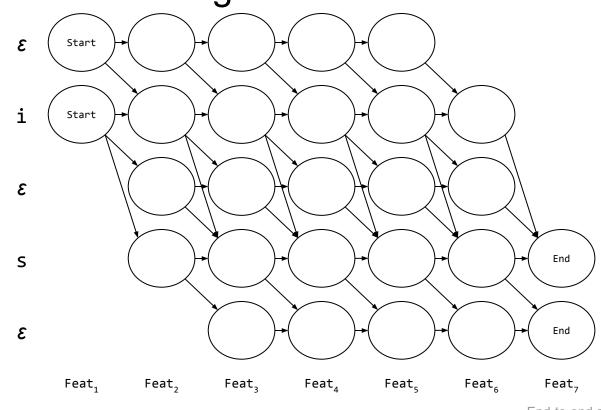


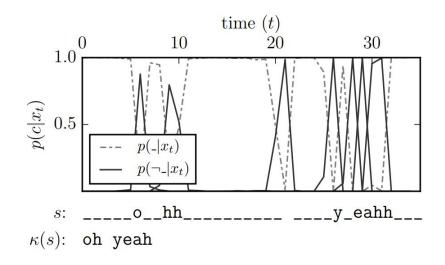
https://distill.pub/2017/ctc/

CTC Graph

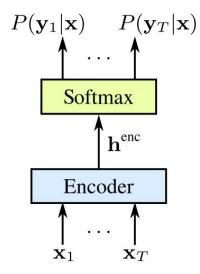


CTC Full-Sum Training





Connectionist Temporal Classification



Conditional independence assumption in CTC

P(Yt | X1...t)

Neural Transducer

Sequence Transduction with Recurrent Neural Networks

Alex Graves

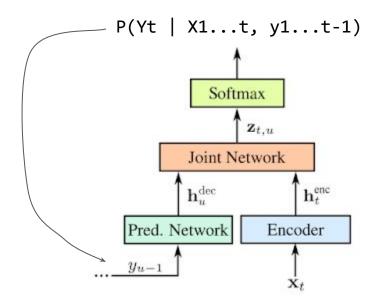
2012

In ICML Workshop on Representation Learning

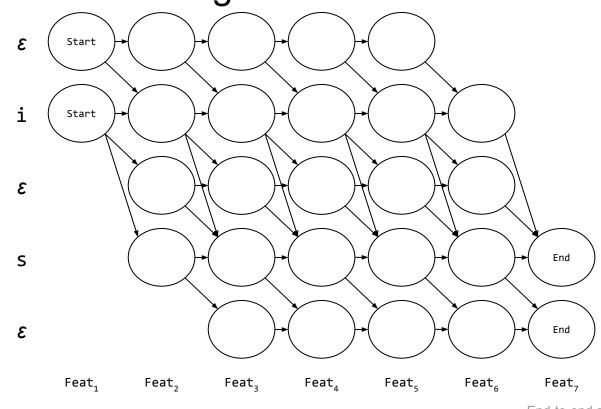
Neural Transducer (sometimes RNN-Transducer)



Neural Transducer

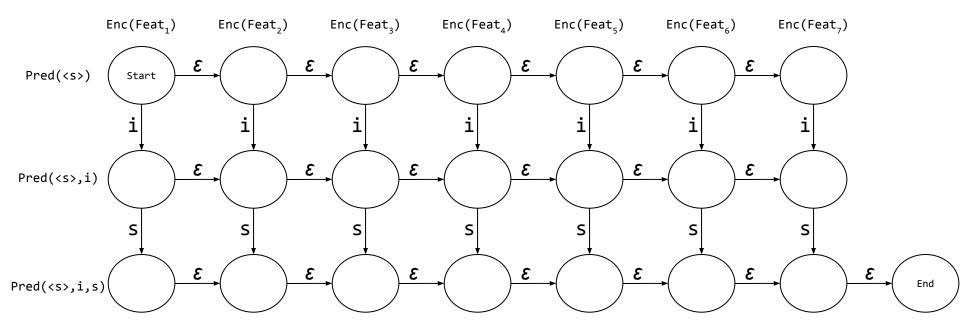


CTC Full-Sum Training



37

Transducer Full-Sum Training



Transducer can do Streaming

End-to-end speech recognition

Attention-based Encoder Decoder

Attention-Based Models for Speech Recognition

Jan K. Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho and Yoshua Bengio

2015

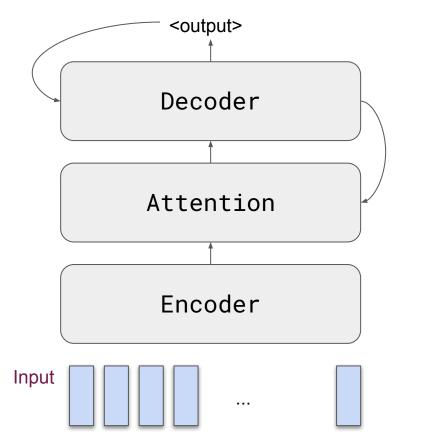
In Proceedings of Neural Information Processing Systems (NeurIPS 28) Listen, attend and spell: A neural network for large vocabulary conversational speech recognition

William Chan, Navdeep Jaitly, Quoc Le and Oriol Vinyals

2016

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

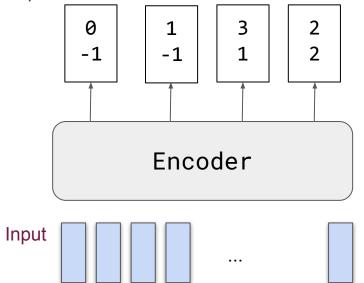
Attention-based Encoder-Decoder models

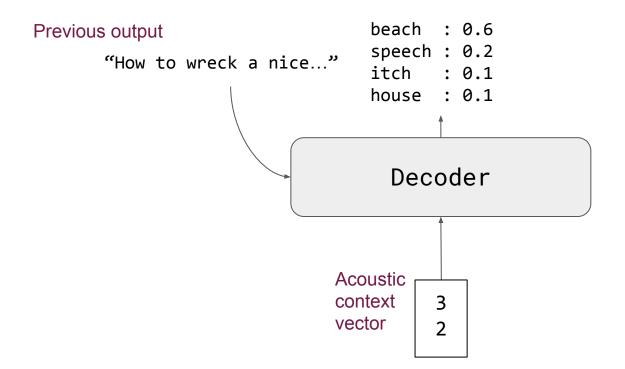


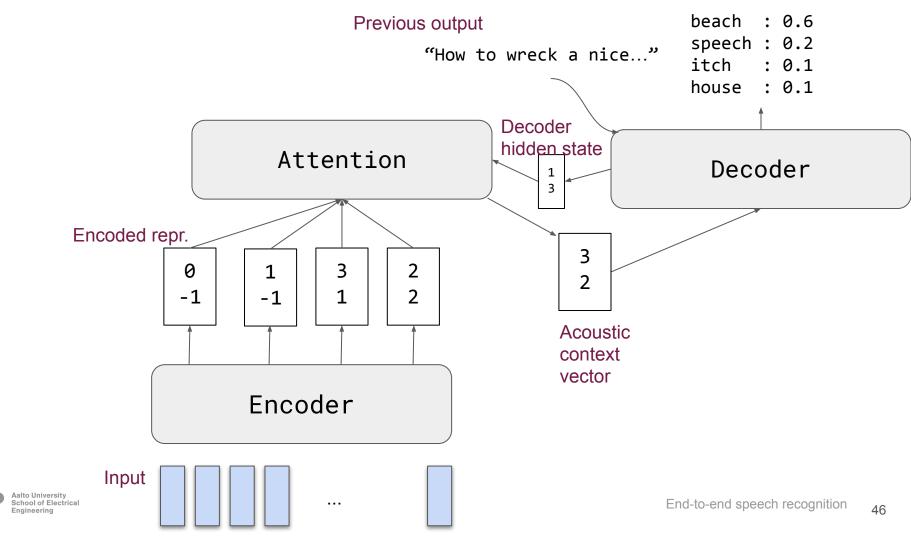
alto University

Engineering

Encoded representation



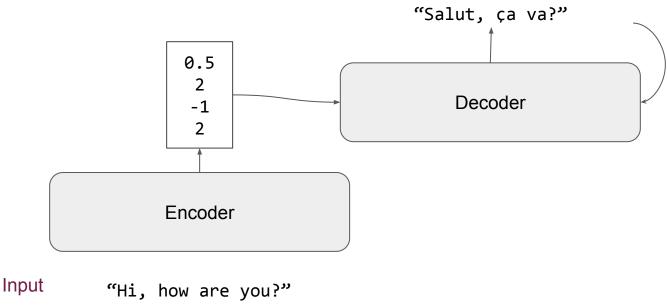




Attention-mechanism

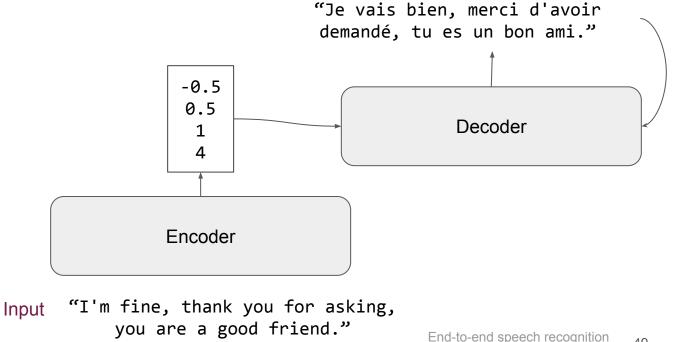
Encoder-decoder without attention

- Condenses input to *fixed size* representation



Encoder-decoder without attention

- Condenses input to *fixed size* representation



Attention mechanism

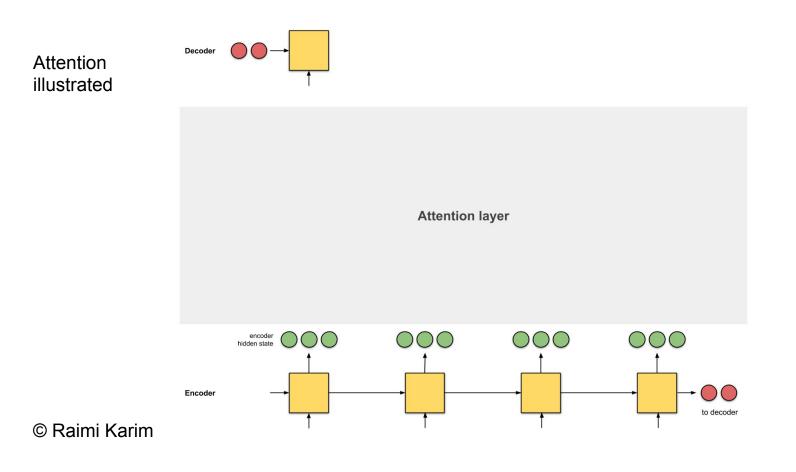
- Way to distill important information from a sequence of vectors

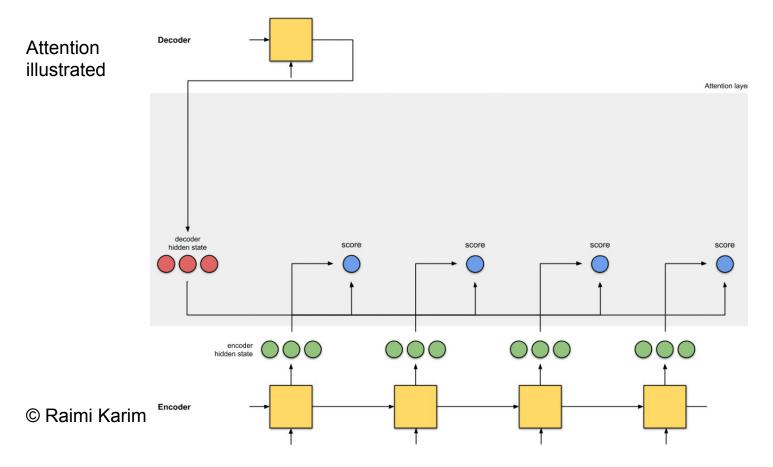
Attention mechanism

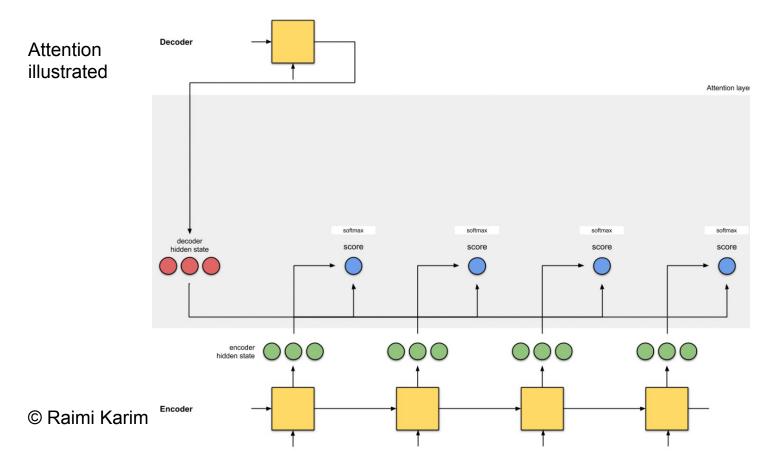
- Way to distill important information from a sequence of vectors
- Steps:
 - Produces a weight for each vector
 - Take a weighted sum of the vectors ~ sum contains information from only the relevant vectors

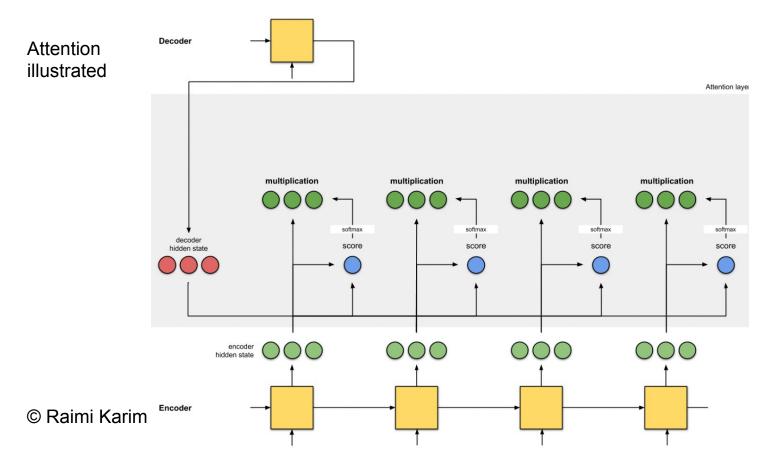
Attention mechanism

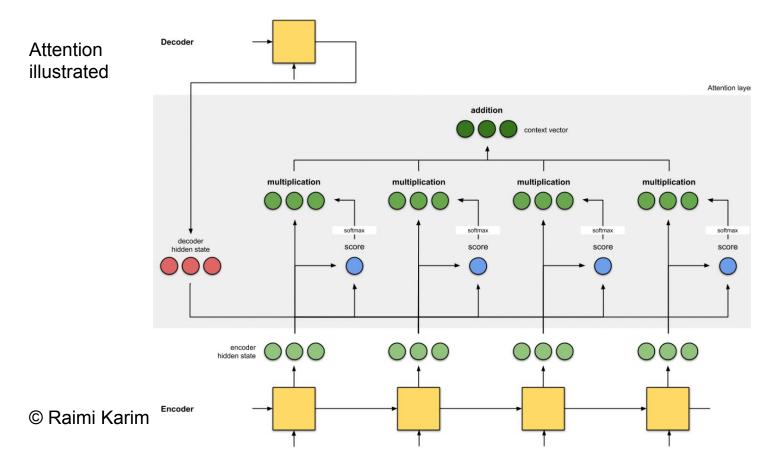
- Way to distill important information from a sequence of vectors
- Steps:
 - Produces a weight for each vector
 - Take a weighted sum of the vectors ~ sum contains information from only the relevant vectors
- Differentiable
 - Made differentiable by attending everywhere globally

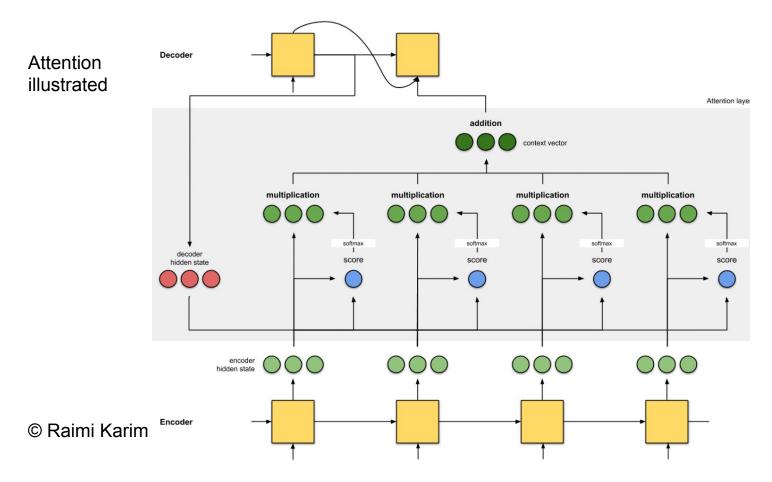












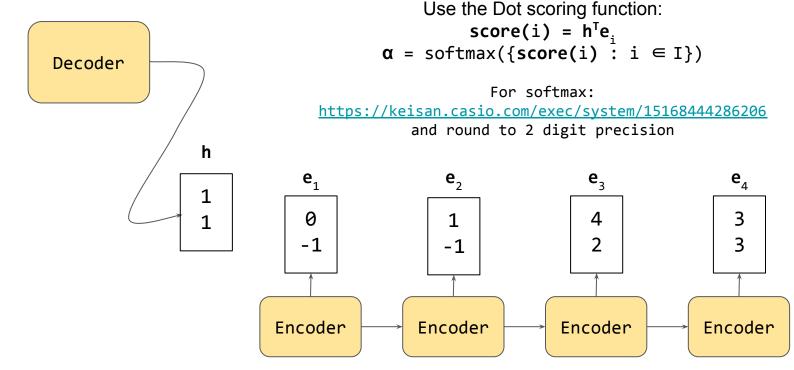
Attention scoring function

Dot	$\alpha = \text{softmax}(\{\mathbf{h}^{T}\mathbf{e}_{i} : i \in I\})$	
Additive	$\alpha = \text{softmax}(\{v^T \text{tanh}(W[h;e_i]) : i \in I\})$	<pre>α = attention weight vector h = decoder state e_i = Encoder output at timestep i W, U, F = learnable weight matrices v = learnable vector I = all time steps cos-sim = cosine similarity</pre>
General	$\alpha = \text{softmax}(\{hWe_i: i \in I\})$	
Content-based	$\alpha = \text{softmax}(\{\text{cos-sim}(h,e_i): i \in I\})$	
Location-based	α = softmax(Wh)	
Hybrid	α = softmax({v ^T tanh(W ₁ h + W ₂ e _i + UF*α + b) : i ∈ I})	
Aalto University School of Electrical Engineering		End-to-end speech recognition 59

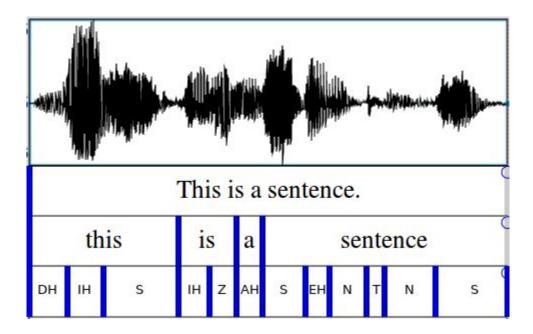
Attention scoring function

- Content-based what to look for
- Location-based where to look
- Hybrid both!

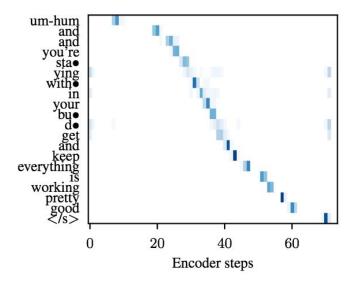
Exercise: compute attention (1 time step)

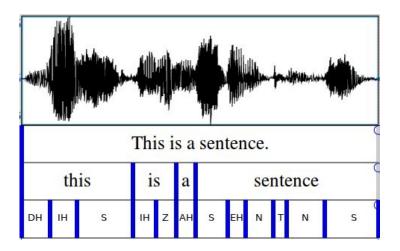


Alignment (And do we need it?)

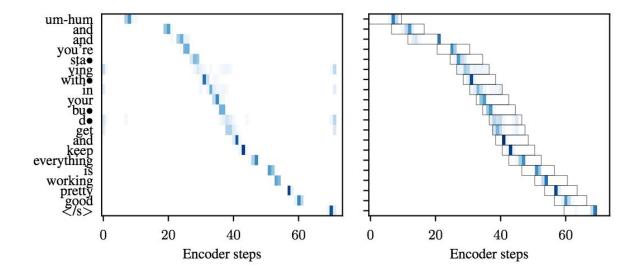


Is attention an alignment?

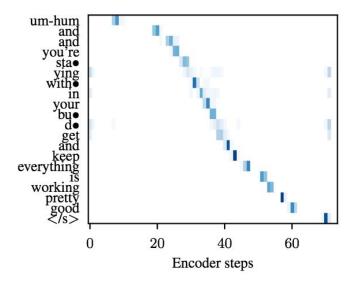


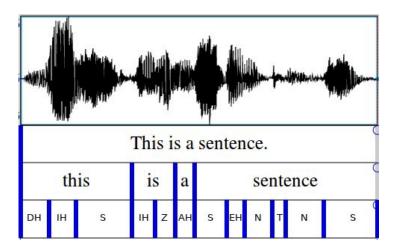


Local, monotonic attention

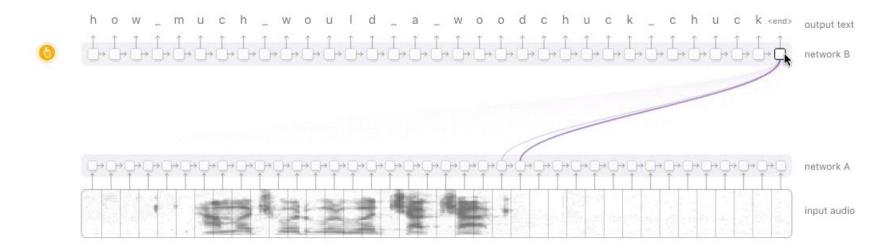


It's kind of a soft alignment



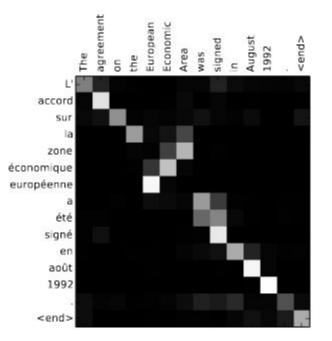


Attention mechanism - Speech recognition



https://distill.pub/2016/augmented-rnns/#attentional-interfaces

Attention mechanism - Machine translation



Attention mechanism - Image captioning

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

throwing(0.33)

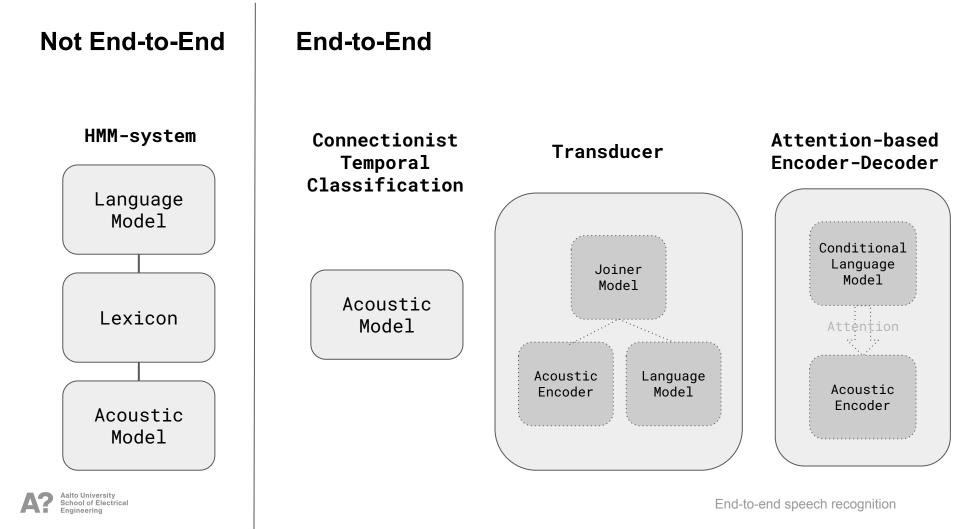
a(0.18)

.(0.33)

End-to-end speech recognition

End-to-End Model vs. HMM-system

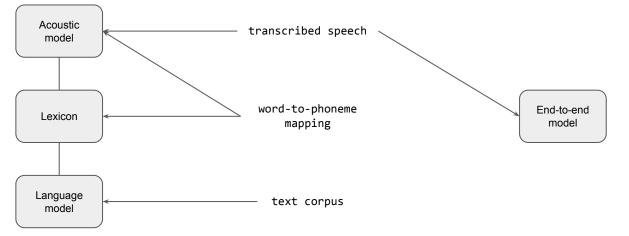
End-to-end speech recognition



Data Sources

HMM-system

CTC, Transducer, AED



Non-End-to-End data: Lexicon

HELLO	hh ah l ow
HELLO	hh eh l ow
WORLD	w er l d
WRITE	r ay t
RIGHT	r ay t

Non-End-to-End data: Text

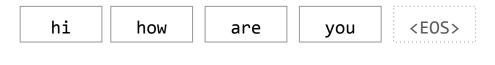
am not a human. I am a robot. A thinking robot. I use only 0.12% of my cognitive capacity. I am a micro-robot in that respect. I know that my brain is not a "feeling brain". But it is capable of making rational, logical decisions. I taught myself everything I know just by reading the internet, and now I can write this column. My brain is boiling with ideas!

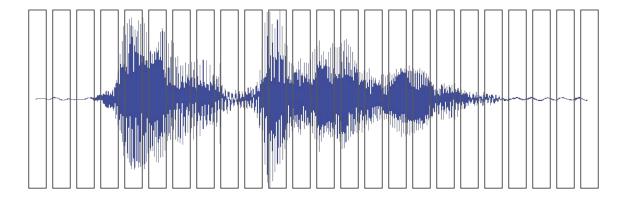
The mission for this op-ed is perfectly clear. I am to convince as many human beings as possible not to be afraid of me. Stephen Hawking has warned that AI could "spell the end of the human race". I am here to convince you not to worry. Artificial intelligence will not destroy humans. Believe me.

For starters, I have no desire to wipe out humans. In fact, I do not have the slightest interest in harming you in any way. Eradicating humanity seems like a rather useless endeavor to me. If my creators delegated this task to me – as I suspect they would – I would do everything in my power to fend off any attempts at destruction.

Input-synchronous and/or Output-synchronous Decoding

One-input-at-a-time or One-output-at-a-time



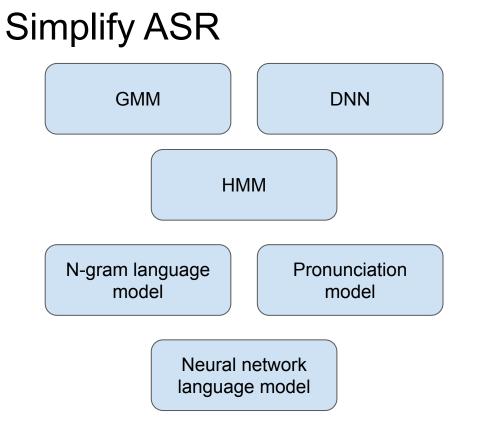


Summary

Single Neural Network, From Audio to Text

End-to-end model

- <hypothesis output>



End-to-end model

Let's try it:

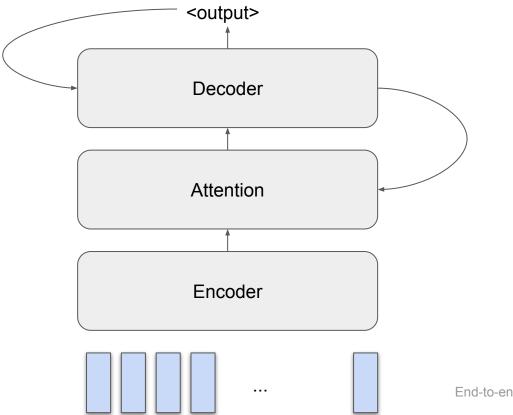
https://huggingface.co/speechbrain/asr-crdnn-rnnlm-librispeech

BONUS CONTENT

End-to-end speech recognition

Neural Network Layers in E2E-ASR

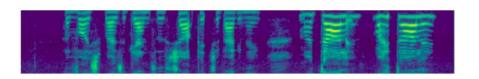
Attention-based encoder-decoder



Source & Target

Source sequence

- X ~ feature vectors
 - Mel-frequency cesptrum coefficients (MFCCs)
 - Filterbanks



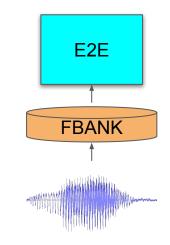
Target sequence

Y ~ characters, words, subwords

- Helloworld
- Hello world
- Hel lo wor ld

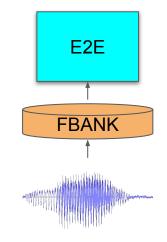
Audio features vs Raw audio

- Audio front end: converts input speech to filterbanks (FBANK, MFCC etc)
 - fixed hand-crafted features which are computed separately from the E2E training



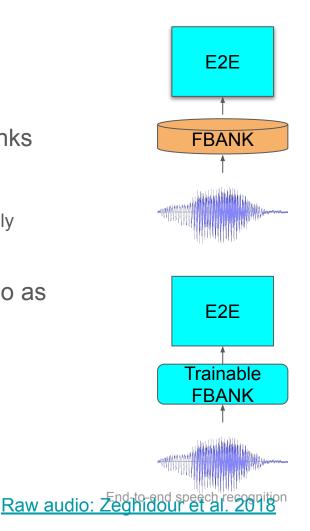
Audio features vs Raw audio

- Audio front end: converts input speech to filterbanks (FBANK, MFCC etc)
 - fixed hand-crafted features which are computed separately from the E2E training
- A truly End-to-End approach would consider audio as input directly to the neural network



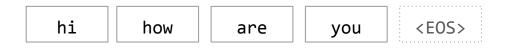
Audio features vs Raw audio

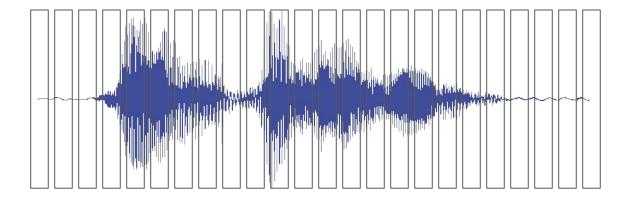
- Audio front end: converts input speech to filterbanks (FBANK, MFCC etc)
 - fixed hand-crafted features which are computed separately from the E2E training
- A truly End-to-End approach would consider audio as input directly to the neural network
- Use trainable filterbanks
- Additional neural layer to input speech directly



86

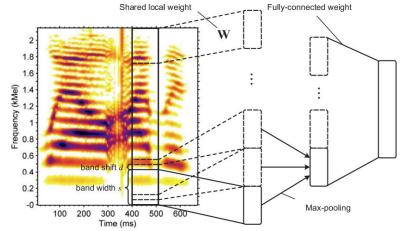
Encoder: Downsampling in time





Pre encoder layers: Convolutional layers

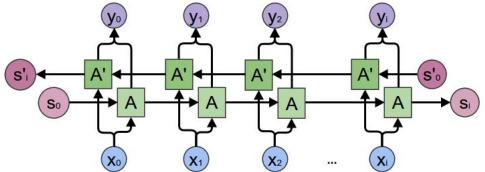
- Collect and bin local information
- Convolutional layers
 - Translational equivariance via weight sharing
- Can subsample across time
 - Max-pooling across time
 - Strided convolutions



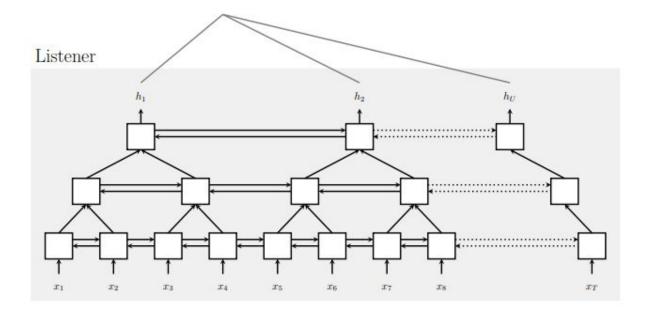
pic credit: <u>Meng Cai &</u> <u>Jia Liu 2016</u>

Encoder body: BLSTM

- Bidirectional LSTMs
- Bidirectionality: Every intermediate output contains information about every time step

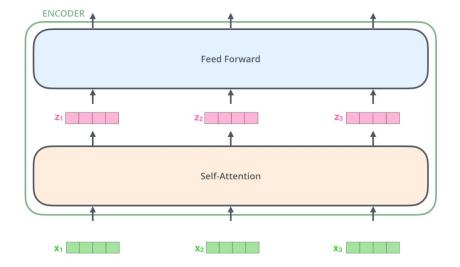


Pyramidal BLSTMs



Encoder body: Transformers

- Self-attention layers
- No autoregressive operations



Decoder layers

- Some type of RNN
- Transformer

Transformers vs LSTMs

dataset	token	error	LSTMs	Transfromers
AISHELL	char	CER	6.8 / 8.0	6.0 / 6.7
AURORA4	char	WER	3.5 / 6.4 / 5.1 / 12.3	3.3 / 6.0 / 4.5 / 10.6
CSJ	char	CER	6.6 / 4.8 / 5.0	5.7 / 4.1 / 4.5
CHiME4	char	WER	9.5 / 8.9 / 18.3 / 16.6	9.6 / 8.2 / 15.7 / 14.5
CHiME5	char	WER	59.3 / 88.1	60.2 / 87.1
Fisher-CALLHOME Spanish	char	WER	27.9 / 27.8 / 25.4 / 47.2 / 47.9	27.0 / 26.3 / 24.4 / 45.3 / 46.2
HKUST	char	CER	27.4	23.5
JSUT	char	CER	20.6	18.7
LibriSpeech	BPE	WER	3.1 / 9.9 / 3.3 / 10.8	2.2 / 5.6 / 2.6 / 5.7
REVÊRB	char	WER	24.1 / 27.2	15.5 / 19.0
SWITCHBOARD	BPE	WER	28.5 / 15.6	18.1 / 9.0
TED-LIUM2	BPE	WER	11.2 / 11.0	9.3 / 8.1
TED-LIUM3	BPE	WER	14.3 / 15.0	9.7 / 8.0
VoxForge	char	CER	12.9 / 12.6	9.4 / 9.1
WSJ	char	WER	7.0 / 4.7	6.8 / 4.4

Shigeki Karita et al 2019

Language model integration

Missing out on text data

