ELEC-E8116 Model-based control systems /exercises 10 Solutions

Problem 1. Consider the general system representation

$$
\begin{aligned}
& \dot{x}=A x+B u+N w \\
& z=M x+D u \\
& y=C x+w
\end{aligned}
$$

where it is assumed that

$$
D^{T}\left[\begin{array}{ll}
M & D
\end{array}\right]=\left[\begin{array}{ll}
0 & I
\end{array}\right]
$$

Show that this assumption can be relaxed by taking

$$
\begin{aligned}
& \tilde{u}=\left(D^{T} D\right)^{1 / 2} u+\left(D^{T} D\right)^{-1 / 2} D^{T} M x \quad \text { and } \\
& z=\tilde{M} x+\tilde{D} \tilde{u}, \quad \tilde{M}=\left(I-D\left(D^{T} D\right)^{-1} D^{T}\right) M, \quad \tilde{D}=D\left(D^{T} D\right)^{-1 / 2}
\end{aligned}
$$

Solution. First we show that the value of z remains the same:

$$
\begin{aligned}
& \tilde{M} x+\tilde{D} \tilde{u}=\left[I-D\left(D^{T} D\right)^{-1} D^{T}\right] M x+D\left(D^{T} D\right)^{-1 / 2} \cdot\left\{\left(D^{T} D\right)^{1 / 2} u+\left(D^{T} D\right)^{-1 / 2} D^{T} M x\right\} \\
& =M x-D\left(D^{T} D\right)^{-1} D^{T} M x+D\left(D^{T} D\right)^{-1 / 2}\left(D^{T} D\right)^{1 / 2} u+D\left(D^{T} D\right)^{-1 / 2}\left(D^{T} D\right)^{-1 / 2} D^{T} M x \\
& =M x+D u=z
\end{aligned}
$$

Ok.
Then it remains to show that $\tilde{D}^{T}\left[\begin{array}{ll}\tilde{M} & \tilde{D}\end{array}\right]=\left[\begin{array}{ll}0 & I\end{array}\right]$.
$\tilde{D}^{T}\left[\begin{array}{ll}\tilde{M} & \tilde{D}\end{array}\right]=\left[\begin{array}{cc}\tilde{D}^{T} \tilde{M} & \tilde{D}^{T} \tilde{D}\end{array}\right]$. Let us consider both submatrices separately

$$
\begin{aligned}
& \tilde{D}^{T} \tilde{M}=\left(D^{T} D\right)^{-T / 2} D^{T}\left(I-D\left(D^{T} D\right)^{-1} D^{T}\right) M \\
& =\left(D^{T} D\right)^{-1 / 2} D^{T}\left(I-D\left(D^{T} D\right)^{-1} D^{T}\right) M \\
& =\left(D^{T} D\right)^{-1 / 2} D^{T} M-\left(D^{T} D\right)^{-1 / 2} D^{T} D\left(D^{T} D\right)^{-1} D^{T} M \\
& =\left(D^{T} D\right)^{-1 / 2} D^{T} M-\left(D^{T} D\right)^{-1 / 2} D^{T} M=0
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{D}^{T} \tilde{D}=\left(D^{T} D\right)^{-T / 2} D^{T} D\left(D^{T} D\right)^{-1 / 2} \\
& =\left(D^{T} D\right)^{-1 / 2} D^{T} D\left(D^{T} D\right)^{-1 / 2} \\
& =\left(D^{T} D\right)^{-1 / 2}\left(D^{T} D\right)^{1 / 2}=I
\end{aligned}
$$

Ok.
Note that in above $\left(D^{T} D\right)^{-T / 2}=\left(\left(D^{T} D\right)^{-1 / 2}\right)^{T}=\left(\left(D^{T} D\right)^{T}\right)^{-1 / 2}=\left(D^{T} D\right)^{-1 / 2}$. Remember the rules of matrix calculus.

Problem 2. The Frobenius norm of a matrix A is defined as

$$
\|A\|_{F}=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}=\sqrt{\operatorname{tr}\left(A^{*} A\right)}
$$

Show that $\|A\|_{F}=\sqrt{\sum_{i} \sigma_{i}^{2}(A)}$, where $\sigma_{i}(A)$ are the singular values of A.

Solution. We do the singular value decomposition of matrix A

$$
A=U \Sigma V^{*} \Rightarrow A^{*} A=V \Sigma^{T} \overbrace{U^{*} U}^{L} \Sigma V^{*}=V \Sigma^{T} \Sigma V^{*}
$$

But generally (see Exercise 2) it holds $\operatorname{tr}(C D)=\operatorname{tr}(D C)$, provided that the dimensions agree of course. Then

$$
\begin{aligned}
& \operatorname{tr}\left(A^{*} A\right)=\operatorname{tr}\left(V \Sigma^{T} \Sigma V^{*}\right)=\operatorname{tr}\left(\Sigma V^{*} V \Sigma^{T}\right) \\
& =\operatorname{tr}\left(\Sigma \Sigma^{T}\right)=\sum_{i} \sigma_{i}^{2}(A)
\end{aligned}
$$

