
Chapter 8

• LQG control
• Robustness of LQG control
• Loop transfer recovery (LTR)
• Introduction to Model Predictive Control



Chapter 8:  LQG-control

G0

-Fy

Fr

r u
y

wu

z

w n

nzy

wGuz


 yFrFu yr  rze 



Note:

LQG theory (Linear-Quadratic-Gaussian) means optimal (LQ)
control with Gaussian noise disturbances present.  The
stochastic theory of continuous time systems is difficult. 

It is possible to present the theory in a ”simplified” form.  The
important thing is to know that noise intensities (variance
does not exist for continuous time stochastic signals) are
mostly used as tuning parameters only. The optimal state
estimator, Kalman filter, is used to estimate the states, which
are fed back according to the LQ theory.

LQG = Kalman filter + LQ 
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-how to describe, how ”big” the signal is?
-how to describe the frequency content of the signal?
-how to describe the signal as the output of a dynamical
system, driven by  ”white noise”.
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But let us look:
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”trace”  is the sum of the main
diagonal elements of a matrix (see. 
2.nd exercise set.)
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Spectral description of disturbances

To a m-dimensional u(t) a hermitian m x m-matrix )(u

(spectrum, spectral density)

If G is a linear and stable system, then

)()()( tupGty 
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is attached,
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The spectral density is defined
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Covariance vs. signal size  (Parseval’s theorem)
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m x m-dimensional matrix
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measures the size of signal u by weighting the frequency
components.

Cross-correlation spectral density :
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Two signals do not correlate, if their cross-correlation
spectral density is identically zero.

The signal is called white noise, intensity R, if its spectral
density is constant at the the frequency range

Re  )(

The history of a white noise signal does not give any
information of the future values of the signal.

R is known as the intensity of the signal.
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Spectral density
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Covariance vs. signal size  (Parseval’s theorem)

G(s)
u(t) y(t)
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Fourier transformation of the
signal
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Note.  The ”stochastic” interpretation of stochastic systems
has not been used above, e.g.
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When it is assumed that the  stochastic process is stationary
and ergodic, the modelling with the following formulas are
adequate
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linear system

spectral density

covariance vs. sig-
nal size
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But how do we manage with white noise?

Re  )( R is the intensity
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The covariance of the white noise is intensity multiplied
with the impulse function; note

  deR i
ee
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The variance of white noise is infinite, so we are dealing 
with a mathematical idealization,which really does not exist.
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Example.  Let

)()()()()( tepHtupGty 

where u and e are uncorrelated scalar signals with the
spactral densities

)(u and   )(e
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We obtain
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in which the basic equation

More generally for a linear filter:

let the input be white noise e with the intensity R

has been used.
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)()()( tepGtv 

The spectral density of the output is then

)()()( *  iRGiGv 

and in the scalar case

2
()(  iGRv 

Basic model for a disturbance signal: output of a
linear time-invariant filter driven by white noise.
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General state-space realization of the process is

and the criterion
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Consider the regulator problem (r = 0)
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Solution (without proof): Let (A,B) be stabilizable and (A,C) detectable.
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The optimal control law is

in which the Kalman gain K is obtained by the Riccati equation
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and the state feedback coefficient L

SBQL T1
2


where S is the solution to the stationary Riccati equation (LQ)

01
21   SBSBQMQMSASA TTT

(symmetric and positive semidefinite solution)

(Note that only infinite optimization horizons are 
considered here, so that the stationary Riccati equations can
be used. )
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The solution has the separation property :  the optimal
state observer and optimal state feedback can be designed
independent of each other.  The whole solution is then
the  ”combination” of these.

The theory guarantees that the resulting closed-loop
system is stable.

Terms:  LQ (linear quadratic)
LQG (linear quadratic gaussian)
ARE (algebraic Riccati equation)
(Separation principle)

If the states are measurable , y = x, the Kalman-filter 
is not needed and the state feedback is formed directly
from the state.
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Matlab:

kalman, estim
lqgreg
lqr, dlqr
lqe, dlqe
lqrd
sigma, dsigma
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But how about the robustness of the LQ (LQG) –
controller ?
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Not necessarily very good!

The weight matrices and noise intensities can be
thought to be tuning parameters in control design.

After design the frequency domain analysis and
simulations must be carried out to verify the performance
of the controller.  Next, consider robustness a bit closer.



Robustness of LQ/LQG-controllers

24

LQ:
( ) ( )

( ) ( ) ( )

u t Lx t

x t Ax t Bu t

 
 

+

-
G

L

y

x

r̈

The loop transfer function (gain in control signal)
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But in that transfer function
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L is determined from the equations

and now it holds (apply the lemma 5.2 in the textbook)
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which in SISO-case is
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-1
Re
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That means that the Nyquist curve will never go inside
the circle shown in the figure:

-phase margin at least 60 degrees
-gain margin infinite
-the magnitude of the sensitivity function is less than 
one

-the magnitude of the complementary sensitivity 
function is smaller than two. 



27

LQG:
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and the loop gains are
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looked from the output or input side of the process .  ( For 
SISO-systems the functions are the same.)

But now the good robustness properties do not necessarily
hold, even though K and L have been chosen according to
the LQG-formulas (the phase margin can even be
arbitrarily small).

An idea to fix that problem:  let L be chosen as above.
Can K be chosen such that

   1 1 1( )yF G L sI A BL KC KC sI A B L sI A B
        

which would make it possible to enjoy the ”ideal” 
loop transfer function again.
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Result:  Yes, it is possible by choosing

K B

where ρ is large enough.  That holds generally and also
in MIMO case; the number of inputs and outputs must
be the same.

This technique is called the loop transfer recovery
(LTR).

The idea is to calculate L as the solution to the optimal
control problem and then change K as described above.  
(To increase ρ until the desired sensitivity functions are
obtained.)  But there is no guarantee that the filter
remains stable.
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Use another procedure to aim at
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    (Kalman)

Choose
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where the last two terms dominate, as α grows.  Hence

K B

holds, and also the Kalman-filter remains Ok.

Now the tuning parameters were N, R1 and R2.

Note.  The presented method was input-LTR, because the
loop transfer function was yF G (gain of the input signal)

yGFThere exists also an output-LTR method based on

In SISO-case the two methods are the same.



Model Predictive Control (MPC)

Literature:

• Wang, L, Model Predictive Control System Design and 
Implementation Using MATLAB, Springer, 2009.

• Maciejowski, J. M., Predictive Control, with Constraints,
Pearson Education, 2002.

• Rawlings, J. B., and Mayne, D. Q., Model Predictive Control,
Theory and Design, Nob Hill, 2009.







Model Predictive Control
• Can deal with constraints in a natural way
• The basic idea is easy to understand
• It extends to multivariable plants naturally
• Generally more powerful than traditional PID control
• Integrates optimal control, stochastic control, control of 

processes with dead-time, multivariable control, control
that can handle constraints.

• A practical methodology, which has numerous technical
applications, especially in the process industry.

• It was earlier neglected and critisized by the control
engineering community (lack of stability proofs, 
robustness etc.); this situation has changed due to 
progress in theory. 



The main characteristics in MPC
• An internal model capable of fast simulation
• A reference trajectory which defines the desired

closed-loop behaviour
• The receding horizon principle
• Future input trajctory by a finite number of control

moves
• On-line optimization (possibly constrained)



Model Predictive Control

Model

Optimizer

+

-

Past inputs
and outputs

Future
inputs

Reference trajectory

Predicted
outputs

Future
errors

Constraints
Cost

function



t t+1 t+2 t+k t+N... ..

u(t)

y(t)
N

)|(ˆ tkty 

)|(ˆ tktu 
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The Receding horizon principle

The output is predicted over the prediction
horizon.  Control moves are calculated over
the control horizon by optimizing a criterion.  
Only the first move is realized; then the
process is repeated.



• A lot of different formulations can be found in the
literature (MPHC, MAC, DMC, EHAC, EPSAC, GPC  etc. 
etc.)

• Maciejowski’s book has information on commercial MPC 
products, e.g. DMCPlus, RMPCT, Connoisseur, PFC, 
HIECON, 3dMPC, Process Perfecter.



Model predictive control (MPC)

• Note that there are different formalisms to pose the
MPC problem.

• Also, there exist software packages to do the job.  
The problem in using software packages ”blindly” is the
lack of insight and analysis possibilities.

• For example: Matlab’s MPC toolbox is good in posing and 
solving problems at a reasonably high level.  It is somewhat
difficult to use it in research though.

• It is good to make one formalism yourself to get insight.  
The software packages then become easier to deal with.
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Prediction horizon ,                  positive semidefinite
Control horizon
Control move it is assumed that the penalty is on the control

moves, not controls as such
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Note that if there is no penalty immediately at time k.1wH 

The states are usually not measurable; instead we have predictions
meaning that we estimate the state by using data up to 

time k.
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Features of constrained predictive control

• Constraints cause MPC be nonlinear.  But most of the 
time (when constraints are not near to be active) the 
controller operates in a linear way.

• In practice, meeting a hard constraint can be dangerous
for the system.  An MPC might do hazardous actions (in 
”panic”); usually a supervisory mode is used to prevent
such actions.

• We consider only time-invariant MPC.  The system has
then constant coefficient matrices.  In

Q(i) and R(i) can vary with i , but they must not change
with k
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Alternative state variable choices

• Usually the MPC gives the control move as its output, 
whereas the project model uses absolute values.  The
integration in the state space model is then needed (to 
create u from u



Prediction
• Predictions of the controlled variables must be obtained to

solve the control problem.  They are based on the best estimates of
and the assumed future inputs (or the latest input u(t-1))

• The predictor can be seen as a ”tuning parameter” in the MPC
problem, because it plays a key role in the performance of the 
controller.

• We are actually specifying a model of the environment in which
the plant is operating

• Assuming that the states are measurable and there are
no disturbances we get

ˆ( )z k i k

ˆ( )x k k



Prediction

2

1

ˆ ˆ( 1 ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ( 2 ) ( 1 ) ( 1 ) ( ) ( ) ( 1 )

ˆ ˆ ˆ( ) ( 1 ) ( 1 )

ˆ ˆ( ) ( ) ( 1 )p p

p p p

H H

p

x k k Ax k Bu k k

x k k Ax k k Bu k k A x k ABu k k Bu k k

x k H k Ax k H k Bu k H k

A x k A Bu k k Bu k H k

  

        

      

     





But and earlier control moves will be
studied only.  So
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Prediction
• Hence we get
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Prediction
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We can collect everything in a matrix-vector form



Prediction
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Prediction

• The predictions are now obtained simply as
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Design steps:

1. Process – first 
principles nonlinear 
2. Linear model of that 
process (ss, tf, etc.)
3. N-steps ahead 
prediction model

5. Performance index

FuturePast
reference

Predicted output

Predicted input

k k+1 k+2 k+Nc

Prediction 
horizon

Measured output

Linear model
6. Optimization

4. State estimator

A different fotmulation

k+Np

Control 
horizon



Model predictive control
3. N-steps ahead prediction model

Measured/estimated

Based on future inputs

4. Kalman observer



6. Optimization problem

5. Performance index

Tracking error Input penalty

Input rate penalty

J

Model predictive control



Process model

Discretized form

Form the difference

The formalism in Wang’s book
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It follows that
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and finally to
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Written generally in the MIMO case
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• Generally (with constraints)

leads to a numerical optimization problem, for which
efficient algorithms exist.

Note that the idea has been to formulate the whole MPC 
problem such that it can be solved by general optimization
software.  See e.g. the command quadprog in Matlab.

Using a special MPC toolbox is possible of course, but it is 
impossible to see ”inside” what it really does.  



To continue:

• Read chapters 1 and 2 in Wang’s book to become
convenient with one formalism.

• The rest of Wang’s book is interesting and useful.  To 
continue studies in MPC, I would start from it.


