
Prediction and Time Series Analysis
Department of Mathematics and Systems Analysis
Aalto University

Ilmonen / Shafik / Pere / Mellin
Fall 2022

Computer exercises 6

Computer exercises 6

Demo exercises
6.1
The file const.txt contains monthly data of the number of started construction projects in a neighborhood
in the USA between the years 1966 and 1974.

a) Visualize the data. Does the time series look stationary?

b) Use the function stl to decompose the time series. In other words, decompose the time series into a
trend component, a seasonal component and a random component.

c) Use the following filter to estimate the trend:

𝑦𝑡 = 1
24 (𝑥𝑡−6 + 2𝑥𝑡−5 + 2𝑥𝑡−4 + … + 2𝑥𝑡 + … + 2𝑥𝑡+4 + 2𝑥𝑡+5 + 𝑥𝑡+6) .

Plot the obtained estimate 𝑦𝑡, the estimate given by the function stl and the original time series into
a single figure. Are there differences between the estimates?

d) Remove the trend and seasonal component from the time series by using difference operations. Use
the function stl to decompose the obtained time series.

Solution
a) Read the data and plot the time series. By Figure 1, the time series const does not seem stationary.

const <- read.table("data/const.txt", header = TRUE, sep = ",", row.names = 1)
const <- ts(const[[1]], start = 1966, frequency = 12)
plot(const)

1 / 12

Prediction and Time Series Analysis
Department of Mathematics and Systems Analysis
Aalto University

Ilmonen / Shafik / Pere / Mellin
Fall 2022

Computer exercises 6

Time

co
ns

t

1966 1968 1970 1972 1974

50
10

0
15

0
20

0

Figure 1: Original time series const.

b) Next we decompose time series into trend (𝑚𝑡), seasonal (𝑠𝑡) and random (𝑒𝑡) components,

𝑥𝑡 = 𝑚𝑡 + 𝑠𝑡 + 𝑒𝑡.

Decomposition can be done with the function stl.
decomp <- stl(const, s.window = "periodic")
plot(decomp)

2 / 12

Prediction and Time Series Analysis
Department of Mathematics and Systems Analysis
Aalto University

Ilmonen / Shafik / Pere / Mellin
Fall 2022

Computer exercises 6

50
15

0

da
ta

−
40

−
10

20

se
as

on
al

10
0

16
0

tr
en

d

−
20

0
20

1966 1968 1970 1972 1974

re
m

ai
nd

er

time

Figure 2: Decomposition of the time series const.

c) The filtering can be applied conveniently by utilizing the function filter.
trend_filter <- filter(const, c(1, rep(2, 11), 1) / 24)
trend_stl <- decomp$time.series[, 2]

plot(const, lty = 3, col = "black")
lines(trend_filter, lty = 2, col = "red")
lines(trend_stl, lty = 1, col = "blue")
legend("topleft", legend = c("Time series", "Filter", "STL"),

col = c("black", "red", "blue"), lty = c(3, 2, 1))

3 / 12

Prediction and Time Series Analysis
Department of Mathematics and Systems Analysis
Aalto University

Ilmonen / Shafik / Pere / Mellin
Fall 2022

Computer exercises 6

Time

co
ns

t

1966 1968 1970 1972 1974

50
10

0
15

0
20

0

Time series
Filter
STL

Figure 3: The original time series as gray, the trend given by stl as blue and the trend given by filter as
red.

Figure 3 shows that the trend given by stl is almost identical to the one given by filtering. However, the
trend given by the filter is a bit rougher than the trend given by stl.

d) Next, we calculate the difference DD12 and decompose the obtained time series. By the top subfigure
of Figure 4, the time series obtained by taking the differences could be stationary.

const_d <- diff(diff(const, lag = 12))
const_d_stl <- stl(const_d, s.window = "periodic")

plot(const_d_stl)

4 / 12

Prediction and Time Series Analysis
Department of Mathematics and Systems Analysis
Aalto University

Ilmonen / Shafik / Pere / Mellin
Fall 2022

Computer exercises 6

−
40

0

da
ta

−
3

−
1

1
3

se
as

on
al

−
5

0
5

tr
en

d

−
40

0
20

1968 1970 1972 1974

re
m

ai
nd

er

time

Figure 4: Decomposition of the time series DD12const.

6.2
The file arsimulation.txt contains realizations at 100 distinct points of time for the following three pro-
cesses,

𝑥𝑡 = 𝜀𝑡 − 𝑥𝑡−1
2 , (1)

𝑦𝑡 = 𝜈𝑡 − 𝑦𝑡−1
2 , (2)

𝑧𝑡 = 𝜂𝑡 − 𝑧𝑡−1
2 , (3)

where for every 𝑡 ∈ {2, 3, … , 100}, 𝜀𝑡 was generated independently from the standard Cauchy distribution,
𝜈𝑡 was generated independently from the Student’s 𝑡-distribution with 3 degrees of freedom and 𝜂𝑡 was
generated independently from the Student’s 𝑡-distribution with 30 degrees of freedom. The starting point
for the time series was chosen to be deterministically 𝑥1 = 𝑦1 = 𝑧1 = 0.

a) Visualize the three time series.

b) Fit an AR(1) process to each of the three time series by using the function Arima from the package
forecast. Use Arima with the arguments include.mean = FALSE and method = "ML". Does the
AR(1) parameter estimates given by Arima match the true parameter values −1/2?

c) Bootstrap 95% confidence intervals for the AR(1) model parameters. Use Arima with the arguments
include.mean = FALSE and method = "ML".

d) Assume that for all 𝑠 ≥ 1, we have that 𝑥𝑡−𝑠 ⟂⟂ 𝜀𝑡, 𝑦𝑡−𝑠 ⟂⟂ 𝜈𝑡, and 𝑧𝑡−𝑠 ⟂⟂ 𝜂𝑡, where ⟂⟂ is used to
denote stochastic independence. In addition, assume that the elements of the set {𝜀𝑡}𝑡∈ℤ are i.i.d., the

5 / 12

Prediction and Time Series Analysis
Department of Mathematics and Systems Analysis
Aalto University

Ilmonen / Shafik / Pere / Mellin
Fall 2022

Computer exercises 6

elements of {𝜈𝑡}𝑡∈ℤ are i.i.d. and the elements of {𝜂𝑡}𝑡∈ℤ are i.i.d. Under these assumptions, which of
the theoretical processes (1)–(3) are weakly stationary?

Solution
a) First, we read the data and visualize all three time series.

data <- read.table("data/arsimulation.txt", header = TRUE, row.names = 1)
data <- ts(data)
plot(data, yax.flip = TRUE)

−
50

0
50X

−
4

0
4

8

Y

−
3

−
1

1
3

0 20 40 60 80 100

Z

Time

data

Figure 5: Realizations of all three stochastic processes (1)–(3).

In Figure 5, there is a visible peak for time series (1) at 𝑡 = 43. Note that, the standard Cauchy distribution
has considerably heavier tails when compared to, e.g., normal distribution.

b) Next, we fit AR(1) processes to all three time series.
library(forecast)
fit_x <- Arima(data[, 1], order = c(1, 0, 0), include.mean = FALSE,

method = "ML")
fit_y <- Arima(data[, 2], order = c(1, 0, 0), include.mean = FALSE,

method = "ML")
fit_z <- Arima(data[, 3], order = c(1, 0, 0), include.mean = FALSE,

method = "ML")

coefs <- c(fit_x$coef, fit_y$coef, fit_z$coef)

6 / 12

Prediction and Time Series Analysis
Department of Mathematics and Systems Analysis
Aalto University

Ilmonen / Shafik / Pere / Mellin
Fall 2022

Computer exercises 6

names(coefs) <- c("x", "y", "z")
round(coefs, 3)

x y z
-0.499 -0.494 -0.492

The AR(1) parameters estimated from the first, second and third time series are approximately −0.499,
−0.494 and −0.492, respectively. Hereby, the estimates are all relatively close to the true parameter value
−1/2.

c) In the context of time series we cannot choose bootstrap samples by just simply sampling with re-
placement, since this would break the dependence structure of the time series. Alternatively, we use
a variant of block bootstrap where bootsrap samples are constructed by choosing at least 𝑤 number of
consecutive observations. In theory the window size 𝑤 can be 2 or larger. However, in order to have
stable ML-estimation procedure we set minimum window size to 10.

Let us make a function for performing block bootstrap.
#' Create block bootstrap confidence interval
#'
#' @param series Univariate time series object of class ts.
#' @param m Number of bootstrap samples.
#' @param w Minimum number of consecutive observations in a bootstrap sample.
#' @param alpha Calculate (1-alpha) level confidence interval.
#'
#' @return A vector of length two, giving lower and upper bounds of the
#' confidence interval.
bootstrap <- function(series, m = 5000, w = 10, alpha = 0.05) {

n <- length(series)
boot <- rep(NA, m)

for (i in 1:m) {
Simulate window start and end points. Window size must be at least w.
start <- 0
end <- 0
while (end - start < w - 1) {

se <- sample(1:n, 2, replace = FALSE)
start <- min(se)
end <- max(se)

}

Estimate parameter from bootstrap sample
boot[i] <- Arima(series[start:end], order = c(1, 0, 0),

include.mean = FALSE, method = "ML")$coef[1]
}

Construct confidence interval
quantile(boot, c(alpha / 2, 1 - alpha / 2))

}

Next, compute confidence intervals.
confint_x <- bootstrap(data[, 1])
confint_y <- bootstrap(data[, 2])
confint_z <- bootstrap(data[, 3])
confint_x

7 / 12

Prediction and Time Series Analysis
Department of Mathematics and Systems Analysis
Aalto University

Ilmonen / Shafik / Pere / Mellin
Fall 2022

Computer exercises 6

2.5% 97.5%
-0.933286 -0.157096
confint_y

2.5% 97.5%
-0.7534900 -0.2361305
confint_z

2.5% 97.5%
-0.7822626 -0.2072821

The requested confidence intervals estimated from the first, second and third time series are approximately
[−0.93, −0.16], [−0.75, −0.24] and [−0.78, −0.21], respectively.

d) The standard Cauchy distribution is exactly the Student’s 𝑡-distribution with 1 degree of freedom.
Student’s 𝑡-distribution with 𝑘 degrees of freedom has 𝑘 −1 theoretical moments. As the variance of 𝑥𝑡
and the variance of 𝜀𝑡 are undefined, Process (1) is not weakly stationary. Recall that, weak stationarity
contains the assumption that the variance is time invariant and finite. For more information about
ARMA processes with infinite variance, see Chapter 13.3 of (Brockwell and Davis 2009).

Consequently, the AR(1) Processes (2) and (3) have finite variances. Under the assumptions of this exercise
and by previous theoretical exercises, we have that Processes (2) and (3) are weakly stationary.

6.3
a) Fit ARMA model to the time series in file fracsim.txt.

b) Could there be better fits than ARMA model?

Solution
a) First, we read the data. All in all, time series fracsim contains 1000 observations.

fracsim <- read.csv("data/fracsim.txt")
fracsim <- ts(fracsim[[1]])
length(fracsim)

[1] 1000

Next, we plot both the time series and ACF/PACF plots.
plot(fracsim)
acf(fracsim, lag.max = 50, main = "")
pacf(fracsim, lag.max = 50, main = "")

8 / 12

Prediction and Time Series Analysis
Department of Mathematics and Systems Analysis
Aalto University

Ilmonen / Shafik / Pere / Mellin
Fall 2022

Computer exercises 6

Time

fr
ac

si
m

0 200 400 600 800 1000

−
2

0
2

4

(a) Time series

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

(b) Autocorrelation function

0 10 20 30 40 50

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Lag

P
ar

tia
l A

C
F

(c) Partial autocorrelation function

Figure 6: Time series plot, ACF plot and PACF plot of the time series frac_series.

By Figure 6a) time series could be stationary, since there is no trend or seasonality. However, interestingly
ACF decays to zero quite slowly. Nevertheless, let us use auto.arima to fit an ARMA process to time series
frac_series.
model_auto <- auto.arima(fracsim, d = 0, D = 0, max.p = Inf, max.q = Inf,

max.P = 0, max.Q = 0, max.order = Inf)
model_auto

Series: fracsim
ARIMA(1,0,3) with zero mean
##
Coefficients:
ar1 ma1 ma2 ma3
0.9537 -0.5357 -0.1237 -0.0669
s.e. 0.0162 0.0360 0.0368 0.0334
##
sigma^2 = 0.9822: log likelihood = -1408.31
AIC=2826.62 AICc=2826.68 BIC=2851.16

Next let us study if residuals are white noise with ACF/PACF plots.

9 / 12

Prediction and Time Series Analysis
Department of Mathematics and Systems Analysis
Aalto University

Ilmonen / Shafik / Pere / Mellin
Fall 2022

Computer exercises 6

plot(model_auto$residuals, type = "l", ylab = "residuals")
acf(model_auto$residuals, lag.max = 50, main = "")
pacf(model_auto$residuals, lag.max = 50, main = "")

Time

re
si

du
al

s

0 200 400 600 800 1000

−
2

−
1

0
1

2
3

(a) Time series

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag
A

C
F

(b) Autocorrelation function

0 10 20 30 40 50

−
0.

05
0.

00
0.

05

Lag

P
ar

tia
l A

C
F

(c) Partial autocorrelation function

Figure 7: Time series plot, ACF plot and PACF plot of the residuals of the ARMA(1, 3).

Figure 7 shows that at least at lag 12 there is a significant spike in ACF and PACF. Thus it seems that
residuals of the model ARMA(1, 3) are not (quite) white noise.

b) Actually, simulated observations in file fracsim.txt are realizations of fractionally integrated noise
process 𝑥𝑡,

𝐷0.45𝑥𝑡 = 𝜀𝑡, where 𝜀𝑡 ∼ WN(0, 𝜎2).
In this case, we chose 𝑑 = 0.45, but generally, one can choose 𝑑 ∈ (−0.5, 0.5). Here the fractional
difference operator for 𝑑 ∈ (−0.5, 0.5) is defined as

D𝑑 = (1 − L)𝑑 =
∞

∑
𝑗=0

𝜋𝑗L𝑗,

where

𝜋𝑗 =
𝑗

∏
𝑘=1

𝑘 − 1 − 𝑑
𝑘 , 𝑗 ∈ {1, 2, …}.

10 / 12

Prediction and Time Series Analysis
Department of Mathematics and Systems Analysis
Aalto University

Ilmonen / Shafik / Pere / Mellin
Fall 2022

Computer exercises 6

Generally, one can define fractionally integrated ARMA (ARFIMA) process for 𝑑 ∈ (−0.5, 0.5) as

𝜙𝑝(𝐿)𝐷𝑑𝑥𝑡 = 𝜃𝑞(𝐿)𝜀𝑡.

It turns out that autocorrelation function of an ARFIMA process decays a lot slower than autocorrelation of
an ARIMA process. Thus, ARFIMA processes are often called long memory processes and, on the other hand,
ARIMA processes are short memory processes. For a more rigorous treatment of long memory processes, see
Chapter 13.2 of (Brockwell and Davis 2009).

In theory, one can fit an ARIMA model to a long memory process but this often leads to large orders 𝑝 and
𝑞 of lag polynomials 𝜙𝑝(𝐿) and 𝜃𝑞(𝐿), respectively. More parsimonious model is often achieved by fitting a
ARFIMA model to long memory processes.

Package fracdiff provides tools for simulating and fitting ARFIMA processes. For example we can fit a
integrated noise process to simulated realizations frac_series with the function fracdiff.
library(fracdiff)
model_frac <- fracdiff(fracsim, nar = 0, nma = 0)
model_frac$d

[1] 0.409231

Estimate ̂𝑑 ≈ 0.41 is quite close to the true value of the order of differencing 𝑑 = 0.45.

By Figure 8, residuals of the ARFIMA(0, 1, 0) model behave similarly as the residuals of the ARMA(1, 3)
model.
plot(model_frac$residuals, type = "l", ylab = "residuals")
acf(model_frac$residuals, lag.max = 50, main = "")
pacf(model_frac$residuals, lag.max = 50, main = "")

11 / 12

Prediction and Time Series Analysis
Department of Mathematics and Systems Analysis
Aalto University

Ilmonen / Shafik / Pere / Mellin
Fall 2022

Computer exercises 6

Time

re
si

du
al

s

0 200 400 600 800 1000

−
3

−
2

−
1

0
1

2
3

(a) Time series

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

(b) Autocorrelation function

0 10 20 30 40 50

−
0.

08
−

0.
04

0.
00

0.
04

Lag

P
ar

tia
l A

C
F

(c) Partial autocorrelation function

Figure 8: Time series plot, ACF plot and PACF plot of the residuals of the ARFIMA(0, 0.45, 0) model.

References
Brockwell, Peter J, and Richard A Davis. 2009. Time Series: Theory and Methods. Springer science &

business media.

12 / 12

	Demo exercises
	6.1
	Solution
	6.2
	Solution
	6.3
	Solution

	References

