Prediction and Time Series Analysis
Department of Mathematics and Systems Analysis
Aalto University

Ilmonen/ Shafik/ Pere/ Mellin
Fall 2022
Exercise 6.

6. Theoretical exercises

Demo exercises

6.1 Show that the optimal mean squared error prediction for the stationary and invertible ARIMA $(0,1,1)$ process,

$$
\begin{equation*}
D x_{t}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}, \quad\left(\varepsilon_{t}\right)_{t \in T} \sim \operatorname{iid}\left(0, \sigma^{2}\right), \tag{1}
\end{equation*}
$$

where ε_{s} and x_{t} are independent for $s>t$, satisfies the formula,

$$
\hat{x}_{t+1 \mid t}=\alpha x_{t}+(1-\alpha) \hat{x}_{t \mid t-1},
$$

of exponential smoothing when $\left|\theta_{1}\right|<1$ and $\alpha=1+\theta_{1}$.
Solution. We consider the optimal mean squared prediction of the $\operatorname{ARIMA}(0,1,1)$ process,

$$
\hat{x}_{t+1 \mid t}=\mathbb{E}\left[x_{t+1} \mid \varepsilon_{t}, \varepsilon_{t-1}, \ldots\right] .
$$

Since

$$
D x_{t}=x_{t}-x_{t-1}=\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}, \quad t \in T,
$$

we have that,

$$
x_{t+1}=x_{t}+\varepsilon_{t+1}+\theta_{1} \varepsilon_{t} .
$$

The optimal prediction in the sense of the mean squared error is

$$
\begin{aligned}
\hat{x}_{t+1 \mid t} & =\mathbb{E}\left[x_{t+1} \mid \varepsilon_{t}, \varepsilon_{t-1}, \ldots\right]=\mathbb{E}\left[x_{t}+\varepsilon_{t+1}+\theta_{1} \varepsilon_{t} \mid \varepsilon_{t}, \varepsilon_{t-1}, \ldots\right] \\
& =x_{t}+\theta_{1} \varepsilon_{t} .
\end{aligned}
$$

Then, by combining Equation (1) with $\hat{x}_{t \mid t-1}=x_{t-1}+\theta_{1} \varepsilon_{t-1}$, we get that $\varepsilon_{t}=x_{t}-\hat{x}_{t \mid t-1}$. Thus,

$$
\begin{aligned}
\hat{x}_{t+1 \mid t} & =x_{t}+\theta_{1} \varepsilon_{t}=x_{t}+\theta_{1}\left(x_{t}-\hat{x}_{t \mid t-1}\right) \\
& =\left(1+\theta_{1}\right) x_{t}-\theta_{1} \hat{x}_{t \mid t-1}=\alpha x_{t}+(1-\alpha) \hat{x}_{t \mid t-1},
\end{aligned}
$$

which concludes the proof.
6.2 Assume that you observe a time series

$$
x_{0}, x_{1}, x_{2}, \ldots, x_{7300}, x_{7301}, x_{7302}, x_{7303}, x_{7304}, x_{7305},
$$

where

$$
\begin{aligned}
& x_{7300}=201.3 \\
& x_{7301}=219.8, \\
& x_{7302}=241.4, \\
& x_{7303}=262.7, \\
& x_{7304}=281.5 \quad \text { and } \\
& x_{7305}=300.8
\end{aligned}
$$

a) Based on plotting the time series, you observe a linear trend. You manage to stationarize the series by taking a difference. The obtained differenced series is $z_{1}, z_{2}, \ldots, z_{7305}$. Give the values of the elements $z_{7301}, z_{7302}, z_{7303}, z_{7304}$ and z_{7305} of the stationarized series.
b) After stationarization, you center the series by subtracting the sample mean $\bar{z}=$ 20.1 from the observations $z_{1}, z_{2}, \ldots, z_{7305}$. The obtained stationarized and centered time series is $y_{1}, y_{2}, \ldots, y_{7305}$. Give the values of the elements $y_{7301}, y_{7302}, y_{7303}, y_{7304}$ and y_{7305}.
c) Based on plotting the stationarized and centered and its estimated autocorrelation and partial autocorrelation -functions, you think that $y_{1}, y_{2}, \ldots, y_{7305}$ is an autoregressive process of order 2 . You estimate the parameters of the process and the estimated values are $\phi_{1}=0.5$ and $\phi_{2}=-0.2$. Give predictions for y_{7306}, y_{7307} and y_{7308}.
d) Using the predictions for y_{7306}, y_{7307} and y_{7308}, give predicted values for x_{7306}, x_{7307} and x_{7308}.

Solution.

a) We have that

$$
z_{t}=D x_{t}=x_{t}-x_{t-1} .
$$

Thus

$$
\begin{aligned}
& z_{7301}=219.8-201.3=18.5, \\
& z_{7302}=241.4-219.8=21.6, \\
& z_{7303}=262.7-241.4=21.3, \\
& z_{7304}=281.5-262.7=18.8 \quad \text { and } \\
& z_{7305}=300.8-281.5=19.3 .
\end{aligned}
$$

Prediction and Time Series Analysis
Department of Mathematics and Systems Analysis Aalto University

Ilmonen/ Shafik/ Pere/ Mellin
Fall 2022
Exercise 6.
b) We have that

$$
y_{t}=z_{t}-\bar{z} .
$$

Thus

$$
\begin{aligned}
& y_{7301}=18.5-20.1=-1.6 \\
& y_{7302}=21.6-20.1=1.5 \\
& y_{7303}=21.3-20.1=1.2, \\
& y_{7304}=18.8-20.1=-1.3 \quad \text { and } \\
& y_{7305}=19.3-20.1=-0.8 .
\end{aligned}
$$

c) By Exercise 5.3 we have the following recursive formula for the s-step prediction of stationary $\operatorname{AR}(2)$ process,

$$
\hat{y}_{t+s \mid t}=\phi_{1} \hat{x}_{t-1+s \mid t}+\phi_{2} \hat{x}_{t-2+s \mid t} .
$$

With above formula we get that

$$
\begin{aligned}
& \hat{y}_{7306 \mid 7305}=\phi_{1} y_{7305}+\phi_{2} y_{7304}=0.5 \cdot(-0.8)-0.2 \cdot(-1.3)=-0.14, \\
& \hat{y}_{7307 \mid 7305}=\phi_{1} \hat{y}_{7306 \mid 7305}+\phi_{2} y_{7305}=0.5 \cdot(-0.14)-0.2 \cdot(-0.8)=0.09, \quad \text { and } \\
& \hat{y}_{7308 \mid 7305}=\phi_{1} \hat{y}_{7307 \mid 7305}+\phi_{2} \hat{y}_{7306 \mid 7305}=0.5 \cdot 0.09-0.2 \cdot(-0.14)=0.073 .
\end{aligned}
$$

d) We have that

$$
\hat{z}_{t+s \mid t}=\hat{y}_{t+s \mid t}+\bar{z} .
$$

Thus

$$
\begin{aligned}
& \hat{z}_{7306 \mid 7305}=-0.14+20.1=19.96 \\
& \hat{z}_{7307 \mid 7305}=0.09+20.1=20.19 \text { and } \\
& \hat{z}_{7308 \mid 7305}=0.073+20.1=20.173
\end{aligned}
$$

On the other hand,

$$
\hat{x}_{t+s \mid t}=\hat{z}_{t+s \mid t}+\hat{x}_{t+s-1 \mid t} .
$$

Thus

$$
\begin{aligned}
& \hat{x}_{7306 \mid 7305}=\hat{z}_{7306 \mid 7305}+x_{7305}=19.96+300.8=320.76 \\
& \hat{x}_{7307 \mid 7305}=\hat{z}_{7307 \mid 7305}+\hat{x}_{7306 \mid 7305}=20.19+320.76=340.95 \text { and } \\
& \hat{x}_{7308 \mid 7305}=\hat{z}_{7308 \mid 7305}+\hat{x}_{7307 \mid 7305}=20.173+340.95=361.123 .
\end{aligned}
$$

