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In the previous lecture...

We:
e Understood the principle of optimality
¢ Understood the Dynamic Programming

e Designed optimal controllers based on LQ problem formulation




Principle of Optimality

3 F(Q=F F(A)= L1

A! 5“*5'“' https://www.youtube.com/watch?v=_zE5z-KZGRw



Principle of optimality

» Consider the following process (plant): zx.1 = fr(zg, ux)

"N —1
e Criterion/Cost to be minimized: J;(z;) = min Z gk (Tk, uk) + gn(TN)

Ujyee ey UN —1 )
| k=1 _

e Note that when the final state is free, there can be an additional cost related to
that state.

¢ | et’s use the principle of optimality:

Jk(wk) = min [gk(il‘k, Uk) + Jg+1($k+1)]

Uk

We want to find u, such that the expression is minimized and we get the optimal
cost at time k.



Solution of the discrete-time LQ problem
using Dynamic Programming

¢ \\le obtain the general solution:

Ly = (T'S I + RIS, 1@
u,"; — _kak

Sk, = (® —TLy) ' Sk1(® —T'Li) + Q + Li RL;, (Riccati equation)

1

e Remarks:
- The Riccati equation can be written in a way that is independent of L,
Sy = @1 [Ski1 — Sk i DML S i I+ RIS, 1]+ Q

-Note that S, and L, are calculated “backwards in time”. They can be
calculated in advance and saved to be used when control starts at time kO

- The procedure matches exactly the principle of optimality!



Introduction

- Optimal control theory: a new and direct approach to the synthesis of these
complex systems

- Objective: determine the control signals that allow a process to satisfy the
physical constraints and at the same time optimize some performance criterion

 In this lecture:

- the process is still assumed to be linear, but it may be time-varying

- the process may have several inputs and outputs

* The problem is formulated to minimize a criterion: a quadratic function of the
states and the control signals - Linear Quadratic (LQ) control problem



Learning outcomes
By the end of this lecture, you should be able to:

e Compute the mean and covariance matrices of dynamical processes

e Use Kalman filter and optimal control to tackle various estimation and control
problems for linear systems

e Understand the Separation Principle



Stochastic models of disturbances (recap)

e Natural to use stochastic (random) concepts to describe disturbances

- possible to describe a wide class of disturbances — permits good
formulation of prediction problems

e A stochastic process (random process, random function) can be regarded as a
family of stochastic variables {z[k|, k € T'}. In this context, T'is the time index

¢ A stochastic process may be considered as a function of 2 variables,
- If variable w is fixed, x| *,w] is called realization

- If variable £k is fixed, x|k, ¢] is a random variable

Realization

x(t,an)

x(t,an)
x(t,an)

x(t,an)




Concepts of stochastic processes (recap)

e For computing the mean and variance, the density function, can be used
where

/+00 p(x)dr =1

— OO

® The expected (or mean) value of a stochastic process x is simplified to

+00
mlk] = E{z[k]} = /_ rp(x)dx

® The variance is simplified to

—+ 00

o =var{z} = E{ (z — E{az})Z} = / (z — E{az})Qp(a:)da:

— OO



Concepts of stochastic processes (recap)

e For computing the mean and variance, the density function, can be used
where

/+00 p(x)dr =1

— OO

® The expected (or mean) value of a stochastic process x is simplified to

+0o0
mlk) £ e} = [ mp@s Wi LN

e The variance is simplified to :'.'.. : : : . ',\\
2 oo 2
02 = var{z} = E{ (z — E{z}) } = / (z — E{z}) "p(z)dx



Some useful properties

e Suppose a is constant, x and y are stochastic variables. Then

FE{a} =a
F{azx} = aE{x}
E{z +y} = E{z} + E{y}

var{a} =0

var{az} = a’var{z}

¢ [f x and y are independent random variables, then
E{zy} = E{z}E{y}

var{zx + y} = var{z} + var{y}

(recap)



Concepts of stochastic processes

¢ The definitions of mean and variance are extended to vector functions;
the variance is extended to covariance

e The expected (or mean) value of a stochastic process x is given by

m[k] £ E{x[k]}
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® The expected (or mean) value of a stochastic process x is given by
mlk] £ E{x[k]}
® The variance Is given by
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Concepts of stochastic processes

¢ The definitions of mean and variance are extended to vector functions;
the variance is extended to covariance

® The expected (or mean) value of a stochastic process x is given by
m(k] = E{x[k]}
® The variance Is given by
var{x[k]} £ E{(x[k] — m[k])(x[k] — m[k])" }
= B{ (x[k] - B{x[k]}) (x[k] - B{x[K]})" }
e The covariance function is given by
P (8, k) = cov{x[s], x[k]} = E{(x[s] — m]s])(x[k] — m[k])" }
= B{ (x[s] - E{x[s]}) (xIk] - B{x[k]})" ]



Stochastic difference equations

e Consider the representation
x|k + 1] = &x[k] + v[k]

where v|k] is an independent zero-mean random variable with covariance R ;
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(correlates neither with x nor with itself at any time instant); vlk] is therefore
white noise



Stochastic difference equations

e Consider the representation
x[k + 1] = &x[k]| + v[k]

where v|k]| is an independent zero-mean random variable with covariance R ;
(correlates neither with x nor with itself at any time instant); vlk] is therefore
white noise

* Suppose that the initial state has the mean m, and R covariance .
Consider the behavior of m[k]| as a function of time: m[k| = E{x[k]}
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Stochastic difference equations

e Consider the representation
x[k + 1] = &x[k]| + v[k]

where v|k]| is an independent zero-mean random variable with covariance R ;
(correlates neither with x nor with itself at any time instant); vlk] is therefore
white noise

* Suppose that the initial state has the mean m, and R covariance .
Consider the behavior of m[k]| as a function of time: m[k| = E{x[k]}

e Take expectations from both sides / E{a} =a
_ N v E{az} = aE{x}
E{x|k + 1]} = E{®x[k| + v[k]} B{z 4y} — B{a} + E{y)

var{a} =0

var{az} = a’var{z}
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Stochastic difference equations

e Consider the representation
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Stochastic difference equations

e Consider the representation
x[k + 1] = &x[k]| + v[k]

where v|k]| is an independent zero-mean random variable with covariance R ;
(correlates neither with x nor with itself at any time instant); vlk] is therefore
white noise

* Suppose that the initial state has the mean m, and R covariance .
Consider the behavior of m[k]| as a function of time: m[k| = E{x[k]}

e Take expectations from both sides

E{x|k + 1|} = E{®x|k] 4+ v|k]} = E{®x|k]|} + E{Vv|k]} = ® E{x[k]} + E{Vv|k]}
. S

= mlk + 1] = dPm|k|, m[0] = m,

* The mean value behaves exactly according to system dynamics!



Stochastic difference equations

e As for the covariance function, use a new variable: x[k| = x[k] — m[k]

¢ For the state covariance :

Plk] = cov{x[k], x[k]} = E{x[k]x" [k]}



Stochastic difference equations

* As for the covariance function, use a new variable: x|k| = x[k] — m|k]
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Stochastic difference equations

* As for the covariance function, use a new variable: x|k| = x[k] — m|k]

¢ [For the state covariance :
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Stochastic difference equations

* As for the covariance function, use a new variable: x|k| = x[k] — m|k]

¢ [For the state covariance :
P[k] = cov{x[k], x[k]} = E{x[k]x" [k]}

¢ \We want to see how the state covariance evolves over time. Towards this end:
E$xlk+ UxT [k + 1]3: (®%[k] + v[K]) (2X[K] + v[k])"
= (®x[k] + v[k]) (X" [k]®" + v [k])
E S@x[k)x" [K]@T + Dx[k]VT K] + v[KIKT[K]S” + vIk]v" [k]%

W

¢ Take expectations in both sides:



Stochastic difference equations

* As for the covariance function, use a new variable: x|k| = x[k] — m|k]

¢ For the state covariance :

Plk] = cov{x[k], x[k]} = E{x[k]x" [k]}

e \We want to see how the state covariance evo

%[k + 1x" [k + 1] = (Px[k] + v[K]) (Px[k] + v

ves over time. Towards this end:

k)" / xand y are independent

= (x[k] + v[k]) (X" k2" + V'K E{zy} = E{z}E{y)

= @x[k]x" [k]®" + PX[K]v" [K] +

¢ Take expectations in both sides:

var{x + y} = var{z} + var{

)

E{x[k + 1]x1[k + 1]} = E{®x[k]x" [k]®1} + p{cbsc[::]v@ + E{v[k]x']k|®"}

+ E{v[kIVT[k]}

=R

N Y S —



Stochastic difference equations

e Therefore, we obtain a dynamic equation for the covariance:

E{x[k + 1]xT[k + 1]} = E{®x[k]xT [k]®T} + R,



Stochastic difference equations

e Therefore, we obtain a dynamic equation for the covariance:

E{x[k + 1]xT [k + 1]} = E{®x[k]xT [k]®T} + R,
= dE{x[k]xT [k]}®T + R,



Stochastic difference equations

e Therefore, we obtain a dynamic equation for the covariance:
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E{x[k + 1]xT [k + 1]} = E{®x[k]xT [k]®T} + R,

= QE{x[k]x" [K]}

= Plk + 1] = ®P[k]®T + Ry,

x[k + 1] = &x[k| + v[k]

(I)T-I-Rl

PJ0] = R,

/ F{a} =a

F{azx} = aE{x}

var{a} =0

var{az} = a’var{z}

E{z +y} = E{z} + E{y}

/




Stochastic difference equations

e Therefore, we obtain a dynamic equation for the covariance:

E{x[k + 1]xT [k + 1]} = E{®x[k]xT [k]®T} + R,
= dE{x[k|xT[k]}®T + R,

= Plk + 1] = ®P[k]®' + R, P[0] = Ry
e Consider the state auto-covariance for different values of k. For example, if :

r(k+1,k) = E{x[k + 1]x'[k]}



Stochastic difference equations

e Therefore, we obtain a dynamic equation for the covariance:

E{x[k + 1]xT [k + 1]} = E{®x[k]xT [k]®T} + R,
= dE{x[k|xT[k]}®T + R,

= Plk + 1] = ®P[k]®' + R, P[0] = Ry

e Consider the state auto-covariance for different values of k. For example, if :

[ N
x4+ 1,k) = B{&[k + %7 [k]} = B{(Ox[K] + v[k])x" [k]}

= OE{x[k]x'[k]} + E{v[k]x'[k]} = ®P[k] + 0 = ®P[k]



Stochastic difference equations

e Therefore, we obtain a dynamic equation for the covariance:

E{x[k + 1]xT [k + 1]} = E{®x[k]xT [k]®T} + R,
= dE{x[k|xT[k]}®T + R,

= Plk + 1] = ®P[k]®' + R, P[0] = Ry
e Consider the state auto-covariance for different values of k. For example, if :

rx(k+ 1,k) = E{x[k + 1]x1[k]} = E{(®x[k] + v[k])x" K]}
= OE{x[k]x'[k]} + E{v[k]x'[k]} = ®P[k] + 0 = ®P[k]

e By repeating for any value of

ryx(k+7,k)=®"Plk], 72>0



Linear Quadratic Gaussian (LQG) Control

¢ Three different cases can be considered:

} Signal

Estimate

>

k-2 k-1 k

2((k —m)h | kh)
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Linear Quadratic Gaussian (LQG) Control

e Three different cases can be considered:

} Signal
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Linear Quadratic Gaussian (LQG) Control

e Three different cases can be considered:
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Linear Quadratic Gaussian (LQG) Control

e Three different cases can be considered:

} Signal

Bt
o
#((k —m)h | kh)
Smoothing

A Signal
N\
Estimate 5
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Filtering
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Prediction

e In LQG control, the Kalman filter is used as a predictor.

>
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Which predictor would you choose?

—| ----- YR - - - Biased, Low Variance
—x—x—x—*—-)i(-x ------ No Bias, High Variance

—)*( ---------- No Bias, Low Variance



System corrupted with process and measurement noise

e The full LQG model assumes linear dynamics, quadratic costs and
Gaussian noise. Imperfect observation is the most important point. The
model is:

x|k + 1] = &x|k| + Tulk| + vk,
ylk] = Cx[k] + e[£]
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model is:
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System corrupted with process and measurement noise

e The full LQG model assumes linear dynamics, quadratic costs and
Gaussian noise. Imperfect observation is the most important point. The

model is:
x|k + 1] = &x[k] + T'ulk| + v|k],
y|k| = Cx[k| + e[k]

where v and e are discrete-time Gaussian white noise processes with
zero-mean value and

E{VV;} =Ry y vl w17 Ri  Rio
l;?e,:% z 22 = cov{[e” - E{!e] [e] } - [ng Rz]

e The initial state x[0] is assumed to be Gaussian distributed with

E{x[0]} =my cov{x[0]} = Ry

Using standard notation from the literature, we can write x[0] ~ N (my, Ro)



Working principles of the Kalman filter

U, } z, = A:L'k_1 + B’U.k +wk Yy

y, =Cz, +v,

Car dynamics

2, = A2, ., + By,

Y = Cz,

Car model L X
oy

s
Probability
density

function

:i‘k ' Car's position x
Initial state estimate 4

A s https://www.youtube.com/watch?v=ul3u2yl PwUQ



Working principles of the Kalman filter
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Working principles of the Kalman filter

u, z, = A:L'k_l B B'U,k +wk Yy
¥ = ka + Uy T
Car dynamics
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Working principles of the Kalman filter

v | T, = Az, _, + Bu, +w, Yx

y, =Cz, +v,

Car dynamics

2, =A%, ., + By,

Y = C%,

Car model L X
Ty
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Probability
density

function
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>

T y Car's position x
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Working principles of the Kalman filter

Uy z, = Az, _, + Bu, +w, Y

v

y, =Cz, +v,

Car dynamics

A4

Car model L X
Ty

P
Probability
density
function
Optimal state estimate

Predicted state

. Measurement
estimate

>

xr

Car's position x
k k PO
Initial state estimate 4

k-1

A s https://www.youtube.com/watch?v=ul3u2yl PwUQ



Recall: state observers

® Recall the approach using the observer/estimator

%[k + 1] = ®x[k] + Tulk] + K§[k]

x[k + 1] = ®x[k] + Tulk]
ylk] = Cx[k]



Recall: state observers

e Recall the approach using the observer/estimator

%[k + 1] = ®x[k] + Tulk] + K§[k]
= Ox[k] + T'ulk] + K (y[k] — g[k])

x|k + 1] = ®x[k] 4+ T'ulk]
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e Recall the approach using the observer/estimator
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Recall: state observers

%[k + 1] = %
= Ox
= Ox

k
k.
k.

+T'u
+T'u
+T'u

k
k
k

+ Kg[k]
+ K(ylk] — 9[K])
+ K(ylk] — Cx[k])

—_

x[k 4 1] = ®x[k] + Tulk]

y|k] = Cx[k]
————




e Recall the approach using the observer/estimator
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Recall: state observers

%[k + 1] = dx[k
— B[k
— B[k

Estimation

+T'u
+T'u
+1T'u

S

k
k
k

+ Kylk]

+ K (ylk] — 9[k])
| + K(ylk] — Cx[k])
= (® — KO)x[k| + Tulk] + Kyl|k]

S
input

N~

x|k + 1] = ®x[k] 4+ T'ulk]
ylk] = Ox[k]

Meas urement



Recall: state observers

x|k + 1] = ®x[k] 4+ T'ulk]
ylk] = Ox[k]

e Recall the approach using the observer/estimator

%[k + 1] = Ox[k] + Tulk] + Kj[k]
= ®x[k] + T'ulk] + K (y[k] — 9[k])
= &x|k] + T'ulk] + K (y|k| — CX[k])
= (& — KO)X[k| +Tulk] + Kyl|k]

and the performance was studied by comparing the estimate with the real
state:

%[k + 1] = x[k + 1] — %[k + 1]



Recall: state observers

x|k + 1] = ®x[k] 4+ T'ulk]
ylk] = Ox[k]

e Recall the approach using the observer/estimator

%[k + 1] = dx[k] + Tulk] + Kj[k]
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and the performance was studied by comparing the estimate with the real
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x|k + 1] = ®x[k] 4+ T'ulk]
ylk] = Ox[k]

e Recall the approach using the observer/estimator

%[k + 1] = Ox[k] + Tulk] + Kj[k]
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= &x|k] + T'ulk] + K (y|k| — CX[k])
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Recall: state observers

x|k + 1] = ®x[k] 4+ T'ulk]
ylk] = Ox[k]

e Recall the approach using the observer/estimator

%[k + 1] = Ox[k] + Tulk] + Kj[k]
= ®x[k] + T'ulk] + K (y[k] — 9[k])
= &x|k] + T'ulk] + K (y|k| — CX[k])
= (& — KO)X[k| +Tulk] + Kyl|k]

and the performance was studied by comparing the estimate with the real
state:

%[k + 1] = x[k + 1] — %[k + 1]
= (®x[k] + Tulk]) — ((® — KC)%[K] + Tulk] + KCx[k])
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= (& — KC) %[k] = ® X[K]
N———
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Recall: state observers

x|k + 1] = ®x[k] 4+ T'ulk]
ylk] = Ox[k]

e Recall the approach using the observer/estimator

X[k + 1] = ®&x|k| + T'ulk] + Ky|k]
= Ox[k] + T'ulk] + K (y[k] — 9[K])
= ®x|k] + T'ulk] + K (ylk] — Cx[k])
= (® — KO)x|k| + Tulk| + Ky|k]

and the performance was studied by comparing the estimate with the real
state:

%[k + 1] = x[k + 1] — %[k + 1]
= (®x[k] + Tulk]) — ((® — KCO)X[k] + Tulk] + KCx[k])
= (® — KO)(x[k] — %[])
= (® — KC) x[k] = ®,X[k]
@,

e Matrix K was chosen such that the eigenvalues of ®_are at desired places in
the complex plane.
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The Kalman Filter

e Now, we have the freedom to choose K][k] (not just setting the estimation
error poles at desired values). Hence, the estimation error dynamics are:

X[k + 1] = %[k + 1|k] = x[k + 1] — %[k + 1|k]

x|k + 1] = ®&x|k| + T'ulk| + v[k],
ylk] = Cx[k] + e[k]
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e Now, we have the freedom to choose K][k] (not just setting the estimation
error poles at desired values). Hence, the estimation error dynamics are:

X[k + 1] = %[k + 1|k] = x[k + 1] — %[k + 1|k]
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The Kalman Filter

e Now, we have the freedom to choose K][k] (not just setting the estimation
error poles at desired values). Hence, the estimation error dynamics are:

X[k + 1] = %[k + 1|k] = x[k + 1] — %[k + 1|k]
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The Kalman Filter

e Now, we have the freedom to choose K][k] (not just setting the estimation
error poles at desired values). Hence, the estimation error dynamics are:

X[k + 1] = %[k + 1|k] = x[k + 1] — %[k + 1|k]
= (Px[k] + Tulk] + v[k]) — (®x[k|k — 1] + Tu[k] + K [k](y[k] — Cx[k|k — 1])
= (® — K|k|C) (x|k| — x|k|k — 1]) +V|k| — K|k|e|k|
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e Observation: the estimation error distribution is independent of the input



The Kalman Filter

e Now, we have the freedom to choose K][k] (not just setting the estimation
error poles at desired values). Hence, the estimation error dynamics are:

X[k + 1] = %[k + 1|k] = x[k + 1] — %[k + 1|k]
= (Px[k] + Tulk] + v[k]) — (®x[k|k — 1] + Tu[k] + K [k](y[k] — Cx[k|k — 1])
= (® — K|k|C) (x|k| — x|k|k — 1]) +V|k| — K|k|e|k|

A\ J/

-~

%[k]
_ ) oo, [VIK
) (H %[k] + [ew])

e Observation: the estimation error distribution is independent of the input

¢ \We set the criterion of minimizing the variance of the estimation error:

Pk] = E{(x[k] - E{x[k]}) (X[K] - E{x[K]})" }
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e The mean value of x is
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e Since E{x[0]} = 0, if x[0] = 0, the mean value of the reconstruction error is
zero for all k independent of K[K].
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e The mean value of xis
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The Kalman Filter

e The mean value of xis
E{x[k+ 1]} = E{(® — K[k]CO)x[k]} = (? — K[k]C)E {x[k]}

e Since E{x[0]} = 0, if x[0] = 0, the mean value of the reconstruction error is
zero for all k independent of K[K].

e Since x|k| is independent of v[k] and e[k], we obtain the following:
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The Kalman Filter

e The mean value of xis
E{x[k+ 1]} = E{(® — K[k]CO)x[k]} = (? — K[k]C)E {x[k]}

e Since E{x[0]} = 0, if x[0] = 0, the mean value of the reconstruction error is
zero for all k independent of K[K].

e Since x|k| is independent of v[k] and e[k], we obtain the following:

Plk+1] = E{x[k+ 1]x"[k + 1]}
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The Kalman Filter

e The mean value of xis
E{x[k+ 1]} = E{(® — K[k]CO)x[k]} = (? — K[K]C)E {x|k|}

e Since E{x[0]} = 0, if x[0] = 0, the mean value of the reconstruction error is
zero for all k independent of K[K].

e Since x|k| is independent of v[k] and e[k], we obtain the following:

Plk+1] = E{x[k+1)x"[k + 1]}

- -t (€] [2]) (8 o+ [])" [

=10 -] (o] P+ |5 B |

dPk|®T + R, DPIK|CT + R12] T

I —Kk] [CP[k]CDT + Ry CPRICT + R
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Al e What about Low Variance”?



A “Lemma”

e Consider the static quadratic cost function
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where the weight functions @ _and @__ are symmetric and positive
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e [t can be deduced (do it: start by calculating the derivative of J with
respect to u) that the minimum is achieved for
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A “Lemma”

e Consider the static quadratic cost function

oow = g G

where the weight functions @ _and @__ are symmetric and positive
semidefinite, @_ is positive definite.

e [t can be deduced (do it: start by calculating the derivative of J with
respect to u) that the minimum is achieved for

—1
and the minimum iIs

J=x" (Qx — quQEleu) X



The Kalman Filter

* Now we consider minimizing a’ P[k + 1]a for any value of a.

Pl 1= [T K] | a1y ortuer | |-

CP[k|®T + R, CP[k|CT + R»
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The Kalman Filter

* Now we consider minimizing a’ P[k + 1]a for any value of a.

* By using the “Lemma” we get that the minimizing vector , called the
Kalman gain, is

K[k] = (@P[K|CT + Ruz) (CPK]CT + Ro) ™

ut = _quQl_llx

Plk+1]=[I —KIK] dPk)®T + R, @P[k]CT+R12] [_ I ]
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The Kalman Filter

* Now we consider minimizing a’ P[k + 1]a for any value of a.

* By using the “Lemma” we get that the minimizing vector , called the
Kalman gain, is

K[k] = (@P[K|CT + Ruz) (CPK]CT + Ro) ™

¢ Inserting that to the previous formula gives

Plk +1] = ®P[k]®” + Ry — (®PK]CT + Ry2) (CP[K]CT + R,)™ (CP[K]®T + R;»)
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The Kalman Filter

* Now we consider minimizing a’ P[k + 1]a for any value of a.

* By using the “Lemma” we get that the minimizing vector , called the
Kalman gain, is

K[k] = (@P[K|CT + Ruz) (CPK]CT + Ro) ™

¢ Inserting that to the previous formula gives

Plk +1] = ®P[k]®” + Ry — (®PK]CT + Ry2) (CP[K]CT + R,)™ (CP[K]®T + R;»)

P[0] = R,

which together with
x|k + 1|k] = &x[k|k — 1] + Tulk] + K[k|(y|k] — Cx[k|k — 1])

K[k] = (@P[K|CT + Ruz) (CP[K]CT + Ry) ™

IS the celebrated Kalman filter.



where the measurement is corrupted by noise (zero mean white noise with
standard deviation o; x[0] is assumed to have variance 0.5 (i.e., P[0]=0.5).
Compute the Kalman filter.

Solution:
e \We use the formulas given:

| zk+ 1|k| = z[k|k — 1] + K[k](y|k] — Z|k|k — 1])

__ Pl
Kk} = o2 + P|k]
Plk+1] = U;’f I[f[]k]
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How to use the Kalman filter

Update
Prediction o
PC

. . b= oo
i = A%,_, + Bu, O+ R
P =AP,_A +Q £, = + K, (y, — C%)
Ipitial estimates for P, =(I - K,C) pk’
z,_, and Pk-l

Probability
density

function
Optimal state estimate
Predicted state
estimate Measurement
" =
T,_, T, Y, Car’s position x
Initial state estimate 4
A S https://www.youtube.com/watch?v=VEX{11lZ3p8
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orthogonality principle, etc.), which give more insights on the problem.
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estimation can be decoupled. This is known as the separation principle.



Remarks

* Note that this was an algebraic derivation of the Kalman filter
(predictor case)

* There are other approaches (based on Bayesian analysis, using the
orthogonality principle, etc.), which give more insights on the problem.

¢ As we have seen, the distribution of the estimation error does not depend
on the inputs. Then, the problems of optimal control and optimal
estimation can be decoupled. This is known as the separation principle.

e In LQG, the optimal solution is a combination of the optimal LQ control
and optimal prediction, i.e.,

u*[k] = — LK% [k|k — 1]

where L[] is given by the Riccati equation of the LQ problem and the state
estimate is obtained by the Kalman filter
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Separation principle

e Assume we have a linear, time-invariant completely controllable and
completely observable system

X = Ax + Bu
V= Cx

* Design a state feedback controller assuming we have full state feedback
u=—-Kx = x=(A—- BK)x
u=—KX

e Estimate x using an observer including the input u

X =AR+ Bu+ L(y — CX)

€ = X—X

— é=(A—-LQC)e
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Separation principle
¢ \We want to stabilize both x and e! Let’s analyze their joint dynamics

x = Ax — BKR = Ax — BK(x — e) = (A — BK)x + BKe
e=(A—LC)e

e | et’s rewrite them together

X A — BK BK X
e 0 A—LC| |e

e Stabilization of both x and e is possible if and only if this system is
asymptotically stable.
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Separation principle
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e 0 A — LC_ c

N —
M

e M is an upper triangular block-matrix and its eigenvalues are given by the
eigenvalues of the diagonal blocks M1 and M2.

® S0, the characteristic equation would be as follows

Xm(A) = Xp1(N)Xp2(N)
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e [f M1 and M2 are separately stable, then M is stable as well!



Separation principle

ML )
x| [A-—BK/ BK ] [x
c 0 A—LC| |e

N —
M

e M is an upper triangular block-matrix and its eigenvalues are given by the
eigenvalues of the diagonal blocks M1 and M2.

® S0, the characteristic equation would be as follows
XA = Xp1 (V) Xm2(N)

e [f M1 and M2 are separately stable, then M is stable as well!

e This fact is known as the Separation Principle!
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Learning outcomes
By the end of this lecture, you should be able to:

e Compute the mean and covariance matrices of dynamical processes
e Understand the separation principle

e Use Kalman filter and optimal control to tackle various estimation and control
problems for linear systems
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