
ELEC-E8116 Model-based control systems
/exercises 11  solutions

Problem 1. Consider a SISO system in a two-degrees-of-freedom control configuration.
Let the loop transfer function be ( ) ( ) ( )yL j G j F j   , where the symbols are standard
used in the course.

a. Define the sensitivity and complementary sensitivity functions and determine
where in the complex plane it holds

( ) 1, ( 1, ( ) 1S j S j T j      and ( ) 1T j 

b. Let the Nyquist diagram of the loop transfer function approach from below the
point where ( 1nS j  and assume that it also holds then ( 1nT j  .  Assuming that
there are no right half poles of the open loop transfer function, what is the phase margin
of the closed-loop system?  Hint.  In the complex plane (xy) let ( ) ( ) ( )L j x jy    .

Solution.

a. Standard definitions, see lecture slides, Chapter 3.  In the SISO case

( ) ( ) ( )

1( )
1 ( )

( )( )
1 ( )

yL j G j F j

S j
L j

L jT j
L j

  















Denote ( ) ( ) ( )L j x jy    and calculate
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In the complex (x-y) plane this is a circle with the center point (-1,0) and radius 1/ S .

Consider the circle with radius 1.  On the circle 1S  , outside the circle 1S  , inside

the circle 1S  .  So when the Nyquist diagram of L(jω) enters the circle from outside to
inside the absolute value of S obtains the above values accordingly.
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The absolute value of T is 1 on the line x=-1/2 on the complex plane. 1T   holds for all
points to the right of this line.

b. We look at the figure
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Consider the dashed circle.  The Nyquist curve of L crosses this circle at ( 1cL j  .  But

we know that ( ( 1n nS j T j   , so n c  (the gain crossover frequency). Based on

part a. we know that on the line Re(-1/2) the value of T  is 1.  Therefore the circle

1S   (see part a.) intersects the dashed circle ( 1L j  exactly at the point given by the

vector ( 1cL j  .  We have an equilateral triangle (see figure), where the angles are 60
degrees.

The same result could have been obtained by considering the right triangle with one
cathetus ½, hypotenuse 1 and the angle PM between them.

The assumption of no RHP poles in the L function was needed to guarantee stability (and
hence positive phase margin) when the Nyquist curve does not enclose the critical point
(-1,0).



Problem 2. You are given the nominal plant
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 (see

Fig.)  What can be said about robust stability of the closed-loop system?

( )fi s

Solution.  We have the case with multiplicative uncertainty discussed in Lectures,
Chapter 3  (“Robustness”).  (See however a note in the end of the solution.) As for the
Small Gain Theorem see Chapter 1.

The condition for robust stability is
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.  We know that ( ) 0.5fi j   for all frequencies.  Therefore the

condition for robust stability in this case becomes

2T    or 20lg(2)dB 6 dB
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 .  The Bode diagram is shown in

the figure.  The maximum peak is about 4,5 dB, so the system is robustly stable.  By Matlab:
hinfnorm(T) = 1.6797  or 4.5046 dB.



Note: The solution is correct, because the system is a SISO case.  But in the lectures the
multiplicative uncertainly was defined as 0 ( )GG I G   , which is not exactly as in the
figure of the problem (nominal plant G should be in front of the uncertainty branch).  So

actually the result 1

fi

T 


 would in the MIMO case not hold (what would the condition

for robust stability be in this case?).

Problem 3. Consider a SISO system and a state feedback control

( ) ( ) ( )x t Ax t Bu t 

( ) ( )u t Lx t 

where L is chosen as a solution to the infinite time optimal (LQ) horizon problem.

a. Prove that the loop gain is 1( ) ( )H s L sI A B 

b. Prove that 1 ( ) 1H i 

c. Show that for the LQ controller
- phase margin is at least 60 degrees
- gain margin is infinite
- the magnitude of the sensitivity function is less than 1
- the magnitude of the complementary sensitivity function is less than 2.
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Solution:

a. First solve for x:   1px Ax Bu x pI A Bu
    

Starting from the output of the controller u go around the loop and meet the signal
u again.  We get

  1u Lx L pI A Bu
    

The open loop transfer function is the forward loop transfer function multiplied by
the feedback loop transfer function.  The open loop is then

  1( )H s L sI A B
 

as given in the problem.  Note:  no minus sign, because it is the feedback sign.

b. In the LQ problem

  1( )H s L sI A B
   Note that L is now the state feedback gain, H is the

open loop transfer function.

The  (stationary) Riccati equation: 1 0T TA S SA Q SBR B S    .
State feedback gain: 1 TL R B S .

In the exercise session the problem was solved in the simple case of assuming
one-dimensional state variable x.  Then all the matrices are scalars:
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because
2

0b q
r

 .  Note how the Riccati equation was used in the last part of the

derivation.

But the general inequality is

   ( ) ( )TI H j R I H j R    

which applies also to multivariable cases.  In the case of single transfer functions the
above trivially simplifies to

1 ( ) 1H i 

The general proof (MIMO case) is however a bit more complicated.
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To see the last inequality note that R is positive definite.  The matrix

 1 1T TZ B j I A Q j I A B 
      

is clearly real, because *Z Z (the matrix is in fact Hermitian).  But for any non-zero
vector x with appropriate dimension
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Hence Z is positive semidefinite.  Note that Q and R are positive definite by definition.



c. Consider the following figure, where L = H now is the loop transfer function.

-1

-1

Re

Im

)( ciL 
)(1 ciL 

2/PM

Nyquistin käyrä )( iL

1)( ciL 

Because 1 ( ) 1H i   the Nyquist curve will never enter inside the circle centered at
(-1,0) and with the radius 1.  Therefore the gain margin is infinite and the sensitivity
function is never larger than 1 in magnitude.  The complementary sensitivity function
cannot be larger than 2, because the two sentitivity functions can differ at most by 1 in
magnitude.  Now the Nyquist curve touches the dashed line at the gain crossover
frequency ωc and if 1 ( ) 1L i   (minimum) we have an equilateral triangle (see figure)

so that each angle is 60 degrees.  But generally 1 ( ) 1L i   so that the phase margin is
at least 60 degrees.

Problem 4. MPC control.  Check the Matlab code in the file mpcgain2.mat to verify that
it is correct.  Ref:  Wang’s book.  The code calculates in general MIMO case the augmented
model and the related matrices, so that the MPC problem can easily be solved by writing a
suitable software, which calls mpcgain2.

The code can be used in the last homework, if one wishes.  No separate solution to problem
4 is provided.

Solution: Not provided.
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