ELEC-E8116 Model-based control systems
/exercises 11 solutions

Problem 1. Consider a SISO system in a two-degrees-of-freedom control configuration.
Let the loop transfer function be L(jw) =G(jw)F,(jw), where the symbols are standard

used in the course.

a. Define the sensitivity and complementary sensitivity functions and determine
where in the complex plane it holds

IS(jo)| <1, |S(je|=1 [T(je)|<1and [T(jw) =1

b. Let the Nyquist diagram of the loop transfer function approach from below the
point where |S(ja,| =1and assume that it also holds then [T (je,| =1. Assuming that

there are no right half poles of the open loop transfer function, what is the phase margin
of the closed-loop system? Hint. In the complex plane (xy) let L(jo) = x(®) + jy(®).

Solution.
a. Standard definitions, see lecture slides, Chapter 3. In the SISO case

L(jo) =G(jo)F,(j»)

Denote L(jw) = x(w)+ jy(w)and calculate
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In the complex (x-y) plane this is a circle with the center point (-1,0) and radius 1/|S| .
Consider the circle with radius 1. On the circle |S|=1, outside the circle |S|<1, inside

the circle |S|>1. So when the Nyquist diagram of L(je) enters the circle from outside to
inside the absolute value of S obtains the above values accordingly.
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Clearly

T|<1=2x+1>0,=x>-1/2

The absolute value of T is 1 on the line x=-1/2 on the complex plane. [T|<1 holds for all
points to the right of this line.

b. We look at the figure
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Consider the dashed circle. The Nyquist curve of L crosses this circle at |L(ja)c| =1. But
we know that |S(je,|=|T(jo,| =1, s0 @, = &, (the gain crossover frequency). Based on
part a. we know that on the line Re(-1/2) the value of |T| is 1. Therefore the circle

S| =1 (see part a.) intersects the dashed circle |L(je|=1exactly at the point given by the

vector |L(jo,|=1. We have an equilateral triangle (see figure), where the angles are 60
degrees.

The same result could have been obtained by considering the right triangle with one
cathetus Y2, hypotenuse 1 and the angle PM between them.

The assumption of no RHP poles in the L function was needed to guarantee stability (and

hence positive phase margin) when the Nyquist curve does not enclose the critical point
(-110)'



Problem 2. You are given the nominal plant

10
G(s)=
®) s°+4
. . . 4(s+2)
with an input feedback uncertainty |A ;(s)| < 0.5, and the controller F,(s) = (see

Fig.) What can be said about robust stability of the closed-loop system?

A (s)

—»(*) + G(s)

-Fy(s) -

Solution. We have the case with multiplicative uncertainty discussed in Lectures,
Chapter 3 (“Robustness”). (See however a note in the end of the solution.) As for the
Small Gain Theorem see Chapter 1.

The condition for robust stability is

| <ﬁ. We know that ‘Aﬁ(ja))‘ <0.5 for all frequencies. Therefore the
fi

condition for robust stability in this case becomes

T|<2 or 201g(2)dB ~ 6 dB

GF
Calculate T == = >y ... 40(23+2)
1+L 1+GF, (s+4)(s” +4s+28)
the figure. The maximum peak is about 4,5 dB, so the system is robustly stable. By Matlab:

hinfnorm(T) = 1.6797 or 4.5046 dB.

. The Bode diagram is shown in
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Note: The solution is correct, because the system is a SISO case. But in the lectures the
multiplicative uncertainly was defined as G, = (I + A;)G , which is not exactly as in the

figure of the problem (nominal plant G should be in front of the uncertainty branch). So

actually the result |T|< ﬁ would in the MIMO case not hold (what would the condition
fi

for robust stability be in this case?).

Problem 3. Consider a SISO system and a state feedback control
x(t) = Ax(t) + Bu(t)
u(t) = —Lx(t)
where L is chosen as a solution to the infinite time optimal (LQ) horizon problem.

a. Prove that the loop gainis H(s)=L(sl —A)™'B
b. Prove that [L+ H (ie)| > 1

c. Show that for the LQ controller
- phase margin is at least 60 degrees
- gain margin is infinite
- the magnitude of the sensitivity function is less than 1
- the magnitude of the complementary sensitivity function is less than 2.



Solution:

a. Firstsolve forx: px=Ax+Bu=x=|pl - A]f1 Bu

Starting from the output of the controller u go around the loop and meet the signal
u again. We get

u=-Lx=-L[pl -A]" Bu

The open loop transfer function is the forward loop transfer function multiplied by
the feedback loop transfer function. The open loop is then

H(s)=L[sI -A] "B
as given in the problem. Note: no minus sign, because it is the feedback sign.
b. Inthe LQ problem

H(s)=L[sl - A]f1 B Note that L is now the state feedback gain, H is the
open loop transfer function.

The (stationary) Riccati equation: A'S + SA+Q—-SBR™'B'S =0.
State feedback gain: L=R™'B'S.

In the exercise session the problem was solved in the simple case of assuming
one-dimensional state variable x. Then all the matrices are scalars:

[L+H(j@) =@+ H(jo)) 1+ H(jo) = @+ H(-jo) 1+ H(jo)

[ Ib j{ Ib j —a+lb— jo —a+lb+ jo
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b? .. : :
because —q>0. Note how the Riccati equation was used in the last part of the
r

derivation.

But the general inequality is
[1+H(=jw)] R[I+H(j@)]>R

which applies also to multivariable cases. In the case of single transfer functions the
above trivially simplifies to

1+ H (i) 21

The general proof (MIMO case) is however a bit more complicated.

[1+H(=jo)] R[I +H(j@)]=[I + H(=jo)] [R+RH(jw)]

=R+RH (jo)+H(~jo)" R+H(-jo) RH(jo)

=R+RL[jol —A] 'B+B"[-jwl -A] L'R+B"[~jwl ~A] " U'RL[jwl ~A]"'B
=R+B'S[jol ~A]'B+B'[~jol A" | "SB+B"[~jol A" | 'SBRB'S[jwl —A]'B
=R+B'[-jol - A" | {[-jol - A" ]s +5[ jol - A]+SBRBS|[ jol —A] "B

=R+B’ AT -ATS—SA+ATS +SA+Q)[jwl ~A] "B

[ jol —

=R+B'[~jol ~A"] 'Q[jwl ~A'B2R

To see the last inequality note that R is positive definite. The matrix
Z=B"[~jol A" | Q[jwl ~A]"B

is clearly real, because Z~ = Z (the matrix is in fact Hermitian). But for any non-zero
vector x with appropriate dimension

X'Zx=xB'[~jol - A" Q[ jwl - A]" B
= | (jol -A)" BxTQ[( jol -A)"Bx|=yQy=0

Hence Z is positive semidefinite. Note that Q and R are positive definite by definition.



c. Consider the following figure, where L = H now is the loop transfer function.
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Because |1+ H (ia))| >1 the Nyquist curve will never enter inside the circle centered at

(-1,0) and with the radius 1. Therefore the gain margin is infinite and the sensitivity
function is never larger than 1 in magnitude. The complementary sensitivity function
cannot be larger than 2, because the two sentitivity functions can differ at most by 1 in
magnitude. Now the Nyquist curve touches the dashed line at the gain crossover

frequency o¢ and if |1+ L(ia))| =1 (minimum) we have an equilateral triangle (see figure)
so that each angle is 60 degrees. But generally [L+L(iw)| >1 so that the phase margin is
at least 60 degrees.

Problem 4. MPC control. Check the Matlab code in the file mpcgain2.mat to verify that
itis correct. Ref: Wang’s book. The code calculates in general MIMO case the augmented
model and the related matrices, so that the MPC problem can easily be solved by writing a
suitable software, which calls mpcgain2.

The code can be used in the last homework, if one wishes. No separate solution to problem
4 is provided.

Solution: Not provided.



	ELEC-E8116 Model-based control systems
	/exercises 11  solutions

