

Matrix Factorizations

1. $A=L U=\binom{$ lower triangular $L}{$ 1s on the diagonal }$\binom{$ upper triangular $U}{$ pivots on the diagonal }

Requirements: No row exchanges as Gaussian elimination reduces A to U.
2. $A=L D U=\binom{$ lower triangular $L}{1$ s on the diagonal }$\binom{$ pivot matrix }{D is diagonal }$\binom{$ upper triangular $U}{1$ s on the diagonal }

Requirements: No row exchanges. The pivots in D are divided out to leave 1 s in U. If A is symmetric, then U is L^{T} and $A=L D L^{\mathrm{T}}$.
3. $P A=L U \quad$ (permutation matrix P to avoid zeros in the pivot positions).

Requirements: A is invertible. Then P, L, U are invertible. P does the row exchanges in advance. Alternative: $A=L_{1} P_{1} U_{1}$.
4. $E A=R \quad(m \times m$ invertible $E)($ any $A)=\operatorname{rref}(A)$.

Requirements: None! The reduced row echelon form R has r pivot rows and pivot columns. The only nonzero in a pivot column is the unit pivot. The Last $m-r$ rows of E are a basis for the left nullspace of A. and the first r columns of E^{-1} are a basis for the column space of A.
5. $A=C C^{\mathrm{T}}=($ lower triangular matrix $C)$ (transpose is upper triangular) Requirements: A is symmetric and positive definite (all n pivots in D are positive). This Cholesky factorization has $C=L \sqrt{D}$.
6. $A=Q R=($ orthonormal columns in $Q)$ (upper triangular R)
χ Requirements: A has independent columns. Those are orthogonalized in Q by the Gram-Schmidt process. If A is square, then $Q^{-1}=Q^{T}$.
7. $A=S \Lambda S^{-1}=($ eigenvectors in $S)($ eigenvalues in $\Lambda)\left(\right.$ left eigenvectors in $\left.S^{-1}\right)$.

Requirements: A must have n linearly independent eigenvectors.
8. $A=Q \Lambda Q^{\mathrm{T}}=($ orthogonal matrix $Q)($ real eigenvalue matrix $\Lambda)\left(Q^{\mathrm{T}}\right.$ is $\left.Q^{-1}\right)$.

Requirements: A is symmetric. This is the Spectral Theorem.
9. $A=M J M^{-1}=($ generalized eigenvectors in $M)($ Jordan blocks in $J)\left(M^{-1}\right)$.

Requirements: A is any square matrix. Jordan form J has a block for each independent eigenvector of A. Each block has one eigenvalue.
10. $A=U \Sigma V^{\mathrm{T}}=\binom{$ orthogonal }{U is $m \times m}\binom{m \times n$ matrix $\Sigma}{\sigma_{1}, \ldots, \sigma_{r}$ on diagonal }$\binom{$ orthogonal }{V is $n \times n}$.

Requirements: None. This singular value decomposition (SVD) has the eigenvectors of $A A^{\mathrm{T}}$ in U and of $A^{\mathrm{T}} A$ in $V ; \sigma_{i}=\sqrt{\lambda_{i}\left(A^{\mathrm{T}} A\right)}=\sqrt{\lambda_{i}\left(A A^{\mathrm{T}}\right)}$.
11. $A^{+}=V \Sigma^{+} U^{\mathrm{T}}=\binom{$ orthogonal }{$n \times n}\binom{$ diagonal $n \times m}{1 / \sigma_{1}, \ldots, 1 / \sigma_{r}}\binom{$ orthogonal }{$m \times m}$.

Requirements: None. The pseudoinverse has $A^{+} A=$ projection onto row space of
X A and $A A^{+}=$projection onto column space. The shortest least-squares solution to $A x=b$ is $\widehat{x}=A^{+} b$. This solves $A^{\mathrm{T}} A \widehat{x}=A^{\mathrm{T}} b$.
12. $A=Q H=($ orthogonal matrix $Q)($ symmetric positive definite matrix $H)$.

Requirements: A is invertible. This polar decomposition has $H^{2}=A^{\mathrm{T}} A$. The

χfactor H is semidefinite if A is singular. The reverse polar decomposition $A=K Q$ has $K^{2}=A A^{\mathrm{T}}$. Both have $Q=U V^{\mathrm{T}}$ from the SVD.
13. $A=U \Lambda U^{-1}=($ unitary $U)($ eigenvalue matrix $\Lambda)\left(U^{-1}=U^{H}=\bar{U}^{\mathrm{T}}\right)$.

Requirements: A is normal: $A^{\mathrm{H}} A=A A^{\mathrm{H}}$. Its orthonormal (and possibly complex) eigenvectors are the columns of U. Complex λ 's unless $A=A^{\mathrm{H}}$.
14. $A=U T U^{-1}=($ unitary $U)$ (triangular T with λ 's on diagonal) $\left(U^{-1}=U^{\mathrm{H}}\right)$.

Requirements: Schur triangularization of any square A. There is a matrix U with orthonormal columns that makes $U^{-1} A U$ triangular.
15. $F_{n}=\left[\begin{array}{cc}I & D \\ I & -D\end{array}\right]\left[\begin{array}{cc}F_{n / 2} & \\ & F_{n / 2}\end{array}\right]\left[\begin{array}{c}\text { even-odd } \\ \text { permutation }\end{array}\right]=$ one step of the FFT.

Requirements: $\quad F_{n}=$ Fourier matrix with entries $w^{j k}$ where $w^{n}=1, w=e^{2 \pi i / n}$.
Then $F_{n} \bar{F}_{n}=n I$. D has $1, w, w^{2}, \ldots$ on its diagonal. For $n=2^{\ell}$ the Fast Fourier Transform has $\frac{1}{2} n \ell$ multiplications from ℓ stages of D 's.

