
Appendix C
Matrix Factorizations

1. A = LU =
√

lower triangular L
1s on the diagonal

!√
upper triangular U

pivots on the diagonal

!

Requirements: No row exchanges as Gaussian elimination reduces A to U .

2. A = LDU =
√

lower triangular L
1s on the diagonal

!√
pivot matrix
D is diagonal

!√
upper triangular U
1s on the diagonal

!

Requirements: No row exchanges. The pivots in D are divided out to leave 1s in
U . If A is symmetric, then U is LT and A = LDLT.

3. PA = LU (permutation matrix P to avoid zeros in the pivot positions).
Requirements: A is invertible. Then P, L, U are invertible. P does the row ex-
changes in advance. Alternative: A = L1P1U1.

4. EA = R (m£m invertible E) (any A) = rref(A).
Requirements: None! The reduced row echelon form R has r pivot rows and pivot
columns. The only nonzero in a pivot column is the unit pivot. The Last m° r rows
of E are a basis for the left nullspace of A. and the first r columns of E°1 are a basis
for the column space of A.

5. A = CCT =
≥

lower triangular matrix C
¥≥

transpose is upper triangular
¥

Requirements: A is symmetric and positive definite (all n pivots in D are positive).
This Cholesky factorization has C = L

p
D.

6. A = QR =
≥

orthonormal columns in Q
¥≥

upper triangular R
¥

Requirements: A has independent columns. Those are orthogonalized in Q by the
Gram-Schmidt process. If A is square, then Q°1 = QT.

7. A = SLS°1 =
≥

eigenvectors in S
¥≥

eigenvalues in L
¥≥

left eigenvectors in S°1
¥
.

Requirements: A must have n linearly independent eigenvectors.

8. A = QLQT =
≥

orthogonal matrix Q
¥≥

real eigenvalue matrix L
¥≥

QT is Q°1
¥
.

Requirements: A is symmetric. This is the Spectral Theorem.
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9. A = MJM°1 =
≥

generalized eigenvectors in M
¥≥

Jordan blocks in J
¥≥

M°1
¥
.

Requirements: A is any square matrix. Jordan form J has a block for each inde-
pendent eigenvector of A. Each block has one eigenvalue.

10. A = USV T =
√

orthogonal
U is m£m

!√
m£n matrix S

s1, . . . ,sr on diagonal

!√
orthogonal
V is n£n

!
.

Requirements: None. This singular value decomposition (SVD) has the eigenvec-
tors of AAT in U and of ATA in V ; si =

p
li(ATA) =

p
li(AAT).

11. A+ = V S+UT =
√

orthogonal
n£n

!√
diagonal n£m
1/s1, . . . ,1/sr

!√
orthogonal

m£m

!
.

Requirements: None. The pseudoinverse has A+A = projection onto row space of
A and AA+ = projection onto column space. The shortest least-squares solution to
Ax = b is bx = A+b. This solves ATAbx = ATb.

12. A = QH =
≥

orthogonal matrix Q
¥≥

symmetric positive definite matrix H
¥
.

Requirements: A is invertible. This polar decomposition has H2 = ATA. The
factor H is semidefinite if A is singular. The reverse polar decomposition A = KQ
has K2 = AAT. Both have Q = UV T from the SVD.

13. A = ULU°1 =
≥

unitary U
¥≥

eigenvalue matrix L
¥≥

U°1 = UH = UT
¥
.

Requirements: A is normal: AHA = AAH. Its orthonormal (and possibly complex)
eigenvectors are the columns of U . Complex l ’s unless A = AH.

14. A = UTU°1 =
≥

unitary U
¥≥

triangular T with l ’s on diagonal
¥≥

U°1 = UH
¥
.

Requirements: Schur triangularization of any square A. There is a matrix U with
orthonormal columns that makes U°1AU triangular.

15. Fn =
"

I D
I °D

#"
Fn/2

Fn/2

#"
even-odd

permutation

#
= one step of the FFT.

Requirements: Fn = Fourier matrix with entries w jk where wn = 1, w = e2pi/n.
Then FnFn = nI. D has 1,w,w2, . . . on its diagonal. For n = 2` the Fast Fourier
Transform has 1

2n` multiplications from ` stages of D’s.
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