## Appendix

## Glossary: A Dictionary for Linear Algebra

**Adjacency matrix of a graph** Square matrix with  $a_{ij} = 1$  when there is an edge from node *i* to node *j*; otherwise  $a_{ij} = 0$ .  $A = A^T$  for an undirected graph.

Affine transformation  $T(v) = Av + v_0 =$  linear transformation plus shift.

Associative Law (AB)C = A(BC) Parentheses can be removed to leave ABC.

Augmented matrix  $\begin{bmatrix} A & b \end{bmatrix}$  Ax = b is solvable when b is in the column space of A; then  $\begin{bmatrix} A & b \end{bmatrix}$  has the same rank as A. Elimination on  $\begin{bmatrix} A & b \end{bmatrix}$  keeps equations correct.

**Back substitution** Upper triangular systems are solved in reverse order  $x_n$  to  $x_1$ .

**Basis for V** Independent vectors  $v_1, \ldots, v_d$  whose linear combinations give every v in **V**. A vector space has many bases!

**Big formula for** *n* **by** *n* **determinants** det(*A*) is a sum of *n*! terms, one term for each permutation *P* of the columns. That term is the product  $a_{1\alpha} \cdots a_{n\omega}$  down the diagonal of the reordered matrix, times det(*P*) = ±1.

**Block matrix** A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns.

**Block multiplication** of AB is allowed if the block shapes permit (the columns of A and rows of B must be in matching blocks).



**Cayley-Hamilton Theorem**  $p(\lambda) = \det(A - \lambda I)$  has p(A) = zero matrix.

**Change of basis matrix** *M* The old basis vectors  $v_j$  are combinations  $\sum m_{ij}w_i$  of the new basis vectors. The coordinates of  $c_1v_1 + \cdots + c_nv_n = d_1w_1 + \cdots + d_nw_n$  are related by d = Mc. (For n = 2, set  $v_1 = m_{11}w_1 + m_{21}w_2$ ,  $v_2 = m_{12}w_1 + m_{22}w_2$ .)

**Characteristic equation** det $(A - \lambda I) = 0$  The *n* roots are the eigenvalues of *A*.

**Cholesky factorization**  $A = CC^{T} = (L\sqrt{D})(L\sqrt{D})^{T}$  for positive definite A.

**Circulant matrix** *C* Constant diagonals wrap around as in cyclic shift S. Every circulant is  $c_0I + c_1S + \dots + c_{n-1}S^{n-1}$ . Cx = **convolution** c \* x. Eigenvectors in *F*.

**Cofactor**  $C_{ij}$  Remove row *i* and column *j*; multiply the determinant by  $(-1)^{i+j}$ .

**Column picture of** Ax = b The vector *b* becomes a combination of the columns of *A*. The system is solvable only when *b* is in the column space C(A).

**Column space** C(A) Space of all combinations of the columns of A. **Commuting matrices** AB = BA If diagonalizable, they share n eigenvectors.

**Companion matrix** Put  $c_1, \ldots, c_n$  in row *n* and put n-1 1s along diagonal 1. Then  $det(A - \lambda I) = \pm (c_1 + c_2\lambda + c_3\lambda^2 + \cdots).$ 

**Complete solution**  $x = x_p + x_n$  to Ax = b (Particular  $x_p$ ) + ( $x_n$  in nullspace).

**Complex conjugate**  $\bar{z} = a - ib$  for any complex number z = a + ib. Then  $z\bar{z} = |z|^2$ .

**Condition number**  $\operatorname{cond}(A) = \kappa(A) = ||A|| ||A^{-1}|| = \sigma_{\max}/\sigma_{\min}$  In Ax = b, the relative change  $||\delta x||/||x||$  is less than  $\operatorname{cond}(A)$  times the relative change  $||\delta b||/||b||$ . Condition numbers measure the *sensitivity* of the output to change in the input.

**Conjugate Gradient Method** A sequence of steps to solve positive definite Ax = b by minimizing  $\frac{1}{2}x^{T}Ax - x^{T}b$  over growing Krylov subspaces.

**Covariance matrix**  $\Sigma$  When random variables  $x_i$  have mean = average value = 0, their covariances  $\Sigma_{ij}$  are the averages of  $x_i x_j$ . With means  $\overline{x}_i$ , the matrix  $\Sigma$  = mean of  $(x - \overline{x})(x - \overline{x})^{\mathrm{T}}$  is positive (semi)definite; it is diagonal if the  $x_i$  are independent.

**Cramer's Rule for** Ax = b  $B_j$  has b replacing column j of A, and  $x_j = |B_j|/|A|$ .

**Cross product**  $u \times v$  in  $\mathbb{R}^3$  Vector perpendicular to u and v, length  $||u|| ||v|| |\sin \theta| =$  parallelogram area, computed as the "determinant" of  $[i \ j \ k; \ u_1 \ u_2 \ u_3; \ v_1 \ v_2 \ v_3]$ .

**Cyclic shift** *S* Permutation with  $s_{21} = 1$ ,  $s_{32} = 1$ ,..., finally  $s_{1n} = 1$ . Its eigenvalues are *n*th roots  $e^{2\pi i k/n}$  of 1; eigenvectors are columns of the Fourier matrix *F*.

**Determinant**  $|A| = \det(A)$  Defined by  $\det I = 1$ , sign reversal for row exchange, and linearity in each row. Then |A| = 0 when A is singular. Also |AB| = |A||B|,  $|A^{-1}| = 1/|A|$ , and  $|A^{T}| = |A|$ . The big formula for  $\det(A)$  has a sum of n! terms, the cofactor formula uses determinants of size n - 1, volume of box =  $|\det(A)|$ .

**Diagonal matrix** D  $d_{ij} = 0$  if  $i \neq j$ . **Block-diagonal**: zero outside square blocks  $D_{ii}$ .

**Diagonalizable matrix** A Must have *n* independent eigenvectors (in the columns of *S*; automatic with *n* different eigenvalues). Then  $S^{-1}AS = \Lambda =$  eigenvalue matrix.

**Diagonalization**  $\Lambda = S^{-1}AS$   $\Lambda =$  eigenvalue matrix and S = eigenvector matrix. *A* must have *n* independent eigenvectors to make *S* invertible. All  $A^k = S\Lambda^k S^{-1}$ .

**Dimension of vector space**  $\dim(\mathbf{V}) =$ number of vectors in any basis for **V**.

**Distributive Law** A(B+C) = AB + AC Add then multiply, or multiply then add.

**Dot product**  $x^T y = x_1 y_1 + \dots + x_n y_n$  Complex dot product is  $\overline{x}^T y$ . Perpendicular vectors have zero dot product.  $(AB)_{ij} = (\text{row } i \text{ of } A) \cdot (\text{column } j \text{ of } B)$ .

**Echelon matrix** U The first nonzero entry (the pivot) in each row comes after the pivot in the previous row. All zero rows come last.

**Eigenvalue**  $\lambda$  and eigenvector x  $Ax = \lambda x$  with  $x \neq 0$ , so det $(A - \lambda I) = 0$ .

Eigshow Graphical 2 by 2 eigenvalues and singular values (MATLAB or Java).

**Elimination** A sequence of row operations that reduces *A* to an upper triangular *U* or to the reduced form  $R = \operatorname{rref}(A)$ . Then A = LU with multipliers  $\ell_{ij}$  in *L*, or PA = LU with row exchanges in *P*, or EA = R with an invertible *E*.

**Elimination matrix** = **Elementary matrix**  $E_{ij}$  The identity matrix with an extra  $-\ell_{ij}$  in the *i*, *j* entry ( $i \neq j$ ). Then  $E_{ij}A$  subtracts  $\ell_{ij}$  times row *j* of *A* from row *i*.

**Ellipse (or ellipsoid)**  $x^{T}Ax = 1$  A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths  $1/\sqrt{\lambda}$ . (For ||x|| = 1 the vectors y = Ax lie on the ellipse  $||A^{-1}y||^2 = y^{T}(AA^{T})^{-1}y = 1$  displayed by eigshow; axis lengths  $\sigma_i$ .)

**Exponential**  $e^{At} = I + At + (At)^2/2! + \cdots$  has derivative  $Ae^{At}$ ;  $e^{At}u(0)$  solves u' = Au.

**Factorization** A = LU If elimination takes A to U without row exchanges, then the lower triangular L with multipliers  $\ell_{ij}$  (and  $\ell_{ii} = 1$ ) brings U back to A.

**Fast Fourier Transform (FFT)** A factorization of the Fourier matrix  $F_n$  into  $\ell = \log_2 n$  matrices  $S_i$  times a permutation. Each  $S_i$  needs only n/2 multiplications, so  $F_n x$  and  $F_n^{-1}c$  can be computed with  $n\ell/2$  multiplications. Revolutionary.

 $\times$ 

Х

**Fibonacci numbers** 0, 1, 1, 2, 3, 5,... satisfy  $F_n = F_{n-1} + F_{n-2} = (\lambda_1^n - \lambda_2^n)/(\lambda_1 - \lambda_2)$ . Growth rate  $\lambda_1 = (1 + \sqrt{5})/2$  the largest eigenvalue of the Fibonacci matrix  $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ .

Four fundamental subspaces of A = C(A), N(A),  $C(A^{T})$ ,  $N(A^{T})$ .

**Fourier matrix** *F* Entries  $F_{jk} = e^{2\pi i jk/n}$  give orthogonal columns  $\overline{F}^T F = nI$ . Then y = Fc is the (inverse) Discrete Fourier Transform  $y_j = \sum c_k e^{2\pi i jk/n}$ .

**Free columns of** *A* Columns without pivots; combinations of earlier columns.

**Free variable**  $x_i$  Column *i* has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the *r* pivot variables (if solvable!).

**Full column rank** r = n Independent columns,  $N(A) = \{0\}$ , no free variables.

**Full row rank** r = m Independent rows, at least one solution to Ax = b, column space is all of  $\mathbb{R}^m$ . *Full rank* means full column rank or full row rank.

**Fundamental Theorem** The nullspace N(A) and row space  $C(A^{T})$  are orthogonal complements (perpendicular subspaces of  $\mathbb{R}^{n}$  with dimensions r and n-r) from Ax = 0. Applied to  $A^{T}$ , the column space C(A) is the orthogonal complement of  $N(A^{T})$ .

**Gauss-Jordan method** Invert A by row operations on  $[A \ I]$  to reach  $[I \ A^{-1}]$ .

 $\mathbf{X}$ 

**Gram-Schmidt orthogonalization** A = QR Independent columns in A, orthonormal columns in Q. Each column  $q_j$  of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > 0.

**Graph** *G* Set of *n* nodes connected pairwise by *m* edges. A **complete graph** has all n(n-1)/2 edges between nodes. A **tree** has only n-1 edges and no closed loops. A **directed graph** has a direction arrow specified on each edge.

**Hankel matrix** *H* Constant along each antidiagonal;  $h_{ij}$  depends on i + j.

**Hermitian matrix**  $A^{H} = \overline{A}^{T} = A$  Complex analog of a symmetric matrix:  $\overline{a_{ji}} = a_{ij}$ .

**Hessenberg matrix** *H* Triangular matrix with one extra nonzero adjacent diagonal.

**Hilbert matrix** hilb(*n*) Entries  $H_{ij} = 1/(i+j-1) = \int_0^1 x^{i-1} x^{j-1} dx$ . Positive definite but extremely small  $\lambda_{\min}$  and large condition number.

**Hypercube matrix**  $P_L^2$  Row n+1 counts corners, edges, faces, ..., of a cube in  $\mathbb{R}^n$ .

**Identity matrix** I (or  $I_n$ ) Diagonal entries = 1, off-diagonal entries = 0.

**Incidence matrix of a directed graph** The *m* by *n* edge-node incidence matrix has a row for each edge (node *i* to node *j*), with entries -1 and 1 in columns *i* and *j*.

**Indefinite matrix** A symmetric matrix with eigenvalues of both signs (+ and –).

**Independent vectors**  $v_1, \ldots, v_k$  No combination  $c_1v_1 + \cdots + c_kv_k =$  zero vector unless all  $c_i = 0$ . If the *v*'s are the columns of *A*, the only solution to Ax = 0 is x = 0.

**Inverse matrix**  $A^{-1}$  Square matrix with  $A^{-1}A = I$  and  $AA^{-1} = I$ . No inverse if det A = 0 and rank(A) < n, and Ax = 0 for a nonzero vector x. The inverses of AB and  $A^{T}$  are  $B^{-1}A^{-1}$  and  $(A^{-1})^{T}$  Cofactor formula  $(A^{-1})_{ij} = C_{ji}/\det A$ .

**Iterative method** A sequence of steps intended to approach the desired solution.

**Jordan form**  $J = M^{-1}AM$  If *A* has *s* independent eigenvectors, its "generalized" eigenvector matrix *M* gives  $J = \text{diag}(J_1, \ldots, J_s)$ . The block  $J_k$  is  $\lambda_k I_k + N_k$  where  $N_k$  has 1s on diagonal 1. Each block has one eigenvalue  $\lambda_k$  and one eigenvector  $(1, 0, \ldots, 0)$ .

**Kirchhoff's Laws** *Current law*: net current (in minus out) is zero at each node. *Voltage law*: Potential differences (voltage drops) add to zero around any closed loop.

**Kronecker product (tensor product)**  $A \otimes B$  Blocks  $a_{ij}B$ , eigenvalues  $\lambda_p(A)\lambda_q(B)$ .

**Krylov subspace**  $K_j(A,b)$  The subspace spanned by  $b,Ab,\ldots,A^{j-1}b$ . Numerical methods approximate  $A^{-1}b$  by  $x_j$  with residual  $b - Ax_j$  in this subspace. A good basis for  $K_j$  requires only multiplication by A at each step.

**Least-squares solution**  $\hat{x}$  The vector  $\hat{x}$  that minimizes the error  $||e||^2$  solves  $A^{T}A\hat{x} = A^{T}b$ . Then  $e = b - A\hat{x}$  is orthogonal to all columns of A.

Left inverse  $A^+$  If A has full column rank n, then  $A^+ = (A^T A)^{-1} A^T$  has  $A^+ A = I_n$ .

**Left nullspace**  $N(A^{T})$  Nullspace of  $A^{T}$  = "left nullspace" of A because  $y^{T}A = 0^{T}$ .

**Length** ||x|| Square root of  $x^{T}x$  (Pythagoras in *n* dimensions).

**Linear combination** cv + dw or  $\sum c_i v_i$  Vector addition and scalar multiplication.

**Linear transformation** *T* Each vector *v* in the input space transforms to T(v) in the output space, and linearity requires T(cv + dw) = cT(v) + dT(w). Examples: Matrix multiplication *Av*, differentiation in function space.

**Linearly dependent**  $v_1, \ldots, v_n$  A combination other than all  $c_i = 0$  gives  $\sum c_i v_i = 0$ .

**Lucas numbers** L = 2, 1, 3, 4, ..., satisfy  $L_n = L_{n-1} + L_{n-2} = \lambda_1^n + \lambda_n^2$ , with eigenvalues  $\lambda_1, \lambda_2 = (1 \pm \sqrt{5})/2$  of the Fibonacci matrix  $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ . Compare  $L_0 = 2$  with Fibonacci.

**Markov matrix** *M* All  $m_{ij} \ge 0$  and each column sum is 1. Largest eigenvalue  $\lambda = 1$ . If  $m_{ij} > 0$ , the columns of  $M^k$  approach the steady-state eigenvector Ms = s > 0.

**Matrix multiplication** *AB* The *i*, *j* entry of *AB* is (row *i* of *A*) · (column *j* of *B*) =  $\sum a_{ik}b_{kj}$ . By columns: column *j* of *AB* = *A* times column *j* of *B*. By rows: row *i* of *A* multiplies *B*. Columns times rows: *AB* = sum of (column *k*)(row *k*). All these equivalent definitions come from the rule that *AB* times *x* equals *A* times *Bx*.



**Minimal polynomial of** *A* The lowest-degree polynomial with m(A) = zero matrix. The roots of *m* are eigenvalues, and  $m(\lambda)$  divides det $(A - \lambda I)$ .

**Multiplication**  $Ax = x_1(\text{column } 1) + \dots + x_n(\text{column } n) = \text{combination of columns.}$ 

**Multiplicities** *AM* and *GM* The algebraic multiplicity *AM* of an eigenvalue  $\lambda$  is the number of times  $\lambda$  appears as a root of det $(A - \lambda I) = 0$ . The geometric multiplicity *GM* is the number of independent eigenvectors (= dimension of the eigenspace for  $\lambda$ ).

**Multiplier**  $\ell_{ij}$  The pivot row *j* is multiplied by  $\ell_{ij}$  and subtracted from row *i* to eliminate the *i*, *j* entry:  $\ell_{ij} = (\text{entry to eliminate})/(j\text{th pivot}).$ 

**Network** A directed graph that has constants  $c_1, \ldots, c_m$  associated with the edges.

**Nilpotent matrix** *N* Some power of *N* is the zero matrix,  $N^k = 0$ . The only eigenvalue is  $\lambda = 0$  (repeated *n* times). Examples: triangular matrices with zero diagonal.

Х

Norm ||A|| of a matrix The " $\ell^2$  norm" is the maximum ratio  $||Ax||/||x|| = \sigma_{\text{max}}$ . Then  $||Ax|| \le ||A|| ||x||, ||AB|| \le ||A|| ||B||, \text{ and } ||A + B|| \le ||A|| + ||B||.$  Frobenius norm  $||A||_F^2 = \sum \sum a_{ij}^2; \ell^1 \text{ and } \ell^\infty \text{ norms are largest column and row sums of } |a_{ij}|.$ 

**Normal equation**  $A^{T}A\hat{x} = A^{T}b$  Gives the least-squares solution to Ax = b if A has full rank n. The equation says that (columns of A)  $\cdot (b - A\hat{x}) = 0$ .

**Normal matrix** N  $NN^{T} = N^{T}N$ , leads to orthonormal (complex) eigenvectors.

**Nullspace matrix** N The columns of N are the n - r special solutions to As = 0.

**Nullspace** N(A) Solutions to Ax = 0. Dimension n - r = (# columns) - rank.

**Orthogonal matrix** *Q* Square matrix with orthonormal columns, so  $Q^{T}Q = I$  implies  $Q^{T} = Q^{-1}$ . Preserves length and angles, ||Qx|| = ||x|| and  $(Qx)^{T}(Qy) = x^{T}y$ . All  $|\lambda| = 1$ , with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

**Orthogonal subspaces** Every v in **V** is orthogonal to every w in **W**.

**Orthonormal vectors**  $q_1, \ldots, q_n$  Dot products are  $q_i^T q_j = 0$ , if  $i \neq j$  and  $q_i^T q_j = 1$ . The matrix Q with these orthonormal columns has  $Q^T Q = I$ . If m = n, then  $Q^T = Q^{-1}$  and  $q_1, \ldots, q_n$  is an **orthonormal basis** for  $\mathbf{R}^n$ : every  $v = \sum (v^T q_j) q_j$ .

**Outer product is**  $uv^{T}$  column times row = rank-1 matrix.

**Partial pivoting** In elimination, the *j*th pivot is chosen as the largest available entry (in absolute value) in column *j*. Then all multipliers have  $|\ell_{ij}| \le 1$ . Roundoff error is controlled (depending on the *condition number* of *A*).

**Particular solution**  $x_p$  Any solution to Ax = b; often  $x_p$  has free variables = 0.

**Pascal matrix**  $P_S = \text{pascal}(n)$  The symmetric matrix with binomial entries  $\binom{i+j-2}{i-1}$ .  $P_S = P_L P_U$  all contain Pascal's triangle with det = 1 (see index for more properties). **Permutation matrix** *P* There are *n*! orders of 1, ..., n; the *n*! *P*'s have the rows of *I* in those orders. *PA* puts the rows of *A* in the same order. *P* is a product of row exchanges  $P_{ij}$ ; *P* is *even* or *odd* (det P = 1 or -1) based on the number of exchanges.

**Pivot columns of** *A* Columns that contain pivots after row reduction; not combinations of earlier columns. The pivot columns are a basis for the column space.

**Pivot** d The first nonzero entry when a row is used in elimination.

**Plane (or hyperplane) in R**<sup>*n*</sup> Solutions to  $a^{T}x = 0$  give the plane (dimension n - 1) perpendicular to  $a \neq 0$ .



**Polar decomposition** A = QH Orthogonal Q, positive (semi)definite H.

**Positive definite matrix** *A* Symmetric matrix with positive eigenvalues and positive pivots. Definition:  $x^{T}Ax > 0$  unless x = 0.

**Projection matrix** *P* **onto subspace** *S* Projection p = Pb is the closest point to *b* in **S**, error e = b - Pb is perpendicular to **S**.  $P^2 = P = P^T$ , eigenvalues are 1 or 0, eigenvectors are in **S** or **S**<sup> $\perp$ </sup>. If columns of A = basis for **S**, then  $P = A(A^TA)^{-1}A^T$ .

**Projection**  $p = a(a^{T}b/a^{T}a)$  onto the line through  $a P = aa^{T}/a^{T}a$  has rank 1.

**Pseudoinverse**  $A^+$  (Moore-Penrose inverse) The *n* by *m* matrix that "inverts" *A* from column space back to row space, with  $N(A^+) = N(A^T)$ .  $A^+A$  and  $AA^+$  are the projection matrices onto the row space and column space. rank $(A^+) = \text{rank}(A)$ .

**Random matrix** rand(n) or randn(n) MATLAB creates a matrix with random entries, uniformly distributed on  $[0 \ 1]$  for rand, and standard normal distribution for randn.

**Rank 1 matrix**  $A = uv^{T} \neq 0$  Column and row spaces = lines *cu* and *cv*.

**Rank** r(A) Equals number of pivots = dimension of column space = dimension of row space.

**Rayleigh quotient**  $q(x) = x^{T}Ax/x^{T}x$  For  $A = A^{T}$ ,  $\lambda_{\min} \le q(x) \le \lambda_{\max}$ . Those extremes are reached at the eigenvectors x for  $\lambda_{\min}(A)$  and  $\lambda_{\max}(A)$ .

Reduced row echelon form  $R = \operatorname{rref}(A)$  Pivots=1; zeros above and below pivots; r nonzero rows of R give a basis for the row space of A. Reduce the porces product .

**Reflection matrix**  $Q = I - 2uu^{T}$  The unit vector *u* is reflected to Qu = -u. All vectors *x* in the plane  $u^{T}x = 0$  are unchanged because Qx = x. The "Householder matrix" has  $Q^{T} = Q^{-1} = Q$ .



**Right inverse**  $A^+$  If A has full row rank m, then  $A^+ = A^T (AA^T)^{-1}$  has  $AA^+ = I_m$ .

**Rotation matrix**  $R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$  rotates the plane by  $\theta$ , and  $R^{-1} = R^{T}$  rotates back by  $-\theta$ . Orthogonal matrix, eigenvalues  $e^{i\theta}$  and  $e^{-i\theta}$ , eigenvectors  $(1, \pm i)$ .

**Row picture of** Ax = b Each equation gives a plane in  $\mathbb{R}^n$  planes intersect at *x*.

**Row space**  $C(A^{T})$  All combinations of rows of A. Column vectors by convention.

**Saddle point of**  $f(x_1,...,x_n)$  A point where the first derivatives of f are zero and the second derivative matrix  $(\partial^2 f / \partial x_i \partial x_j = \text{Hessian matrix})$  is indefinite.

**Schur complement**  $S = D - CA^{-1}B$  Appears in block elimination on  $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ .

Schwarz inequality  $|v \cdot w| \le ||v|| ||w||$  Then  $|v^{T}Aw|^{2} \le (v^{T}Av)(w^{T}Aw)$  if  $A = C^{T}C$ .

**Semidefinite matrix** *A* (Positive) semidefinite means symmetric with  $x^{T}Ax \ge 0$  for all vectors *x*. Then all eigenvalues  $\lambda \ge 0$ ; no negative pivots.

Similar matrices A and B  $B = M^{-1}AM$  has the same eigenvalues as A.

**Simplex method for linear programming** The minimum cost vector  $x^*$  is found by moving from corner to lower-cost corner along the edges of the feasible set (where the constraints Ax = b and  $x \ge 0$  are satisfied). Minimum cost at a corner!

**Singular matrix** *A* square matrix that has no inverse: det(A) = 0.

Singular Value Decomposition (SVD)  $A = U\Sigma V^{T} = (\text{orthogonal } U)$  times (diagonal  $\Sigma$ ) times (orthogonal  $V^{T}$ ) First *r* columns of *U* and *V* are orthonormal bases of C(A) and  $C(A^{T})$ , with  $Av_{i} = \sigma_{i}u_{i}$  and singular value  $\sigma_{i} > 0$ . Last columns of *U* and *V* are orthonormal bases of the nullspaces of  $A^{T}$  and *A*.

**Skew-symmetric matrix** *K* The transpose is -K, since  $K_{ij} = -K_{ji}$ . Eigenvalues are pure imaginary, eigenvectors are orthogonal,  $e^{Kt}$  is an orthogonal matrix.

**Solvable system** Ax = b The right side *b* is in the column space of *A*.

**Spanning set**  $v_1, \ldots, v_m$ , for V Every vector in V is a combination of  $v_1, \ldots, v_m$ .

**Special solutions to** As = 0 One free variable is  $s_i = 1$ , other free variables = 0.

**Spectral theorem**  $A = Q\Lambda Q^{T}$  Real symmetric *A* has real  $\lambda_i$  and orthonormal  $q_i$ , with  $Aq_i = \lambda_i q_i$ . In mechanics, the  $q_i$  give the *principal axes*.

**Spectrum of** *A* The set of eigenvalues  $\{\lambda_1, \ldots, \lambda_m\}$ . **Spectral radius** =  $|\lambda_{\max}|$ .

**Standard basis for \mathbb{R}^n** Columns of *n* by *n* identity matrix (written *i*, *j*, *k* in  $\mathbb{R}^3$ ).

**Stiffness matrix** *K* When *x* gives the movements of the nodes in a discrete structure, *Kx* gives the internal forces. Often  $K = A^{T}CA$ , where *C* contains spring constants from Hooke's Law and Ax = stretching (strains) from the movements *x*.



Subspace S of V Any vector space inside V, including V and  $\mathbf{Z} = \{\text{zero vector}\}.$ 

**Sum** V + W of subspaces Space of all (v in V) + (w in W). Direct sum: dim $(V + W) = \dim V + \dim W$ , when V and W share only the zero vector.

Symmetric factorizations  $A = LDL^{T}$  and  $A = Q\Lambda Q^{T}$  The number of positive pivots in *D* and positive eigenvalues in  $\Lambda$  is the same.

**Symmetric matrix** *A* The transpose is  $A^{T} = A$ , and  $a_{ij} = a_{ji}$ .  $A^{-1}$  is also symmetric. All matrices of the form  $R^{T}R$  and  $LDL^{T}$  and  $Q\Lambda Q^{T}$  are symmetric. Symmetric matrices have real eigenvalues in  $\Lambda$  and orthonormal eigenvectors in Q.

**Toeplitz matrix** *T* Constant-diagonal matrix, so  $t_{ij}$  depends only on j - i. Toeplitz matrices represent linear time-invariant filters in signal processing.

**Trace of** A Sum of diagonal entries = sum of eigenvalues of A. TrAB = TrBA.

**Transpose matrix**  $A^{T}$  Entries  $A_{ij}^{T} = A_{ji}$ .  $A^{T}$  is *n* by *m*,  $A^{T}A$  is square, symmetric, positive semidefinite. The transposes of *AB* and  $A^{-1}$  are  $B^{T}A^{T}$  and  $(A^{T})^{-1}$ .

**Triangle inequality**  $||u+v|| \le ||u|| + ||v||$  For matrix norms,  $||A+B|| \le ||A|| + ||B||$ .

**Tridiagonal matrix** T  $t_{ij} = 0$  if |i - j| > 1.  $T^{-1}$  has rank 1 above and below diagonal.

Unitary matrix  $U^{H} = \overline{U}^{T} = U^{-1}$  Orthonormal columns (complex analog of *Q*).

**Vandermonde matrix** *V* Vc = b gives the polynomial  $p(x) = c_0 + \dots + c_{n-1}x^{n-1}$ with  $p(x_i) = b_i$  at *n* points.  $V_{ij} = (x_i)^{j-1}$ , and det V = product of  $(x_k - x_i)$  for k > i.

**Vector addition**  $v + w = (v_1 + w_1, \dots, v_n + w_n) =$  diagonal of parallelogram.

**Vector space V** Set of vectors such that all combinations cv + dw remain in V. Eight required rules are given in Section 2.1 for cv + dw.

**Vector** *v* in  $\mathbb{R}^n$  Sequence of *n* real numbers  $v = (v_1, \dots, v_n) = \text{point in } \mathbb{R}^n$ .

**Volume of box** The rows (or columns) of A generate a box with volume  $|\det(A)|$ .

Wavelets  $w_{jk}(t)$  or vectors  $w_{jk}$  Rescale and shift the time axis to create  $w_{jk}(t) = w_{00}(2^{j}t - k)$ . Vectors from  $w_{00} = (1, 1, -1, -1)$  would be (1, -1, 0, 0) and (0, 0, 1, -1).