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Integrals and Derivatives

b
Last week
Integrals: [(a,b) =/ f(x)dx Some more today

* integrals occur widely in physics
* some integrals can be done analytically, most cannot!
* integration is one of the most important applications in

computational physics

Derivatives: a — lim fla+h) - f(z)
dx h—0 h

Today

 derivatives occur widely in physics
* most derivatives can be done analytically
« we still often need numerical derivatives
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b
Definite integral: I(a,b):/ f(z)dx

« we know now how to calculate the numeric value of /(a,b)

Question:

Can we also treat infinite integrals?

I /Ooof(x)da:
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Infinite Integrals

Infinite integral: I:/ f(z)dx
0

» we could brute force the problem with a finite integral

and then make b larger and larger.
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Infinite integral: I:/ f(z)dx
0

« we could brute force the problem with a finite integral

and then make b larger and larger.

* This works, when f(x) goes to 0 with increasing x.

 However, we introduce a new convergence parameter, b,
and the integral may converge badly.

 Maybe we can do something more clever.
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Infinite Integrals

Infinite integral: I:/ f(z)dx
0

« we make a variable transformation

L &<

P or equivalently x =
1+ . y 1 -2
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Infinite Integrals

Infinite integral: I:/ f(z)dx
0

« we make a variable transformation

x valentl -
— O egulvalernl T =
1+ . Y 1 -2

Z

o« with dx = dz/(1 — 2)* we obtain:

[ s@ar= [ i

* this integral can be solved with the techniques we learned
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Infinite Integrals

Infinite integral: I:/ f(z)dx

* now we make two transformations - first y=x-a and then the
one we made on the previous slide:
T —a z

= or equivalently x = - a
l4+2—a . y 1—2z

Z
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Infinite Integrals

Infinite integral: [:/ f(z)dx

* now we make two transformations - first y=x-a and then the
one we made on the previous slide:
T —a z

= or equivalently x = - a
l+x2—a 4 Y 1 —z

Z

o« with dx = dz/(1 — 2)* we obtain:

/aoof(x)da::/ol (1_12)2f(1i2 - a)dz
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Infinite Integrals

Infinite integral: I:/ f(x)dx

0 OO
« we could break this integral up into two: / +/
0

— OO
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Infinite Integrals

Infinite integral: I:/ f(x)dx

0 OO
« we could break this integral up into two: / +/
0

— OO

* or make a single substitution:

Z 1 + 22
:1:'—1_22, dx—(l_ZQ)de
o0 1 2
14+ z z
dr =
[ tie= [ G s
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Integrals - Exercise 1

1. Make the transformation z =t/(1 + )
The integral becomes: /1 o—27/(1=2)7

o (1—2)°

2. Plot the old and the new integrant.

3. Integrate with your Gauss-Legendre integration program.
4. Plot the error as a function of integration points.

dz




Infinite integrals - number of points & errors

e 0% e 0.1% error____.
I=

- 1073

O
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= machine precision
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Integration rules - number of points & errors

9 27

_ 0.1% error 1E-6 % error
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Method 0.1% error 1E-6 % error

Gauss Legendre 9 27

Key concept: variable transformation

Through variable transformation we can turn an infinite
into a finite integral and thus make it tractable
numerically.
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Multiple Integrals

1 p1
Multiple integral: I = / / f(z,y)dxdy
0 Jo

* We perform the integrals sequentially. We define:
1
Fo) = | fay)ds
0)
* Then our integral becomes:

IZ/OlF(y)dy
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Multiple Integrals

1 p1
Multiple integral: I = / / f(z,y)dxdy
0 Jo

* Applying our numeric integration formula:

N N
F(y)~» wif(z;,y) and I~ Y w;F(y;)
1=1

g=1

* As expected, we obtain a double sum over the x and y
coordinates of a 2 dimensional grid:

N N
I N ww,f(w:,y;)
i=1 j=1
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Multiple Integrals - 2D Gauss Legendre grid

N=10 along each axis

® o' o o e | e e Te 'e e
y :o ° ) ° ° ° ° o:
e o ° ° o | o ° ° o o




Integrals - Exercise 2

1. Plot the function =% ~¥").

2. Adapt your Gauss-Legendre integration program to solve
this integral.

3. Plot the error as a function of integration points.
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Multiple integrals - number of points & errors

0.1% error

Integration error in %

2x10° 3x104x10° 6x10° 10!
Number of integration points
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Multiple Integrals - Note on convergence

2

7

\1
.\13

I\

Multiple integral: [~ ww; f (2, Y5)

i

1=1 7

* Normally we would have one convergence parameter per
dimension, as A, is typically not the same as N,.

Aalto University
School of Science
[ |



Multiple Integrals - Note on convergence

N; Nj
Multiple integral: 7~ ) » ww;f(z;,y;)

i=1 j=1

* Normally we would have one convergence parameter per
dimension, as N; is typically not the same as N..

1l
/ / e(_wQ_yQ)da:dy = merf(1)?
—1J-1

* However, the integral in our example had the same x and y
dimensions, so N;=N; =N is justified.
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Multiple integrals - number of points & errors

5x5=25 8x8=64

_ 0.1% error 1E-6 % error
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Method 0.1% error 1E-6 % error

Gauss Legendre 5x5=25 8x8=64

Key concept: multi dimensional integration

A multi dimensional integral can be performed as
nested sum over the variables.
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Derivatives

Derivative: 4 _ lim fla+h)— flz)
dx h—0 h

 we wish to find the derivative of
a function numerically

Jx)

] ] ] ] ] ] ] ] | l l I >

T T
X
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Derivatives

Derivative: 4 _ lim fla+h)— f(z)
dx h—0 h

* in practice we cannot take the
limit #->0 numerically

* pbut we can make 4 very small:

df _ fla+h)—f)
dr h

T T
X
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Derivatives

Derivative: 4 _ lim fla+h)— flz)
dx h—0 h

* in practice we cannot take the

limit 4->0 numerically 4 forward difference

* pbut we can make 4 very small:

df _ fat+h)—f@) I
dr h

forward difference

Tt

x xt+h
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Derivatives

Derivative: 4 _ lim fla+h)— flz)
dx h—0 h

* in practice we cannot take the

limit 4->0 numerically 4 forward difference

* pbut we can make 4 very small:

A f@)—fa—h) 91 /oackward

dr h difference

backward difference

Tt

x-h x x+th
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Derivatives

Derivative: 4 _ lim fla+h)— f(z)
dx h—0 h

* in practice we cannot take the

limit 4->0 numerically 4 forward difference

* pbut we can make 4 very small:

4 f@) = fa—nh) TV
dr h -

béckWard |
difference

Forward and backward differences should agree, if 4
IS small enough.
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Derivatives - Exercise 3

1. Use the forward and backward difference rule to calculate
f'(x) for h=0.1 and h=0.01.

2. Plot the analytic and your numeric derivatives.

3. Plot the difference between the two.




Derivatives - forward and backward difference

e forward difference
* backward difference °

h:()l ® ¢

2.0
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Derivatives - forward and backward difference

041 — forward
—  backward
0.2-
Q
O
S | o N~ .
a 0.0 rm——-—————— ===
.
o
-0.2
0.4 | | | '
0.0 0.5 1.0 1.5 2.0
X
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Derivatives - Error analysis

» Forward and backward differences are usually not too accurate.
* To understand this, we Taylor expand f(x) around x:

fla+h) = f(2)+hf'(2) + 52 ")+ ...
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Derivatives - Error analysis

» Forward and backward differences are usually not too accurate.
* To understand this, we Taylor expand f(x) around x:

fla+h) = f(2)+hf'(2) + 52 ")+ ...

* Rearranging gives us:

— 1
f'(x) = flzth) - fl@) —hf"(x)+...
h 2 \
f. This and higher order terms
forward difference we omit. They contribute to
the error!
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Derivatives - Error analysis

Error is proportional to 2nd
derivative of the function.

fle+h) — f(=) ‘/

f'(z) = ; %hf”(:z;) + ...

f \

| This and higher order terms
forward difference we omit. They contribute to
the error!
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Derivatives - Error analysis

+ In our example: f(z) =2° — 22 + 2 — 1
f(x) =6x —4

Now we understand, why the

numeric deviation was linear. Error is proportional to 2nd
derivative of the function.

/

/ h) — 1 1/
(z) = fle+h) — f(=) L)+
h 2 \
f_ This and higher order terms
forward difference we omit. They contribute to
the error!
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Derivatives - Error analysis

Proportional to #; the smaller
h, the smaller the error.

fle+h) — f(=) ‘/

/ . 1 /!
f'(x) = - 2h<(a:)—|—...
f_ This and higher order terms
forward difference we omit. They contribute to

the error!
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Derivatives - Error analysis

But we are bound by

machine precisi(')n, C, Proportional to #; the smaller
in the difference! h, the smaller the error.

\ /

flx+h) = f(x)

/ . 1 /!
f'(x) = - 2h<(a:)—|—...
f_ This and higher order terms
forward difference we omit. They contribute to

the error!
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Derivatives - Error analysis

f(x+h) and f(x) are close, so their
rounding error is: 2C| f(x)]

But we are bound by

machine precisi(')n, C, Proportional to #; the smaller
in the difference! h, the smaller the error.

\ Y,

h) — 1
Fl(z) = fleth) = f(x) —hf"(x)+...
h 2 \
f_ This and higher order terms
forward difference we omit. They contribute to

the error!
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Derivatives - Error analysis

e QOur total error is thus:

_ 20|f(2)
h

€

1
-l @)
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Derivatives - Error analysis

e Qur total error is thus:

_ 20|f(2)
h

€

1
-l @)

 \We seek the 4 that minimises . So we differentiate ¢ and set the
result to O.

20 1
|}{2(:1:)| | §|f”(x)\ =0 or equivalently Iy, = \/4C' /()
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e Qur total error is thus:

~ 20|f(2)
h

€

1
-l @)

 \We seek the 4 that minimises . So we differentiate ¢ and set the
result to 0.

20 f(z)| | 1

73 | §| f"(z)] =0 or equivalently Ay, = \/ 4C

» Substituting %, Into € gives us the minimum error:

emin = \/4C|f (x) f" (z)
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Derivatives - Error analysis

Minimum error of forward and backward difference.

€min = \/4C|f(m)f”(at)

Assuming f(x) and f’(x) are of order 1

and C = 10-1¢ we get:
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Minimum error of forward and backward difference.

€min = \/4C'|f(x)f”(a’;)

Assuming f(x) and f’(x) are of order 1

and C = 10-16¢ we get:

Key concept: error analysis

Using analytic considerations, we can estimate the
expected error of a numeric method. This helps us In

our jJudgment of a method.




Derivatives - Error analysis

Minimum error of forward and backward difference.

€min = \/4C|f($)f”(37)

Assuming f(x) and f’(x) are of order 1

and C = 10-16 we get:

* An error of 10-8 is usually sufficient, but we can do better!
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Derivatives - Central differences

d _
Derivative: 4 — lim fla+h)— flz)
dx h—0 h

« take a symmetric difference: . central

difference

A f((+h/2) ~ [~ h/2)
dx h

Jf(x)
central difference

| | | | ; ; ; | | | | >

x-h/2 x x+th/2
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Derivatives - Exercise 4

1. Use the central difference rule to calculate f'(x) for h=0.1
and 2=0.01.

2. Plot the analytic and your numeric derivatives.

3. Plot the difference between the two.
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Derivatives - Central difference

e central difference

NS W s D

df/dx
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Derivatives - Central difference

0.0025 -

0.0020 -
o
§0.0015 —— hoo1
£ 0.0010 h=0.01
©

0.0005 -

0.0000{_° , , ' '

0.0 0.5 1.0 1.5 2.0
X
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Derivatives - Central difference error analysis

* \WWe once again Taylor expand:

Fa+h/2) = F@) + Shf'(@) + Sh2 1" @) + b (@) + ..
Fa—h/2) = f@) = Shf'(@) + Sh2F" (@) — " (@)




Derivatives - Central difference error analysis

* \WWe once again Taylor expand:

Fa+h/2) = F@) + Shf'(@) + Sh2 1" @) + b (@) + ..
Fa—h/2) = f@) = Shf'(@) + Sh2F" (@) — " (@)

» and take the difference of the two expansions divided by #:

flz+h/2) - fle—h/2) 1
h 24

f'(z) = W2 (x) + ...
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Derivatives - Central difference error analysis

* \WWe once again Taylor expand:

Fa+h/2) = F@) + Shf'(@) + Sh2 1" @) + b (@) + ..
Fa—h/2) = f@) = Shf'(@) + Sh2F" (@) — " (@)

» and take the difference of the two expansions divided by #:

f(lz+h/2) — fz—h/2) 1

/ _ 2 I
fiz) = ; b2 (@) +
central difference now of order #2and not /4

and proportional to /(x)
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Derivatives - Central difference error analysis

e Qur total error for the central difference is thus:

o 2f@)] 1

21 ¢!
o B (@)
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Derivatives - Central difference error analysis

e Qur total error for the central difference is thus:

6_20|f(w)\ !
h 24

2| ()

* We agin seek the 4 that minimises ¢. So we differentiate ¢ and
set the result to 0. We find for the minimising 4:

inl)

oo = (24C
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Derivatives - Central difference error analysis

e Qur total error for the central difference is thus:

6_20|f(£v)\ !
h 24

2| ()

* We agin seek the 4 that minimises ¢. So we differentiate ¢ and
set the result to 0. We find for the minimising 4:

inl)

oo = (24C

» Substituting /mi» into € gives us the minimum error:

1
3

coin = ( O @PIS" ) )
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* forward/backward difference:
Rnin & C2 ~ 1078
Ermin ~ C2 ~ 1078

e central difference:

W=
2

p_xp_\

2

hmin

C
C

wN

2
2

€min

Key concept: numeric differentiation

Using finite differences, derivatives of functions can be
calculated numerically.




Derivatives - Second derivatives

d* f f'(@+h) - fz)

2nd derivative: —= = lim

dx? h—0 h
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Derivatives - Second derivatives

2 / g
2nd derivative: d—]; = lim flath) - f(z)
dx h—0 h

 The solution lies in the above formula. We need the central
difference of the central difference:

f'lx+h/2) — f(x —h/2)

() .

* We already know how to deal with the 1st derivatives:

fle+h) = f(z)

f'(x+h/2) ~ and f'(x —h/2) = f(z) —{L(x—h)

h
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Derivatives - Second derivatives

d* f f'(@+h) - fz)

2nd derivative: ol }ILILI%) ;

* This gives:
f”(a?) ~ f,(ZIJ + h/2) ; f’(ib R h/2)
_ (f+h) - flz)) - (f(z) - flz —h))
h2
fle+h)=2f(x)+ flx—h)




Derivatives - Second derivative error estimate

* We can again estimate the error by Taylor expanding
around f(x+h) and f(x-h). This gives:

40 f(z) 1

e = =L SR (@)
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Derivatives - Second derivative error estimate

* We can again estimate the error by Taylor expanding
around f(x+h) and f(x-h). This gives:

40 f(z) 1

€ = h2 ! 12h2‘f”,/($)|

* The minimal error is then:

hain = (480 | 7505 )

N

4 |
and  €min = (gcr‘f(x)fm/(x))§

f

~ C12 =~ 10-8
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Interpolation

Jx)

S Y
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Interpolation

Jx)
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Interpolation

e interpolation: f(z) =

Jx)

S Y
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Interpolation

* interpolation:




Interpolation

* interpolation: f(x) = f(b[)) : i(a) (x —a)+ f(a)
_ (b—2)f(a) + (z — a)f(b)
b—a

* to estimate the error we once more Taylor expand:

1

fla) = f() + (a—2)f'(2) + 5 (a —2)*f"(x) + ...

1

fb) = f(z) + (0 —2)f' (@) + 5 (b —2)"f"(x) + ...



* interpolation: f(x) = f(bl)) : i(a) (x —a)+ f(a)
(b= a)f(a) + (z — a) f(b)
b—a

* to estimate the error we once more Taylor expand:

fla) = £(&) + (a—2)f'(x) + 5(a —2)2f"(@) + ...
F0) = f(2) + (b —2)f' () + 5 (b —2) () + ...

 substituting into the above equation and rearranging:

(b—=)f(a) + (z —a)f(b)

flz) = T
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Interpolation

This term becomes
largest in the middle of

the [a,b] interval:

x—a:b—leh
2
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Interpolation

* the interpolation error is quadratic in 4:

_1 2| gl
e = h?|f"(x)

This term becomes
largest in the middle of

the [a,b] interval:

x—a:b—leh
2
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* linear interpolation: f(z) ~

Key concept: linear interpolation

By calculating first derivatives numerically, we can
linearly interpolate functions.

* The accuracy of linear interpolation is determined by the
available point density (i.e. the value of 7).
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* linear interpolation: f(z) ~

Key concept: linear interpolation

By calculating first derivatives numerically, we can
linearly interpolate functions.

* The accuracy of linear interpolation is determined by the
available point density (i.e. the value of 7).

» Going beyond linear interpolation is not trivial and we will
not cover this in this lecture.
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