Computational Physics I - Lecture 2, part 2

Adam Foster, Dorothea Golze, Patrick Rinke Levi Keller, Yashasvi Ranawat, Ygor Morais Jaques

Aalto University School of Science Department of Applied Physics

Integrals and Derivatives

Integrals:
$$I(a,b) = \int_a^b f(x)dx$$
 Last week Some more today

- integrals occur widely in physics
- some integrals can be done analytically, most cannot!
- integration is one of the most important applications in computational physics

Derivatives:
$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 Today

- derivatives occur widely in physics
- most derivatives can be done analytically
- we still often need numerical derivatives

Definite Integrals

Definite integral:
$$I(a,b) = \int_a^b f(x) dx$$

we know now how to calculate the numeric value of I(a,b)

Question:

Can we also treat infinite integrals?

$$I = \int_0^\infty f(x)dx$$

Infinite integral:
$$I = \int_0^\infty f(x) dx$$

we could brute force the problem with a finite integral

$$I = \lim_{b \to \infty} \int_0^b f(x) dx$$

and then make b larger and larger.

Infinite integral:
$$I = \int_0^\infty f(x) dx$$

we could brute force the problem with a finite integral

$$I = \lim_{b \to \infty} \int_0^b f(x) dx$$

and then make b larger and larger.

- This works, when f(x) goes to 0 with increasing x.
- However, we introduce a new convergence parameter, *b*, and the integral may converge badly.
- Maybe we can do something more clever.

Infinite integral:
$$I = \int_0^\infty f(x) dx$$

we make a variable transformation

$$z = \frac{x}{1+x}$$
 or equivalently $x = \frac{z}{1-z}$

Infinite integral:
$$I = \int_0^\infty f(x) dx$$

we make a variable transformation

$$z = \frac{x}{1+x}$$
 or equivalently $x = \frac{z}{1-z}$

• with $dx = dz/(1-z)^2$ we obtain:

$$\int_0^\infty f(x)dx = \int_0^1 \frac{1}{(1-z)^2} f(\frac{z}{1-z})dz$$

· this integral can be solved with the techniques we learned

Infinite integral:
$$I = \int_{a}^{\infty} f(x) dx$$

• now we make two transformations - first y=x-a and then the one we made on the previous slide:

$$z = \frac{x-a}{1+x-a}$$
 or equivalently $x = \frac{z}{1-z} + a$

Infinite integral:
$$I = \int_{a}^{\infty} f(x)dx$$

• now we make two transformations - first y=x-a and then the one we made on the previous slide:

$$z = \frac{x-a}{1+x-a}$$
 or equivalently $x = \frac{z}{1-z} + a$

• with $dx = dz/(1-z)^2$ we obtain:

$$\int_{a}^{\infty} f(x)dx = \int_{0}^{1} \frac{1}{(1-z)^{2}} f(\frac{z}{1-z} + a)dz$$

Infinite integral:
$$I = \int_{-\infty}^{\infty} f(x) dx$$

• we could break this integral up into two: $\int_{0}^{\infty} + \int_{0}^{\infty}$

Infinite integral:
$$I = \int_{-\infty}^{\infty} f(x) dx$$

• we could break this integral up into two: $\int_{-\infty}^{\infty} + \int_{0}^{\infty}$

or make a single substitution:

$$x = \frac{z}{1 - z^2}, \quad dx = \frac{1 + z^2}{(1 - z^2)^2} dz$$

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-1}^{1} \frac{1+z^2}{(1-z)^2} f(\frac{z}{1-z^2})dz$$

Integrals - Exercise 1

Integrate:
$$\int_0^\infty e^{-t^2} dt = \frac{1}{2} \sqrt{\pi} = 0.886226925453...$$

- 1. Make the transformation z=t/(1+t) The integral becomes: $\int_0^1 \frac{e^{-z^2/(1-z)^2}}{(1-z)^2} dz$
- 2. Plot the old and the new integrant.
- 3. Integrate with your Gauss-Legendre integration program.
- 4. Plot the error as a function of integration points.

Talking points:

- 1. What do you observe?
- 2. How many points do you need for 0.1% or 10-6% accuracy?

Infinite integrals - number of points & errors

Integration rules - number of points & errors

Method	0.1% error	1E-6 % error
Gauss Legendre	9	27

Integration rules - number of points & errors

Method	0.1% error	1E-6 % error
Gauss Legendre	9	27

Key concept: variable transformation

Through *variable transformation* we can turn an infinite into a finite integral and thus make it tractable numerically.

Multiple Integrals

Multiple integral:
$$I = \int_0^1 \int_0^1 f(x,y) dx dy$$

We perform the integrals sequentially. We define:

$$F(y) = \int_0^1 f(x, y) dx$$

Then our integral becomes:

$$I = \int_0^1 F(y)dy$$

Multiple Integrals

Multiple integral:
$$I = \int_0^1 \int_0^1 f(x,y) dx dy$$

Applying our numeric integration formula:

$$F(y) pprox \sum_{i=1}^{N} w_i f(x_i, y)$$
 and $I pprox \sum_{j=1}^{N} w_j F(y_j)$

 As expected, we obtain a double sum over the x and y coordinates of a 2 dimensional grid:

$$I \approx \sum_{i=1}^{N} \sum_{j=1}^{N} w_i w_j f(x_i, y_j)$$

Multiple Integrals - 2D Gauss Legendre grid

Integrals - Exercise 2

Integrate:
$$\int_{-1}^{1} \int_{-1}^{1} e^{(-x^2 - y^2)} dx dy = \pi \operatorname{erf}(1)^2$$

- 1. Plot the function $e^{(-x^2-y^2)}$.
- 2. Adapt your Gauss-Legendre integration program to solve this integral.
- 3. Plot the error as a function of integration points.

Talking points:

- 1. What do you observe?
- 2. How many points do you need for 0.1% or 10-6% accuracy?

Multiple integrals - number of points & errors

Multiple Integrals - Note on convergence

Multiple integral:
$$I \approx \sum_{i=1}^{N_i} \sum_{j=1}^{N_j} w_i w_j f(x_i, y_j)$$

• Normally we would have one convergence parameter per dimension, as N_i is typically not the same as N_j .

Multiple Integrals - Note on convergence

Multiple integral:
$$I \approx \sum_{i=1}^{N_i} \sum_{j=1}^{N_j} w_i w_j f(x_i, y_j)$$

• Normally we would have one convergence parameter per dimension, as N_i is typically not the same as N_j .

$$\int_{-1}^{1} \int_{-1}^{1} e^{(-x^2 - y^2)} dx dy = \pi \operatorname{erf}(1)^2$$

• However, the integral in our example had the same x and y dimensions, so $N_i = N_j = N$ is justified.

Multiple integrals - number of points & errors

Method	0.1% error	1E-6 % error
Gauss Legendre	5x5=25	8x8=64

Multiple integrals - number of points & errors

Method	0.1% error	1E-6 % error
Gauss Legendre	5x5=25	8x8=64

Key concept: multi dimensional integration

A multi dimensional integral can be performed as nested sum over the variables.

Derivative:
$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

 we wish to find the derivative of a function numerically

Derivative:
$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- in practice we cannot take the limit *h->0* numerically
- but we can make h very small:

$$\frac{df}{dx} \approx \frac{f(x+h) - f(x)}{h}$$

Derivative:
$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- in practice we cannot take the limit *h->0* numerically
- but we can make h very small:

$$\frac{df}{dx} \approx \frac{f(x+h) - f(x)}{h}$$

forward difference

Derivative:
$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- in practice we cannot take the limit *h->0* numerically
- but we can make *h* very small:

$$\frac{df}{dx} \approx \frac{f(x) - f(x - h)}{h}$$

backward difference

Derivative:
$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- in practice we cannot take the limit *h*->0 numerically
- but we can make h very small:

$$\frac{df}{dx} \approx \frac{f(x) - f(x - h)}{h}$$

Forward and backward differences should agree, if *h* is small enough.

Derivatives - Exercise 3

Differentiate: $f(x) = x^3 - 2x^2 + x - 1$

- 1. Use the forward and backward difference rule to calculate f'(x) for h=0.1 and h=0.01.
- 2. Plot the analytic and your numeric derivatives.
- 3. Plot the difference between the two.

Talking points:

- 1. What do you observe?
- 2. How does the error in the numeric derivatives behave with *x* and *h*?
- 3. How can we do better?

Derivatives - forward and backward difference

Derivatives - forward and backward difference

- Forward and backward differences are usually not too accurate.
- To understand this, we Taylor expand f(x) around x:

$$f(x+h) = f(x) + hf'(x) + \frac{1}{2}h^2f''(x) + \dots$$

- Forward and backward differences are usually not too accurate.
- To understand this, we Taylor expand f(x) around x:

$$f(x+h) = f(x) + hf'(x) + \frac{1}{2}h^2f''(x) + \dots$$

Rearranging gives us:

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{1}{2}hf''(x) + \dots$$
forward difference
we omit. The

forward difference

Error is proportional to 2nd derivative of the function.

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{1}{2}hf''(x) + \dots$$
This and high

This and higher order terms we omit. They contribute to the error!

• In our example: $f(x) = x^3 - 2x^2 + x - 1$ f''(x) = 6x - 4

Now we understand, why the numeric deviation was linear.

Error is proportional to 2nd derivative of the function.

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{1}{2}hf''(x) + \dots$$

forward difference

This and higher order terms we omit. They contribute to the error!

forward difference

Proportional to h; the smaller h, the smaller the error.

$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{1}{2}hf''(x) + \dots$$
This and high

This and higher order terms we omit. They contribute to the error!

But we are bound by machine precision, C, in the difference!

Proportional to h; the smaller h, the smaller the error.

$$-\frac{1}{2}hf''(x)+\dots$$

This and higher order terms we omit. They contribute to the error!

f(x+h) and f(x) are close, so their rounding error is: 2C|f(x)|

But we are bound by machine precision, C, in the difference!

Proportional to h; the smaller h, the smaller the error.

$$\frac{1}{2}hf''(x) + \dots$$

This and higher order terms we omit. They contribute to the error!

Our total error is thus:

$$\epsilon = \frac{2C|f(x)|}{h} + \frac{1}{2}h|f''(x)|$$

Our total error is thus:

$$\epsilon = \frac{2C|f(x)|}{h} + \frac{1}{2}h|f''(x)|$$

 We seek the h that minimises ∈. So we differentiate ∈ and set the result to 0.

$$-\frac{2C|f(x)|}{h^2} + \frac{1}{2}|f''(x)| = 0 \quad \text{or equivalently} \quad h_{\min} = \sqrt{4C \left| \frac{f(x)}{f''(x)} \right|}$$

Our total error is thus:

$$\epsilon = \frac{2C|f(x)|}{h} + \frac{1}{2}h|f''(x)|$$

 We seek the h that minimises ∈. So we differentiate ∈ and set the result to 0.

$$-\frac{2C|f(x)|}{h^2} + \frac{1}{2}|f''(x)| = 0 \quad \text{or equivalently} \quad h_{\min} = \sqrt{4C \left| \frac{f(x)}{f''(x)} \right|}$$

• Substituting h_{min} into ϵ gives us the minimum error:

$$\epsilon_{\min} = \sqrt{4C|f(x)f''(x)|}$$

Minimum error of forward and backward difference.

$$\epsilon_{\min} = \sqrt{4C|f(x)f''(x)|}$$

Assuming f(x) and f''(x) are of order 1 and $C \approx 10^{-16}$ we get: $\epsilon_{min} \approx 10^{-8}$

Minimum error of forward and backward difference.

$$\epsilon_{\min} = \sqrt{4C|f(x)f''(x)|}$$

Assuming f(x) and f''(x) are of order 1 and $C \approx 10^{-16}$ we get:

Key concept: error analysis

Using analytic considerations, we can estimate the expected error of a numeric method. This helps us in our judgment of a method.

Minimum error of forward and backward difference.

$$\epsilon_{\min} = \sqrt{4C|f(x)f''(x)|}$$

Assuming f(x) and f''(x) are of order 1 and $C \approx 10^{-16}$ we get: $\epsilon_{min} \approx 10^{-8}$

• An error of 10-8 is usually sufficient, but we can do better!

Derivatives - Central differences

Derivative:
$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• take a symmetric difference:

$$\frac{df}{dx} \approx \frac{f((x+h/2) - f(x-h/2)}{h}$$

central difference

Derivatives - Exercise 4

Differentiate:
$$f(x) = x^3 - 2x^2 + x - 1$$

- 1. Use the central difference rule to calculate f'(x) for h=0.1 and h=0.01.
- 2. Plot the analytic and your numeric derivatives.
- 3. Plot the difference between the two.

Talking points:

- 1. What do you observe?
- 2. How does the error in the numeric derivatives now behave with *x* and *h*?

Derivatives - Central difference

Derivatives - Central difference

We once again Taylor expand:

$$f(x+h/2) = f(x) + \frac{1}{2}hf'(x) + \frac{1}{8}h^2f''(x) + \frac{1}{48}h^3f'''(x) + \dots$$
$$f(x-h/2) = f(x) - \frac{1}{2}hf'(x) + \frac{1}{8}h^2f''(x) - \frac{1}{48}h^3f'''(x) + \dots$$

We once again Taylor expand:

$$f(x+h/2) = f(x) + \frac{1}{2}hf'(x) + \frac{1}{8}h^2f''(x) + \frac{1}{48}h^3f'''(x) + \dots$$
$$f(x-h/2) = f(x) - \frac{1}{2}hf'(x) + \frac{1}{8}h^2f''(x) - \frac{1}{48}h^3f'''(x) + \dots$$

• and take the difference of the two expansions divided by h:

$$f'(x) = \frac{f((x+h/2) - f(x-h/2)}{h} - \frac{1}{24}h^2f'''(x) + \dots$$

We once again Taylor expand:

$$f(x+h/2) = f(x) + \frac{1}{2}hf'(x) + \frac{1}{8}h^2f''(x) + \frac{1}{48}h^3f'''(x) + \dots$$
$$f(x-h/2) = f(x) - \frac{1}{2}hf'(x) + \frac{1}{8}h^2f''(x) - \frac{1}{48}h^3f'''(x) + \dots$$

and take the difference of the two expansions divided by h:

$$f'(x) = \frac{f((x+h/2) - f(x-h/2)}{h} - \frac{1}{24}h^2f'''(x) + \dots$$

central difference

now of order h^2 and not h and proportional to f'''(x)

Our total error for the central difference is thus:

$$\epsilon = \frac{2C|f(x)|}{h} + \frac{1}{24}h^2|f'''(x)|$$

Our total error for the central difference is thus:

$$\epsilon = \frac{2C|f(x)|}{h} + \frac{1}{24}h^2|f'''(x)|$$

 We agin seek the h that minimises ∈. So we differentiate ∈ and set the result to 0. We find for the minimising h:

$$h_{\min} = \left(24C \left| \frac{f(x)}{f'''(x)} \right| \right)^{\frac{1}{3}}$$

Our total error for the central difference is thus:

$$\epsilon = \frac{2C|f(x)|}{h} + \frac{1}{24}h^2|f'''(x)|$$

 We agin seek the h that minimises ∈. So we differentiate ∈ and set the result to 0. We find for the minimising h:

$$h_{\min} = \left(24C \left| \frac{f(x)}{f'''(x)} \right| \right)^{\frac{1}{3}}$$

• Substituting h_{min} into ϵ gives us the minimum error:

$$\epsilon_{\min} = \left(\frac{9}{8}C^2[f(x)]^2|f'''(x)|\right)^{\frac{1}{3}}$$

Derivatives - Error summary

forward/backward difference:

$$h_{\min} \approx C^{\frac{1}{2}} \approx 10^{-8}$$
 $\epsilon_{\min} \approx C^{\frac{1}{2}} \approx 10^{-8}$

central difference:

$$h_{\min} \approx C^{\frac{1}{3}} \approx 10^{-5}$$
 $\epsilon_{\min} \approx C^{\frac{2}{3}} \approx 10^{-10}$

Key concept: numeric differentiation

Using finite differences, derivatives of functions can be calculated numerically.

Derivatives - Second derivatives

2nd derivative:
$$\frac{d^2f}{dx^2} = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h}$$

Question:

Now that we successfully solved 1st derivatives, can we also compute 2nd derivatives?

Derivatives - Second derivatives

2nd derivative:
$$\frac{d^2f}{dx^2} = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h}$$

 The solution lies in the above formula. We need the central difference of the central difference:

$$f''(x) \approx \frac{f'(x+h/2) - f'(x-h/2)}{h}$$

We already know how to deal with the 1st derivatives:

$$f'(x+h/2) \approx \frac{f(x+h) - f(x)}{h}$$
 and $f'(x-h/2) \approx \frac{f(x) - f(x-h)}{h}$

Derivatives - Second derivatives

2nd derivative:
$$\frac{d^2f}{dx^2} = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h}$$

This gives:

$$f''(x) \approx \frac{f'(x+h/2) - f'(x-h/2)}{h}$$

$$= \frac{(f(x+h) - f(x)) - (f(x) - f(x-h))}{h^2}$$

$$= \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Derivatives - Second derivative error estimate

• We can again estimate the error by Taylor expanding around f(x+h) and f(x-h). This gives:

$$\epsilon = \frac{4Cf(x)}{h^2} + \frac{1}{12}h^2|f''''(x)|$$

Derivatives - Second derivative error estimate

• We can again estimate the error by Taylor expanding around f(x+h) and f(x-h). This gives:

$$\epsilon = \frac{4Cf(x)}{h^2} + \frac{1}{12}h^2|f''''(x)|$$

The minimal error is then:

$$h_{\min} = \left(48C \left| \frac{f(x)}{f''''(x)} \right| \right)^{\frac{1}{4}} \quad \text{and} \quad \epsilon_{\min} = \left(\frac{4}{3}C|f(x)f''''(x)\right)^{\frac{1}{2}}$$

$$\sim C^{1/2} \approx 10^{-8}$$

Question:

If we know a function at two points, can we estimate its value elsewhere?

• interpolation: $f(x) \approx \frac{f(b) - f(a)}{b - a}(x - a) + f(a)$

• interpolation: $f(x) \approx \frac{f(b) - f(a)}{b - a}(x - a) + f(a)$ $= \frac{(b - x)f(a) + (x - a)f(b)}{b - a}$

• interpolation:
$$f(x) \approx \frac{f(b) - f(a)}{b - a}(x - a) + f(a)$$
$$= \frac{(b - x)f(a) + (x - a)f(b)}{b - a}$$

to estimate the error we once more Taylor expand:

$$f(a) = f(x) + (a - x)f'(x) + \frac{1}{2}(a - x)^2 f''(x) + \dots$$

$$f(b) = f(x) + (b - x)f'(x) + \frac{1}{2}(b - x)^2 f''(x) + \dots$$

• interpolation:
$$f(x) \approx \frac{f(b) - f(a)}{b - a}(x - a) + f(a)$$
$$= \frac{(b - x)f(a) + (x - a)f(b)}{b - a}$$

to estimate the error we once more Taylor expand:

$$f(a) = f(x) + (a - x)f'(x) + \frac{1}{2}(a - x)^2 f''(x) + \dots$$

$$f(b) = f(x) + (b - x)f'(x) + \frac{1}{2}(b - x)^2 f''(x) + \dots$$

· substituting into the above equation and rearranging:

$$f(x) = \frac{(b-x)f(a) + (x-a)f(b)}{b-a} + (a-x)(b-x)f''(x) + \dots$$

This term becomes largest in the middle of the [a,b] interval:

the [a,b] interval:
$$x-a=b-x=\frac{1}{2}h$$

$$f(x) = \frac{(b-x)f(a) + (x-a)f(b)}{b-a} + (a-x)(b-x)f''(x) + \dots$$

• the interpolation error is quadratic in *h*:

$$\epsilon = \frac{1}{4}h^2|f''(x)|$$

This term becomes largest in the middle of the [a,b] interval:

the [a,b] interval:
$$x-a=b-x=\frac{1}{2}h$$

$$f(x) = \frac{(b-x)f(a) + (x-a)f(b)}{b-a} + (a-x)(b-x)f''(x) + \dots$$

• linear interpolation: $f(x) \approx \frac{f(b) - f(a)}{b - a}(x - a) + f(a)$

Key concept: linear interpolation

By calculating first derivatives numerically, we can linearly interpolate functions.

• The accuracy of linear interpolation is determined by the available point density (i.e. the value of *h*).

• linear interpolation: $f(x) \approx \frac{f(b) - f(a)}{b - a}(x - a) + f(a)$

Key concept: linear interpolation

By calculating first derivatives numerically, we can linearly interpolate functions.

- The accuracy of linear interpolation is determined by the available point density (i.e. the value of h).
- Going beyond linear interpolation is not trivial and we will not cover this in this lecture.

