Computational Physics | -
Lecture 3, part 1

Adam Foster, Dorothea Golze, Patrick Rinke
Levi Keller, Yashasvi Ranawat, Ygor Morais Jaques

Aalto University
School of Science
Department of Applied Physics




Solutions of linear and non-linear equations

Linear equation: ax +b = —c

* sets of linear equations are very common in physics

* they can be solved with matrix algebra

* matrix algebra is one of the most important applications in
computational physics
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Linear equation: ax +b = —c

 sets of linear equations are very common in physics

* they can be solved with matrix algebra

* matrix algebra is one of the most important applications in
computational physics

Non linear equation: = = f(x)

* non-linear equations are even more common than linear
* they are much harder to solve than linear equations
* numeric approaches for non-linear egns are very important
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Linear equation: ax +b = —c today

 sets of linear equations are very common in physics

* they can be solved with matrix algebra

* matrix algebra is one of the most important applications in
computational physics

Non linear equation: = = f(x) next week

* non-linear equations are even more common than linear
* they are much harder to solve than linear equations
* numeric approaches for non-linear egns are very important
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set of linear equations: 2w +zx+4y+ 2= —4

Sw+4dr —y—2=3

w—4xr+y+ 5z =9
2w —2x+y+3z2=7

 techniques for solving simultaneous sets of equations are
well understood and straightforward,

* but humans are slow and prone to error in such calculations

« computers are perfectly suited for this, in particular for large
systems with many variables
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Simultaneous linear equations

 cast the set of equations into matrix form:

2 1 4 1 w —4

3 4 -1 -1 T 3 .

41 . y — 9 or in short Ax=1v
2 =2 1 3 Z 7
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Simultaneous linear equations

 cast the set of equations into matrix form:

2 1 4 1 w —4

3 4 -1 -1 T 3 .

41 . y — 9 or in short Ax=1v
2 =2 1 3 Z 7

* algebraically, inversion seems easiest solution:

x=A"1v
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 cast the set of equations into matrix form:

2 1 4 1 w —4

3 4 -1 -1 T 3 .

41 . y — 9 or in short Ax=1v
2 =2 1 3 Z 7

* algebraically, inversion seems easiest solution:
_ A1
X =A"v

* But numerically matrix inversion is not the best solution!
* There are more efficient ways.
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Gaussian elimination and back substitution

» suppose we could transform the equations into this form:

1 ap1 ap2 ap3 w Vo
0 1 a12 A13 X - U1
0 0 1 a3 Yy o V9
0O O 0 1 2z V3
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Gaussian elimination and back substitution

» suppose we could transform the equations into this form:

1 ap1 ap2 ap3 w Vo
0 1 a12 A13 X - U1
0 0 1 a3 Yy o (0
0O O 0 1 2z V3

* then the solution is simple:
Z = U3
Y = V2 — G23%2
L — V1 — a12Y — A13%

W = Vg — ap1x — Ap2Yy — ap3=
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Gaussian elimination and back substitution

» suppose we could transform the equations into this form:

1 ap1 ap2 ao3 w Vo
0 1 12 Q13 X o U1
0 0 1 93 Y N U2
0O O 0 1 2z V3
* then the solution is simple:
< — Vg
Y = Uy — A3 2 D back substitution

r =11 —a12yYy — a13< D

W — Vg — apg1¥ — ap2y — aps< D
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Gaussian elimination and back substitution

Gaussian elimination

 To arrive at the upper tridiagonal form we apply two rules
consecutively:

1. If we multiply any row of A and the corresponding row of v
by a constant, the solution does not change.

2. If we add to or subtract from any or A a multiple of any other
row, and we do the same for v, then the solution does not

change.
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Gaussian elimination and back substitution

Rule 1: / divide by 2
) T w _4
3 4 -1 -1 z | | 3
1 -4 1 5 y | | 9
2 =2 1 3 z 7
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Gaussian elimination and back substitution

Rule 1. __— divide by 2
) T ” 4
3 4 -1 -1 x| | 3
1 —4 1 5 y | | 9
2 =2 1 3 Z 7
now equal to 1
y
1 0. 2 0.5 w —2
3 4 -1 -1 T B 3
1 —4 1 5 gy | | 9
2 —2 1 3 Z 7
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Gaussian elimination and back substitution

Rule 2:

subtract 3 times first row from 2nd

1 05 2 0.5 W —2
3 4 -1 -1 x B 3
1 —4 1 5 Y - 9
2 =2 1 3 z 7
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Gaussian elimination and back substitution

Rule 2 now equal to 0
1/0 o 2 0.9

w —2
0 205 -7 =25 r | 9
1 —4 1 5 y | 9
2 —2 1 3 2 7

subtract 3 times first row from 2nd

/

1 05 2 0.5 W —2
3 4 -1 -1 x B 3
1 —4 1 5 Y - 9
2 =2 1 3 z 7
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Gaussian elimination and back substitution

1 05 2 0.5 W —2
0 25 —7 =25 x B 9
1 —4 1 5 y | 9
2 -2 1 3 z 7

* By applying Rule 1 and Rule 2 successively, we can set all
diagonal elements to 1 and the lower triangle to O.
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Linear equations - Exercise 1

1. Complete the Gaussian elimination part of the program.

2. Add a print statement that prints the matrix at every step
to check that the program is eliminating correctly.

3. Check your final solution for the vector x = (w, z,y, 2)




Linear equations - Example 1

Show model solution.
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Show model solution.

Key concept: Gaussian elimination

With Gaussian elimination and back substitution we
can solve a set of linear equations efficiently.

Aalto University
School of Science
[ |




Gaussian elimination - Pivoting

Pivoting in Gaussian elimination

» suppose the set is slightly different:

/O 1 4 1 \ /w\
3 4 -1 -1 T
1 —4 1 5 Y

\2 -2 1 3 )\ z )
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Gaussian elimination - Pivoting

Pivoting in Gaussian elimination

» suppose the set is slightly different:

division by 0
/04 1\ [ w)
3 4 -1 -1 x
1 —4 1 5 Y

\2 -2 1 3 )\ z )
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Pivoting in Gaussian elimination

» suppose the set is slightly different:

(0T 4 (w0
3 4 -1 -1 T 3
1 —4 1

5 Y 9
\2 2 1 3 J\=z) \ 7))

* The solution is to swap this row with another one to make
that the first row. Then Gaussian elimination and back
substitution can be applied again. Care has to be taken,
however, to not introduce problems elsewhere.
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Sets of equations: Ax=v;,Ax=vs,...,Ax=v,

Question:

If we want to apply 4 to different vectors v, Gauss
Elimination is wasteful, because it has to be
carried out over and over again. Is there a better
way?
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Linear equations - LU decomposition

* We wish to transform a general matrix A

so that it can be applied to any vector v.

* We are looking for matrix operations that transform A.
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Linear equations - LU decomposition

* The operations that turn the first row into its correct form can

ano

be encapsulated in the following matrix multiplication

( 1

—aio

—Aa20

\ —Aa3zo

0

ano
0

0

0
0

lower triangular
matrix

( ano

aio

N

a20

\ a30

ao1
a11
a21
a31

ao2
a12
a22
a32

LoA =8B

/1 bo1
0 b1

0 b2
\0 b31

bo2
b12
b2
b32

bo3 \

b13
ba3

bss |

A?
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Linear equations - LU decomposition

* The operations that turn the first row into its correct form can

ano

be encapsulated in the following matrix multiplication

( 1

—aio

—Aa20

\ —Aa3zo

0

ano
0

0

0
0

lower triangular
matrix

ao1
a11
a21
a31

ao2
a12
a22
a32

/1 bo1
0 b11

0 b2
\0 b31

/

bo2
b12
b2
b32

bo3 \

b13
ba3

bss |

now we have to
continue with B

A?
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Linear equations - LU decomposition

* Operating on B with a new matrix

b1 O 0 O 1 bo1 bo2 bo3 1 co1 co2 Co3
i / 0 1 0 0 \ ( 0 b11 b12 513 \ o ( 0 1 C12 C13 \
b1 0O —ba1 D11 O 0 bar bag bas | | O 0 oo co3
\ 0 —b3s1 0 b1 ) \0 b31 b3z b33 / \0 0 c32 ¢33 /

lower triangular
matrix \LlB L LoA = C
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Linear equations - LU decomposition

* Operating on B with a new matrix

bll

lower triangular
matrix

/ b11
0

¥

0
1

_b21
—bs1

0
0
b11
0

0

0

e,

~N

LB =LiLyA = C\

o O O =

bo1
bll

b21
b31

bo2
b12
b22
b32

bo3 \
b13

bas
bss |

o O O =

OOr—lg
(S

we need two
more operations
for C

A?
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Linear equations - LU decomposition

* The final two operations are:

C22 0 0 0 d33 0 0 0
I, 1 / 0 C292 0 0 \ d L. — L ( 0 d33 0 0 \
2T el 0 0o 1 o0 WME T aL ]l 0 0 dsz 0
\ 0 0 —C32 (€929 / \ 0 0 0 1 )

* Putting it all together we have:

L3L2L1L0A — L3L2L1LQV = Uv
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Linear equations - LU decomposition

* The final two operations are:

/022 0
1 0 ca

Lo —
: €22 0 0
\ 0 0

0 0 \

0 0

1 0
—C32 (22 /

1
and L3 = —

ds3

* Putting it all together we have:

L3L2L1L0A — L3L2L1LQV = Uv

\

upper diagonal
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matrix




Linear equations - LU decomposition

* The final two operations are:

/ C292 0 0 0 \ ( d33 0 0 0 \
L L 0 C29 0 0 d L. — i 0 d33 0 0
2Tl 0 0 1 0 e EaLl 0 0 dyy 0
\ 0 0 —C32 (€929 / \ 0 0 0 1 )

* Putting it all together we have:
L3L2L1L0A — L3L2L1LOV — Uv

/ \

now we need to find the inverse of upper diagonal
the left-hand side to obtain an matrix
expression for A
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Linear equations - LU decomposition

« With the following inverses of L,

( ano 0O 0 O \ 1 0 0 O
L_l_ aio 1 0 O L_l_ 0 b11 0O O
0 a0 0O 1 0 ’ L 0 b21 1 0
\ aso 0 0 1 ) \ 0 b31 0 1
(1 0 0 o\ /1 0 0 O
1 O 1 0 O 1 O 1 0 O
L2 o 0O O C29 0 7 L3 o 0O 0 1 0
\ 0 0 ¢ 1) \ 0 0 0 ds3 /
e we obtain:

/CLOO 0 0 0 \

1y 1y —11 — aip b1 0 O

L=Lo L Ly L31 | az0 bar cam O
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Linear equations - LU decomposition

lower triangular easy to calculate
matrix from known

\ / elements
* we obtain:

L L lL lL lL— a10 bll
azo ba1 a9 0

\ az0 ba1 cao d33)
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Linear equations - LU decomposition

LU decomposition: A = LU

lower triangular easy to calculate
matrix from known

\ / elements
* we obtain:

b
L L lL lL 1L— _ a10 11
5 azo ba1 a9 0

\ as0 b3 32 d33/
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Linear equations - LU decomposition

LU decomposition of our problem: Ax =v

Ax=LUx=Ly=v with Ux=y
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Linear equations - LU decomposition

LU decomposition of our problem: Ax =v

Ax=LUx=Ly=v with Ux=y

y,

1st back substitution
gives y fromv
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Linear equations - LU decomposition

LU decomposition of our problem: Ax =v

Ax=LUx=Ly=v with Ux=y

/ \

1st back substitution 2nd back substitution
gives y fromv gives x fromy
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Linear equations - LU decomposition

LU decomposition of our problem: Ax =v

Ax=LUx=Ly=v with Ux=y

/ \

1st back substitution 2nd back substitution
gives y from v gives x fromy

With LU decomposition and two back
substitutions we can solve Ax = v for any v.
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Linear equations - LU decomposition

LU decomp.: Ax=LUx=Ly=v with Ux=y

* For the exercises, you will write your own LU decomposition.
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Linear equations - LU decomposition

LU decomp.: Ax=LUx=Ly=v with Ux=y

* For the exercises, you will write your own LU decomposition.

* Python has a build in solver for simultaneous linear equations
that uses LU decomposition and back substitution.

from numpy.linalg import solve
X = solve(A,V)
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Linear equations - LU decomposition

LU decomp.: Ax=LUx=Ly=v with Ux=y

* For the exercises, you will write your own LU decomposition.

* Python has a build in solver for simultaneous linear equations
that uses LU decomposition and back substitution.

from numpy.linalg import solve
X = solve(A,V)

* In the SciPy package you can find a LU decomposition
function under 1inalg.
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Linear equations - Exercise 2

* For this problem, the LU decomposition is:

2 0 0 0 1 0.5 2 0.9
3 2.0 0 0 o 1 =28 -1
L= 1 —-45 —-13.6 O U= 0 O 1 0
2 -3 —114 -1 0 O 0 1



Linear equations - Exercise 2

1. Verity that L*U gives the matrix A. You can use the
numpy routine matmul.

2. Perform the double back substitution Ly=v and Ux=y with
the numpy.linalg routine solve.

. Verify your resullt.

. Apply the LU decomposition to the new vectors
vi=(1,0,0,0), v>=(0,1,0,0), v3=(0,0,1,0), v4=(0,0,0,1).

5. Check your result with solve.

B~ W




Key concept: LU decomposition

The LU decomposition is one of several factorisations
of a square matrix A. It factors A into a lower and an
upper triangular matrix. The LU decomposition is the
first step in an efficient solution of linear sets of
equations.
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Linear equations - Matrix inversion

Matrix inverse: AA'=1
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Linear equations - Matrix inversion

Matrix inverse: AA~ ' =1

* LU decomposition is a common way to invert a matrix.

AX = LUX = V
YNy

A—l
When V is the identity,
X is the inverse of A.
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Linear equations - Matrix inversion

Matrix inverse: AA " '=1

* LU decomposition is a common way to invert a matrix.
AX=LUX =1

* With back substitution we can repeatedly solve for the columns
of X and so gradually build up the inverse of A.
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Linear equations - Matrix inversion

Matrix inverse: AA " '=1

* LU decomposition is a common way to invert a matrix.
AX=LUX =1

* With back substitution we can repeatedly solve for the columns
of X and so gradually build up the inverse of A.

* This is a good example for different right hand sides v.
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Linear equations - Matrix inversion

Matrix inverse: AA " '=1

* LU decomposition is a common way to invert a matrix.
AX=LUX =1

 numpy has a build in function that inverts a matrix.

from numpy.linalg import inv
X = inv(A)
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Linear equations - Matrix inversion

Key concept: matrix inversion

The LU decomposition provides one way to invert a
square matrix numerically.
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Tridiagonal and banded matrices

/&00 ao1
ajp ai11 412
Tridiagonal matrix: A = 921 A922 (93
az2 dA33 (34
\ a43 Q44

» Gaussian elimination is especially efficient as we do not
need to go through all the rows of the matrix, but only the
row immediately below the current one.

Aalto University
School of Science
[ |



Tridiagonal and banded matrices

 Gaussian elimination is more efficient than LU
decomposition. The result is:

/1 bo1
0 1
0 0

\ 0 0

00\ [0
bi2 O X1
1 bog T2
0 1 ) \ z3 /

» Back substitution is also simple:

7 Aalto University
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L3 = Y3
To = Yo — bazxs
L1 = Y1 — bioxo

ro = Yo — bo1x1

[ w0
Y1

Y




Example 1 - Vibration in a 1D system

)00 € 00C OH )

mass m spring with spring
constant £

N masses m in a row joint my identical springs

* We ignore gravity and perturb the system with a force.
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)00 €000 @000, @ (0

N masses m in a row joint my identical springs
* We ignore gravity and perturb the system with a force.

 The masses will start to vibrate relative to each other,
which gives a good model for atoms in a solid.
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Example 1 - Vibration in a 1D system

MR
/&

mass i
displacement
* The equations of motion for the masses are given by
Newton's second law:
&,
dt?

= k(§iv1 — &) + k(§i—1 — &) + F

external
force
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Example 1 - Vibration in a 1D system
)00 o000 o 000 e 0l
/,fz-

mass i
displacement
* The chain is finite so that mass 1 and N satisfy the
following condition:
d*¢

m— o = k(& — &) + 1
I
m—a = k(Env—1—&n) + Fy
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)00 €000 @000 @ (0

* We apply a harmonic (i.e. sinusoidal) driving force where
C Is a complex constant:

F1 — C@iwt

* This could for instance be an electromagnetic wave.
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Example 1 - Vibration in a 1D system

mass‘1\ driving force F;

* The masses (atoms) will oscillate in with angular
frequency w:

fz’ (t) _ mz.eiwt

amplitude
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)00 €000 @000 @ (0

» Substituting this into our set of Newton's equations gives:

—mw?r, = k(xo —x1) +C

—mw?z; = k(zip1 — x;) + k(zi-1 — x;)

—mw?rN = k(xn_1—anN)

where | ranges from 2 to N-1.
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Example 1 - Vibration in a 1D system

mass‘1\ driving force F;

- With o« = 2k — mw? we can rearrange to:

(@ —k)x1 — kaxo =C
xr; — kll?i_l — kzz’—l—l =0

(a —k)xny —kxny_1=0
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)00 €000 @000 @ (0

 But this is nothing else than a set of linear equations in
tridiagonal form:

(=R YERNEA
—k a —k o 0
—k o —k 3 0
—k « —k TN_1 0
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Linear equations - Exercise 3

In the in_class exercise notebook you find a skeleton
program that calls the subroutine banded for the solution of
a banded matrix.

1. Download the file banded. py from MyCourses.

2. Complete the initialisation part of the program.

3. Add plot statements to plot your results in a graph.




Linear equations - Linear spring model

amplitude
o

I
ot

0 5 10 15 20 25
mass index



Linear equations - Linear spring model

amplitude
-

Key concept: banded matrices

Many problems in physics result in simplified matrix
equations such as banded matrices. Such problems
can be solved efficiently with the techniques we just
learned.




Linear equations - Eigenvalues and eigenvectors

Eigenvalue problem: Av = \v

* For a symmetric (or Hermitian) NxN matrix A, there are N
eigenvalues A and eigenvectors v.

Aalto University
School of Science
[ |



Linear equations - Eigenvalues and eigenvectors

Eigenvalue problem: Av = \v

* For a symmetric (or Hermitian) NxN matrix A, there are N
eigenvalues A and eigenvectors v.

* We can combine all the solutions for the N many v; into one

equation:
AV = VD
orthogonal matrix / diagonal matrix containing
/ the eigenvalues

Viv=vv! =1
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Linear equations - Eigenvalues and eigenvectors

Eigenvalue problem: Av = \v

 To find the eigenvalues of A, we use the QR decomposition.
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Linear equations - Eigenvalues and eigenvectors

Eigenvalue problem: Av = \v

 To find the eigenvalues of A, we use the QR decomposition.

* The QR decomposition is similar to the LU decomposition.

Q : orthogonal matrix Q1 Q =1

R : upper trigonal matrix
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Linear equations - Eigenvalues and eigenvectors

Eigenvalue problem: Av = \v

 To find the eigenvalues of A, we use the QR decomposition.

* The QR decomposition is similar to the LU decomposition.

Q : orthogonal matrix Q1 Q =1

R : upper trigonal matrix

* For the graded exercises, you will write your own QR
decomposition.
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Linear equations - Eigenvalues and eigenvectors

Eigenvalue problem: Av = \v

 To find the eigenvalues of A, we use the QR decomposition.

* The QR decomposition is similar to the LU decomposition.

Q : orthogonal matrix Q1 Q =1

R : upper trigonal matrix

* For the graded exercises, you will write your own QR
decomposition.

* In Python, SciPy provides a QR decomposition.
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Linear equations - Finding eigenvalues

» Suppose we have the QR decomposition of A:

A=QR;
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Linear equations - Finding eigenvalues

» Suppose we have the QR decomposition of A:
A =Q1R;
» We multiply from the left with Q1

1A =Q{QR; =R,
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Linear equations - Finding eigenvalues

» Suppose we have the QR decomposition of A:
A =Q1R;
» We multiply from the left with Q1

1A =Q{QR; =R,

* Then we define a new matrix Ai:

A =R.Q; = Q] AQ;

\

A1 is an orthogonal
transformation of A
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Linear equations - Finding eigenvalues

* Next we will repeat the process of forming the QR
decomposition of A; and forming a new matrix A; and the
decomposing that into its own QR decomposition and so forth:

A =Qf AQ,
Ay =Q1Q1 AQ:Q:

Ar=(Q; .- Q1)A(Q:...Qy)
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* Next we will repeat the process of forming the QR
decomposition of A; and forming a new matrix A, and the
decomposing that into its own QR decomposition and so forth:

A = Qi AQ
Ay =Q;Q{ AQ:Q,

Ar=(Q; .- Q1)A(Q:...Qy)

* |t can be proven, that Ax becomes eventually diagonal:

A, =D

A? Aalto University



Linear equations - Finding eigenvalues

Ar=(Qf...Q1)A(Q:...Qx) =D
o With

k
V=QiQ:Qs...Q: =] ] Qi
1=1

this gives us:

D=A,=V'AV or AV =VD
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Linear equations - Finding eigenvalues

Ar=(Qf...Q1)A(Q:...Qx) =D

* With \
eigenvalues

k
V=QiQ:Qs...Q: =] ] Qi
1=1

this gives us: eigenvectors

. 'S
D=A;,=V'AV or AV =VD

/

This Iis our eigenvalue equation!
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Linear equations - The QR algorithm
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Linear equations - The QR algorithm

The QR algorithm for diagonalizing a matrix (i.e. for calculating
its eigenvalues and eigenvectors):
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Linear equations - The QR algorithm

The QR algorithm for diagonalizing a matrix (i.e. for calculating
its eigenvalues and eigenvectors):

1. Create an NxN matrix V and set it to the identity matrix.
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Linear equations - The QR algorithm

The QR algorithm for diagonalizing a matrix (i.e. for calculating
its eigenvalues and eigenvectors):

1. Create an NxN matrix V and set it to the identity matrix.

2. Choose a target accuracy ¢ for the off-diagonal elements of D.
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The QR algorithm for diagonalizing a matrix (i.e. for calculating
its eigenvalues and eigenvectors):

1. Create an NxN matrix V and set it to the identity matrix.
2. Choose a target accuracy ¢ for the off-diagonal elements of D.
3. Calculate the QR decomposition A=QR.

A? Aalto University



The QR algorithm for diagonalizing a matrix (i.e. for calculating
its eigenvalues and eigenvectors):

1. Create an NxN matrix V and set it to the identity matrix.

2. Choose a target accuracy ¢ for the off-diagonal elements of D.
3. Calculate the QR decomposition A=QR.

4. Update A to the new value A=RQ.

A? Aalto University



The QR algorithm for diagonalizing a matrix (i.e. for calculating
its eigenvalues and eigenvectors):

1. Create an NxN matrix V and set it to the identity matrix.

2. Choose a target accuracy ¢ for the off-diagonal elements of D.
3. Calculate the QR decomposition A=QR.

4. Update A to the new value A=RQ.

5. Multiply V on the right by Q.

A? Aalto University



The QR algorithm for diagonalizing a matrix (i.e. for calculating
its eigenvalues and eigenvectors):

1. Create an NxN matrix V and set it to the identity matrix.

. Choose a target accuracy ¢ for the off-diagonal elements of D.
. Calculate the QR decomposition A=QR.

. Update A to the new value A=RQ).

. Multiply V on the right by Q.

. Check the off-diagonal elements of A. If they are all less than
¢, we are done. Otherwise go back to step 3.

oo O KA W DN
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Key concept: QR decomposition

The QR decomposition is another factorisations of a
square matrix A. It factors A into an orthogonal and an
upper triangular matrix. Successive application of the
QR decomposition diagonalises a matrix and finds its
eigenvalues and eigenvectors.
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Linear equations - Eigenvalues and eigenvectors

* Numpy has build-in routines in its 1inalg module for finding
eigenvalues and eigenvectors:

from numpy.linalg import eigh,eigvalsh

x,V = eigh(A)
/ X = eigenvalsh(A)

eigenvalues and returns just eigenvalues
eigenvectors
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Linear equations - Exercise 4

* The matrix A has the QR decomposition:

(2 2 1 1 2 1
Q== 1 -2 2 R=3[0 1 2
S\ 9 1 o 0 0 1

1. Verify that Q7 Q =1
2. Check that QR = A



Linear equations - Exercise 5

1. Calculate the eigenvalues and eigenvectors of A using
the numpy function eigh.

2. Verify that VIAV =1
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