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Non linear equation: 

• non-linear equations are even more common than linear 
• they are much harder to solve than linear equations 
• numeric approaches for non-linear eqns are very important
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Solutions of linear and non-linear equations

Linear equation:

• sets of linear equations are very common in physics 
• they can be solved with matrix algebra 
• matrix algebra is one of the most important applications in 

computational physics
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Non linear equations - Relaxation method

non linear equation:

• We wish to know the value of x that solves the equation.

x = 2� e�x

VTAV = 1

QTQ = 1

A =

0

@
2 1 2

1 0 3

2 3 �2

1

A

QR = A

A =

0

@
2 6 7

1 0 �1

2 3 �2

1

A Q =
1

3

0

@
2 2 1

1 �2 2

2 �1 �2

1

A R = 3

0

@
1 2 1

0 1 2

0 0 1

1

A

Ak = (QT
k . . .QT

1 )A(Q1 . . .Qk) = D

V = Q1Q2Q3 . . .Qk =

kY

i=1

Qi

D = Ak = VTAV or AV = VD

Ak = D

1



Non linear equations - Relaxation method

non linear equation:

• We wish to know the value of x that solves the equation.

x = 2� e�x

VTAV = 1

QTQ = 1

A =

0

@
2 1 2

1 0 3

2 3 �2

1

A

QR = A

A =

0

@
2 6 7

1 0 �1

2 3 �2

1

A Q =
1

3

0

@
2 2 1

1 �2 2

2 �1 �2

1

A R = 3

0

@
1 2 1

0 1 2

0 0 1

1

A

Ak = (QT
k . . .QT

1 )A(Q1 . . .Qk) = D

V = Q1Q2Q3 . . .Qk =

kY

i=1

Qi

D = Ak = VTAV or AV = VD

Ak = D

1

• There is no known analytic solution. 
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• There is no known analytic solution. 

• If in doubt, try the simplest thing that comes to mind: start 
with a guess (e.g. x=1) and see what happens.
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• There is no known analytic solution. 

• If in doubt, try the simplest thing that comes to mind: start 
with a guess (e.g. x=1) and see what happens.
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Non-linear equations - Exercise 1

Solve.   a)                            b)  

1. Write a short program that iterates equations a) and b). 
2. Start iterating a) from x=1.0 and b) from x=0.5. 
3. At every step, take the difference to the value at the 

previous step and plot this difference as a function of 
iteration number.

Talking points: 
1. What do you observe? 
2. How many iterations do you need for 1E-3 

accuracy? 
3. What is happening in case b)?
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Non linear equations - Relaxation method
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• The solution converges to a fixed point.
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• The solution does not converge to a fixed point; no matter 
where we start. 



Non linear equations - error analysis

• To find out why iterating case b) did not work we assume we 
have an equation of type x=f(x) with a solution x* and then 
Taylor expand f(x) around the solution x*: 
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• Neglecting higher orders and rearranging gives:
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• We’ll come back to better solution methods.
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Key concept: iterating 
  
Solving equations iteratively is a common technique in 
computational physics. Non linear equations are such 
an example. 
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Key concept: iterating 
  
Solving equations iteratively is a common technique in 
computational physics. Non linear equations are such 
an example. 

Key concept: stopping condition 
  
Ensure that the iterative loop has a definite stopping 
condition. This could, for example, be the maximum 
number of iterations. Accuracy thresholds may not stop 
the iteration, if the iterative scheme does not converge.
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• In the mean-field theory of ferromagnetism, the strength M of 
magnetization depends on temperature T according to

M = µ tanh
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kBT
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• we make the following substitutions
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trivial solution for m=0

But we are interested in 
non-trivial solutions!
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• The relaxation method can easily be applied to several 
variables. 



Relaxation method for two or more variables

non linear eqns: x = f(x, y) and y = g(x, y)

m = tanh
Cm

T

m = M/µ and C = µJ/kB

M = µ tanh
JM

kBT

a) |f 0
(x⇤

)| =
���
⇥
e�x

⇤
x=�1.8414

��� = 0.1586

b) |f 0
(x⇤

)| =
���
h
�2xe1�x2

i

x=1

��� = 2

x0 � x⇤
= (x� x⇤

)f 0
(x⇤

)

x0
= f(x) = f(x⇤

) + (x� x⇤
)f 0

(x⇤
) + . . .

x = e1�x2

x0
= 2� e�1 ⇡ 1.632

x00
= 2� e�1.632 ⇡ 1.804

x = 2� e�x

VTAV = 1

QTQ = 1

1

• The relaxation method can easily be applied to several 
variables. 

• We guess the initial values for x and y and then iterate. 
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• The relaxation method can easily be applied to several 
variables. 

• We guess the initial values for x and y and then iterate. 

• However, just like in the one-dimensional case it is not 
guaranteed that the solution converges.
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set x1=x’, otherwise x2=x’. 
5. If |x1-x2| is greater than the 
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• Binary search is easy and fast.
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• Binary search is easy and fast.

• But it depends very strongly on 
the initial points x1 and x2.



Non linear equations - Binary search
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• Binary search is easy and fast.

• But it depends very strongly on 
the initial points x1 and x2.

• It is not guaranteed to find all 
roots, if the function has more 
than one zero.



Non linear equations - Binary search

Key concept: bisection method 
  
The bisection method is a general bracketing method. 
It can be used as an iterative method for non-linear 
equations, at which it is more robust than the relaxation 
method, but not without fail.



Non linear equations - Newton’s method
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• In Newton’s method we make 
use of the first derivative.
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• Our new guess x’ is then:
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• Newton’s method requires 
access to the first derivative.
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• Newton’s method requires 
access to the first derivative.

x’
• If we do not have it analytically, 

we now know how to compute 
the derivative.
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• Newton’s method is more robust 
than the relaxation or bisection 
method.
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• Newton’s method is more robust 
than the relaxation or bisection 
method.

• But it can also fail.
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Non-linear equations - Exercise 2

Solve:   a)                            b)  

1. For a), adapt your relaxation program to Newton’s method. 
2. For b), consult the in-class exercise sheet. Then write a 

function that calculates                     . 
3. Plot                     from -1 to 1.

Talking points: 
1. What do you observe? 
2. How quickly does Newton's method find the 

right solution? 
3. Does your function                    give the right 

solution?
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Non linear equations - Exercise 2



Non linear equations - Newton’s method

Key concept: Newton’s method 
  
Newton’s method is another simple, iterative method 
for non-linear equations. It is more robust than the 
relaxation and the bisection method, but not without fail 
either.
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Maxima and minima of functions 

At extrema: @f(x1, x2, . . .)
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Maxima and minima of functions 

At extrema: @f(x1, x2, . . .)
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• In principle, we could apply the root finding techniques we 
just learned directly to find the roots of the first derivatives.



Maxima and minima of functions 

At extrema: @f(x1, x2, . . .)

@xi
= 0 for all i
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• In principle, we could apply the root finding techniques we 
just learned directly to find the roots of the first derivatives.

• However, we do not always have access to analytic first 
derivatives. For this reason, we consider methods that also 
work without derivatives.



Maxima and minima -  Golden ratio search
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• Let us assume we are minimising f(x). For maxima, we can 
always minimise -f(x).



Maxima and minima -  Golden ratio search

f(x)

x4x1 x2 x3

• Let us assume we are minimising f(x). For maxima, we can 
always minimise -f(x).

Like in the bisection method, we 
iteratively reduce the size of the 
interval, until we find the minimum.
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• Note, we did not half the interval like in the bisection method, 

but introduced two new points x3 and x4.
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• Note, we did not half the interval like in the bisection method, 
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• Now we wish to place x3 and x4 optimally. Our two conditions 
are:

1. The interval in which the minimum falls should 
decrease by the largest amount possible. 

2. x3 and x4 should be positioned symmetrically, since we 
do not know in which interval the minimum will be.



Maxima and minima -  Golden ratio search
• Note, we did not half the interval like in the bisection method, 

but introduced two new points x3 and x4.

• Now we wish to place x3 and x4 optimally. Our two conditions 
are:

1. The interval in which the minimum falls should 
decrease by the largest amount possible. 

2. x3 and x4 should be positioned symmetrically, since we 
do not know in which interval the minimum will be.

• To satisfy 2, we choose:

x2 � x1 = x4 � x3
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and after the next partition should be as large as possible.
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Maxima and minima -  Golden ratio search
• For 1, we impose that the ratio of the search interval before 

and after the next partition should be as large as possible.

• In our example the minimum lies in the interval [x1,x3].

• We define the following ratio:
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Here we have used the 2nd 
condition to eliminate x4.



Maxima and minima -  Golden ratio search

• In the next step, the minimum lies in the interval [x1,x2], thus:
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Maxima and minima -  Golden ratio search
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• If we now want z to be the same (condition 1), we get:



Maxima and minima -  Golden ratio search

• z assumes the Golden ratio:
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Golden ratio search - algorithm

1. Choose two initial outside points x1 and x4, then calculate 
the interior points x2 and x3 according to the golden ration 
rule. 
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2. Evaluate f(x) at each of the four points and check that at 
least one of the points x2 and x3 gives a function value less 
than at both x1 and x4. Also choose a target accuracy for the 
position of the minimum.



Golden ratio search - algorithm

1. Choose two initial outside points x1 and x4, then calculate 
the interior points x2 and x3 according to the golden ration 
rule. 

2. Evaluate f(x) at each of the four points and check that at 
least one of the points x2 and x3 gives a function value less 
than at both x1 and x4. Also choose a target accuracy for the 
position of the minimum.

3. If f(x2)<f(x3) then the minimum lies between x1 and x3. In this 
case, x3 becomes the new x4, x2 becomes the new x3 and 
there will be a new value for x2, chosen once again 
according to the golden ratio rule. Evaluate f(x) at this new 
point.



Golden ratio search - algorithm

4. Otherwise, the minimum lies between x2 and x4. Then x2 
becomes the new x1, x3 becomes the new x2, and there will 
be a new value for x3. Evaluate f(x) at this new point.



Golden ratio search - algorithm

4. Otherwise, the minimum lies between x2 and x4. Then x2 
becomes the new x1, x3 becomes the new x2, and there will 
be a new value for x3. Evaluate f(x) at this new point.

5. If |x4-x1| is greater than the target accuracy, repeat from step 
3. Otherwise, calculate 0.5(x2 + x3) and this the final estimate 
of the position of the minimum.



Golden ratio search - algorithm

4. Otherwise, the minimum lies between x2 and x4. Then x2 
becomes the new x1, x3 becomes the new x2, and there will 
be a new value for x3. Evaluate f(x) at this new point.

5. If |x4-x1| is greater than the target accuracy, repeat from step 
3. Otherwise, calculate 0.5(x2 + x3) and this the final estimate 
of the position of the minimum.

• Golden ratio search usually converges fast, but it has the 
same problem as the bisection method:

If the minimum does not lie within the initial interval, it 
cannot be found.



Non-linear equations - Exercise 3

Buckingham potential:

1. Plot the Buckingham potential for σ=1. 
2. Complete the golden ratio example program to find the 

minimum of the potential. 
3. Check your computational against the analytic solution.

Talking points: 
1. What do you observe? 
2. What can you say about the Buckingham 

potential? 
3. How does the number of iterations depend on 

the specified accuracy?
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Exercise 3 - The Buckingham potential



Non linear equations - Golden ratio 

Key concept: Golden ratio 
  
Two quantities are in the golden ratio, if their ratio is the 
same as the ratio of their sum to the larger of the two 
quantities. In minima search, the golden ratio gives the 
optimal distance for reducing the search interval.



The Gauss-Newton method and gradient descent

• The golden ratio method is robust and reliable, but it cannot 
be generalized to functions of more than one variable. 
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The Gauss-Newton method and gradient descent

• The golden ratio method is robust and reliable, but it cannot 
be generalized to functions of more than one variable. 

• It also depends sensitively on the initial search interval. If the 
minimum does not fall into the search interval, it cannot be 
found.

• Let’s try something better.



The Gauss-Newton method and gradient descent

• Minima or maxima are the roots 
of the first derivative.
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The Gauss-Newton method and gradient descent

• Minima or maxima are the roots 
of the first derivative.
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• Newton’s method was good for 
finding roots. Let’s apply it:
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• This is the Gauss-Newton 
method.



The Gauss-Newton method and gradient descent

• If we have access to the 2nd 
derivative, Gauss-Newton’s 
method works great.
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The Gauss-Newton method and gradient descent

• If we have access to the 2nd 
derivative, Gauss-Newton’s 
method works great.
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• If we don’t, then we make a 
rough guess for it: 
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The Gauss-Newton method and gradient descent

• We obtain:
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The Gauss-Newton method and gradient descent

• We obtain:
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• This method is called gradient 
descent.
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The Gauss-Newton method and gradient descent

• We obtain:
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descent.
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• For reasonable values of γ, it 
will give you an answer with a 
reasonable number of steps.



The Gauss-Newton method and gradient descent

• We obtain:
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The Gauss-Newton method and gradient descent

• If we also don’t have access to 
the first derivative, we have to 
approximate that, too:
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Key concept: gradient descent 
  
Gradient descent is a very common optimisation 
(meaning minima/maxima finding) method. It requires 
knowledge of the derivative of the optimisation 
objective (i.e. here our function f(x)). If the derivative is 
not available, it needs to be approximated numerically.

The Gauss-Newton method and gradient descent



Maxima and minima of functions 

Note that we have only discussed local and not 
global optimisation schemes!

f(x)

x

local minima global minimum



Non-linear equations - Exercise 4

Buckingham potential:

Find the minimum of the Buckingham potential for σ=1: 
1. For the Gauss-Newton method. Start from r=σ. 
2. For gradient descent. 
3. For gradient descent with numeric 1st derivative.

Talking points: 
1. What do you observe? 
2. What happens when you start from r=4σ and 

why? 
3. What is a good value for γ in gradient descent?

V (r) = V0

⇣�
r

⌘6
� e�r/�

�

z =
1 +

p
5

2
= 1.618 . . .

z = 1/z + 1 or equivalently z2 � z � 1 = 0

z =
x3 � x1

x2 � x1

z =
x4 � x1

x3 � x1
=

x2 � x1 + x3 � x1

x3 � x1
=

x2 � x1

x3 � x1
+ 1

x2 � x1 = x4 � x3

@f(x1, x2, . . .)

@xi
= 0 for all i

tanh
�1

(u)

x0
= x��x = x� f(x)

f 0(x)

f 0
(x) =

f(x)

�x

1




