A0001 Mock ExAM
$P 1 \quad A=\left(\begin{array}{cc}0 & 1 \\ 0 & -1\end{array}\right) \quad \begin{gathered}A B \\ 2 \times 2\end{gathered} \underset{2 \times 2}{ } \Rightarrow B$ is 2×2.

$$
\begin{array}{r}
B=\left(\begin{array}{ll}
\beta_{11} & \beta_{12} \\
\beta_{21} & \beta_{22}
\end{array}\right) \Rightarrow \beta_{11}=\gamma, \beta_{12}=\mathcal{F} \\
\beta_{21}=\sigma, \beta_{22}=\delta-\delta
\end{array}
$$

P2 $\quad A, B: \quad A^{\top}=A^{-1} ; \quad B^{\top}=B^{-1}$

$$
\begin{aligned}
& (A B)^{\top}=B^{\top} A^{\top}=B^{-1} A^{-1}=(A B)^{-1} \\
& A^{\top} A=A^{-1} A=I ; A A^{\top}=A A^{-1}=I \\
& A^{\top} A^{-\top}=A^{-1} A^{-\top}=I ; \ldots
\end{aligned}
$$

P3 (a) No, $\operatorname{rank}(A)=2$.
Compute the row echulen form.
(b) Yes. For instance $x=\left(2,-\frac{1}{3}, 0\right)^{\top}$ is the solution of

$$
A x=b
$$

P4 (a) Any LU is OK.
(b) $\left|\left[\underline{a}_{1}, \underline{a}_{2}, \underline{a}_{3}\right]\right|=|\operatorname{det}(\ldots)|=6$

P5 $P(A)=-\lambda^{3}+3 \lambda^{2}+2 \lambda-4=0$

$$
\lambda_{1}=1 ; \lambda_{2,3}=1 \pm \sqrt{5}
$$

$$
\left(A-\lambda_{1} I\right) x=0 \quad \Rightarrow \quad V_{1}=(-1,0,2)^{\top}
$$

$$
\left(A-\lambda_{2} I\right) x=0 \quad \Rightarrow \quad V_{2}=(2, \sqrt{5}, 1)^{\top}
$$

$$
\cdots \quad \Rightarrow \quad v_{3}=(2,-\sqrt{5}, 1)^{\top}
$$

$$
\text { P6 } \begin{aligned}
Q & =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \\
A & =Q\left(\begin{array}{cc}
1 & 0 \\
0 & 1 / 2
\end{array}\right) Q^{\top}
\end{aligned}
$$

$$
\lim _{k \rightarrow \infty} A^{k}=Q\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) Q^{T}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

