oilon

Oilon – One degree better

Combustion Technology Tomorrow

Aalto University Energy Forum 29.11.2022 Espoo, Otaniemi

Joonas Kattelus CTO – Oilon Technology Oy

Content

- World in a rapid energy transition phase
- Role of combustion in the future
- Requirements for combustion in the future
- Threats and possibilities
- How is Oilon solving the puzzle?
 - Heat pumps
 - Burner technology

Part 1: What is happening around us in combustion technology context?

Part 2: How Oilon is reacting into that?

World in a rapid energy transition phase

- Background to rapid transition
 - > Global warming
 - ➤ Understanding of economic vulnerability increased due to Covid pandemic → there can be disruptions that break global supply chains → world is vulnerable to different threats
 - \succ Russian aggression towards Ukraine \rightarrow Europe needs to replace Russian fossil fuels extremely fast
- Megatrends that guide the transition
 - \succ Electrification \rightarrow heat pumps, electric process heating (electric boilers etc.), smart grids, small scale electricity production
 - ➢ Global supply chain vulnerability (Covid, political risks) and urbanization → circular economy models, rearranging of logistics and supply chains (City scale: public transport, underground network, alternative power sources. Global scale: securing alternative supply routes and spreding of primary component manufacturing to avoid political risks)
 - \blacktriangleright Abandoning of fossil fuels \rightarrow increased interest to fission and fusion, solar, wind and sea turbines and sustainable fuels

Role of combustion in the future

- **Does it stop existing?** → no, because it can be sustainable and for some cases it's the best alternative
- Does it transform according to new requirements? → yes
- Where do we need combustion in the future?
 - Utilization of energy storages to balance supply and demand
 - > P2X → X to heat
 - \circ Heat generation
 - For high temperature processes (industry, steam)
 - > For remote areas without sufficient electricity grid (scarsely populated, islands)
 - **For high capacity and quick ramp up back up systems**
 - Utilization of industrial side streams and circular economy (waste incineration, start up and support power for biofuel boilers, steel industry etc.)
 - $\circ \quad \text{Logistics} \quad$
 - > Aviation, Marine, Heavy transport? Trains?

5

Ref: China speeding up approvals for new coal plants: <u>Greenpeace (phys.org)</u>

Photograph courtecy of Oilon

Role of combustion in the future

- How can we combust sustainably?
 - Option 1: Switch to fuels that do not produce green house gases
 - Option 2: CCS (Carbon Capture an storage)
 - Mandatory: Minimize or get rid of other emissions such as NOx, unburned fuel or particles (yes it is possible to get rid of them completely)
- What are we combusting in the future?
 - Many alternative fuels that will compliment each other (just a mention a few):
 - ✤ Gaseous
 - > Synthetic methane
 - > Hydrogen
 - ➢ Biogas
 - > Ammonia
 - ✤ Liquid
 - > Methanol/ethanol
 - > Pyrolysis oil
 - > Biodiesel
 - > Other bio-oils
 - ✤ Solid
 - > Raw biomasses
 - ➢ Biochar
- Which ones will become the major fuels and which will be left marginal?

Photograph courtecy of Oilon

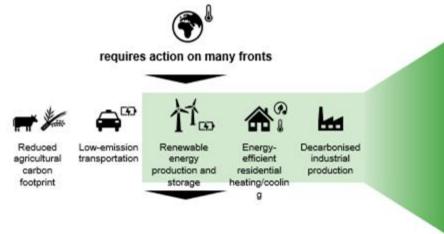
Requirements for combustion in the future

- What requirements do we have for combustion in the future?
 - Fuel transition -> Capability to utilize sustainable fuels that do not produce green house gas emissions
 - > Actions to take: Modular product structures to enable efficient product management and technology switch over
 - Application focus transition \rightarrow part of current applications will be electrified
 - > Actions to take: Re-define the business models and market+product scope
 - Fuel versatility \rightarrow increased need to burn multiple fuels with variable quality and composition in same combustion system
 - > Actions to take: R&D work to optimize component/part dimensioning, automation development to enable co-combustion flexibly
 - Minimal emissions with new fuels \rightarrow unburned/partially burned fuel, NOx
 - > Actions to take: CFD work and empirical testing, model development
 - + All the requirements that we have for combustion today
 - Combustion stability > Reliable use (ignition, capacity adjustment, O2 tolerances)
 - Turndown ratio

 \succ

- Energy efficiency
- Cost effectivenessEase of maintenance
- Flame dimensions
- ➢ 100 % safety

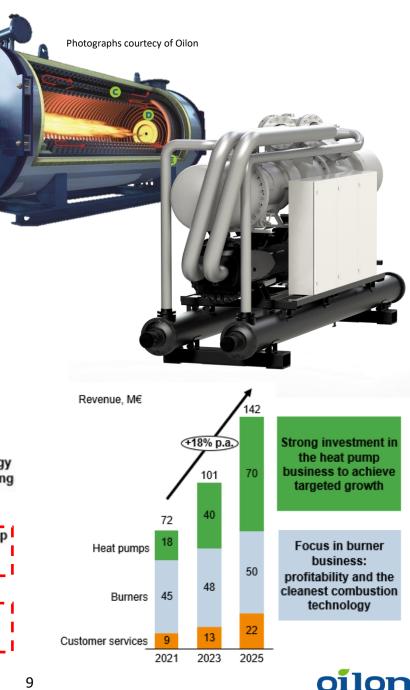
Threats and possibilities


• Threats

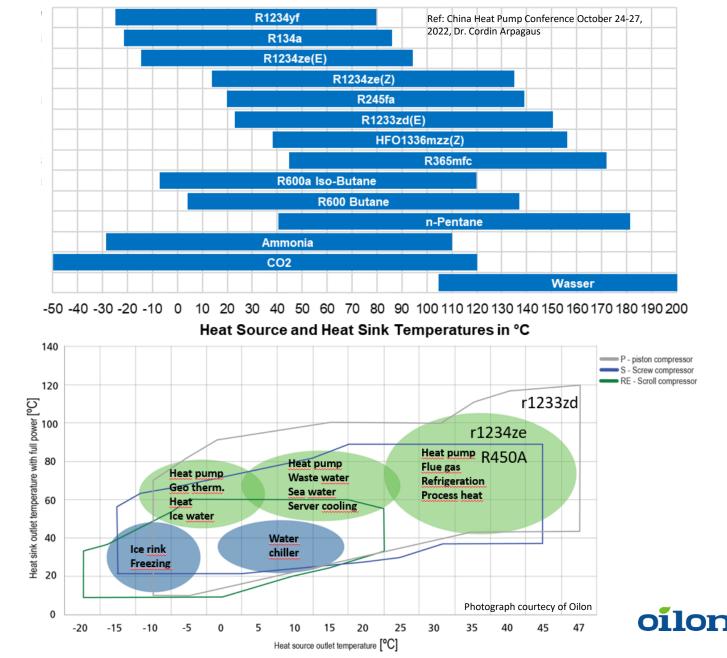
- Huge investment need \rightarrow will there be enough political will for funding?
- Some technologies will prevail and some are doomed to fail
- Electricity grid load balancing
- Possibilities
 - High level of energy independency achievable
 - Restrict global warming to sustainable level
 - Europe could claim world wide role of offering delivering sustainable energy technology and make lucrative business out of it

- Clear vision: Creating energy technology for sustainable future ٠
- Clear strategical focus ٠
- Balanced product portfolio (heat pumps and burners) .
- Strong R&D efforts \rightarrow HTHP technology, new refrigerants, sustainable fuels, low ٠ emission technology
 - Some examples to follow: research/patents, projects, CFD \geq

CLIMATE CHANGE IS ONE OF THE BIGGEST CRISES HUMANKIND HAS FACED ...

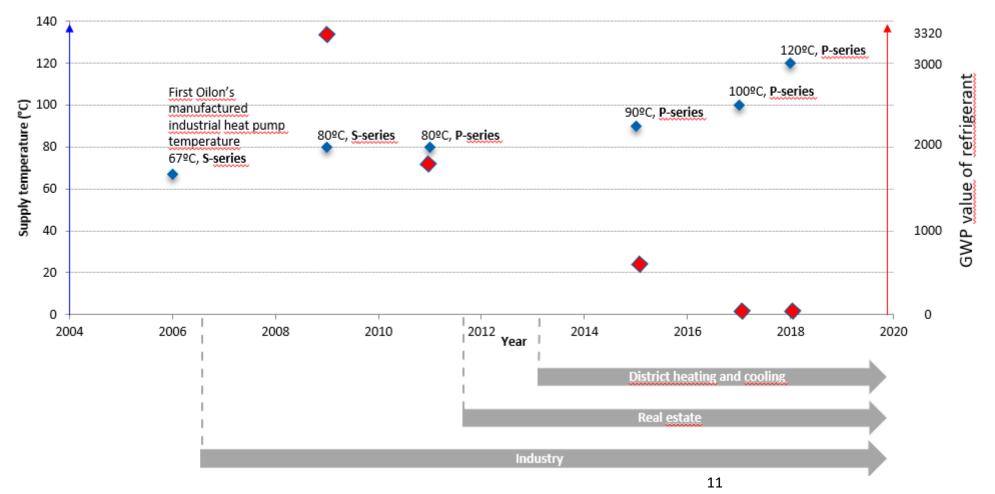

... AND OILON PLAYS A SIGNIFICANT ROLE IN SOLVING THE CLEAN ENERGY PUZZLE

Oilon's purpose is to provide energy technology that drives sustainable development by reducing emissions in a direct and measurable way.


Oilon has decades of experience in burner development. Oilon is a forerunner in lowemission technologies.

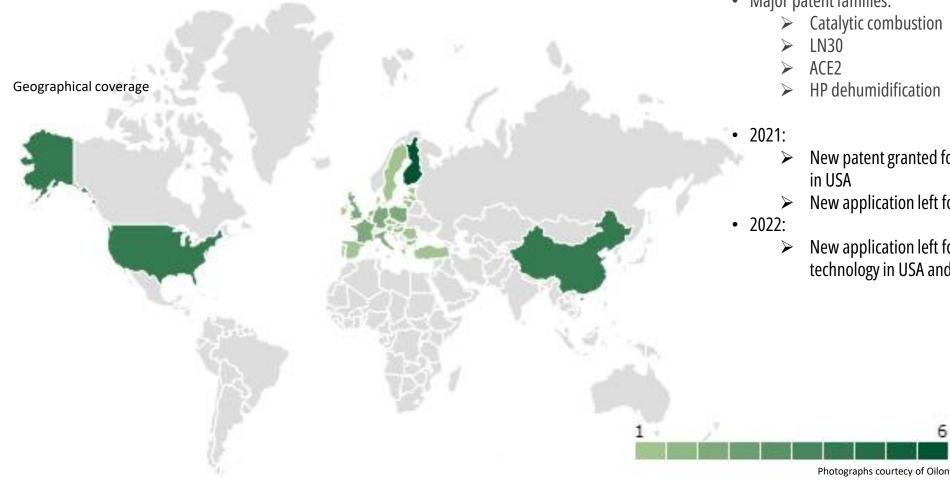
Industrial heat pump development

- New applications → increase envelope area (supply temperature)
 - Actions to take: New refrigerants and compressor technology
- Better efficiency → increase COP (heat/el.)
 - Actions to take: improve refrigeration cycle (for example by additional components like subcooler, economizer etc.)

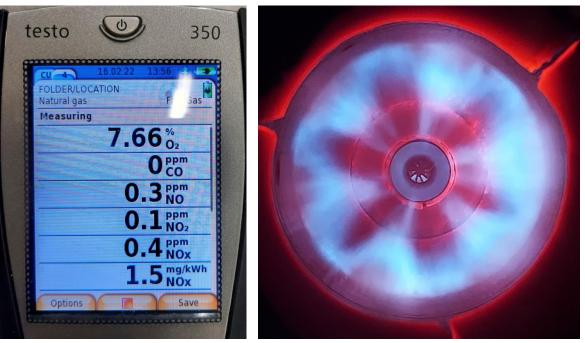

Refrigerants and achievable temperatures

Oilon industrial heat pump development 2006-2019

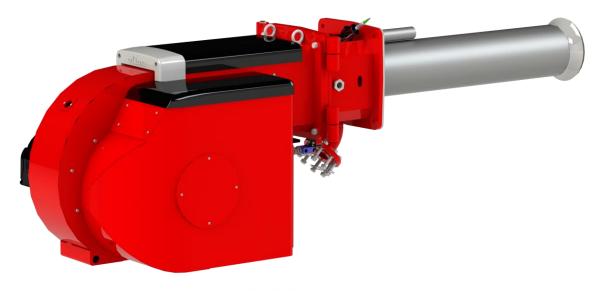
Photographs courtecy of Oilon



SUOMALAINEN INSINÖÖRITYÖPALKINTO


tfif

Strong R&D investments



- IPR = Intellectual Property Rights, meaning patents and utility models
- Major patent families:
 - Catalytic combustion
 - HP dehumidification
 - New patent granted for LN30 technology
 - New application left for ACE2 in Finland
 - New application left for 2.5 ppm LN30 technology in USA and FI

- Project target: Reach world record NOx performance of 2.5 ppm (ref 3% O2) without FGR
- Based on new idea of air/fuel premixing + utilizing internal flue gas circulation without traditional mesh technology
- Project status:
 - > All 5 UL models designed (North American market)
 - New model GP-600 M-II LN30 tested and performance ensured
 - UL-approval testing ongoing
 - > Currently arranging pilot testing in USA
 - > EU models need to be designed and tested (GP-250 and 350)
 - > Patent pending

Photographs courtecy of Oilon

- Project target:
 - 1. To reach 30 mg/nm3 NOx performance without FGR and elevated O2 throughout the ACE capacity range
 - 2. To reach 9ppm with elevated O2
- Technological idea is to effectively recirculate flue gases inside the furnace instead of external pipe system
- Project status:
 - Extensive CFD and empirical research has been made over 2 years.
 - Newest prototype is promising. Targets already fulfilled in certain points at laboratory conditions
 - > Patent will be applied with world wide coverage

Photographs courtecy of Oilon

15

Sustainable fuels

- \rightarrow Oilon already has significant amount of references for varying H2 compositions
- Low NOx H2 research is going to be continued by accuiring Hydrogen to Oilon's laboratory facilities and \rightarrow developing suitable CFD-models (co-operation with Aalto and hydrogen providers)
- \rightarrow 0ilon has respectable amount of references for other fuels of the future as well. See our offering to H2 below:

Burner:

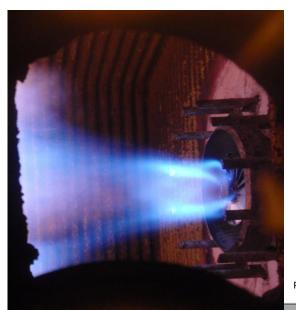
- 0-20 vol-% of H2 \rightarrow
- 20-70 vol-% of H2 \rightarrow
- 70-100 vol-% of H2 \rightarrow

Gas train:

- 0-20 vol-% of H2
- \rightarrow 20-70 vol-% of H2

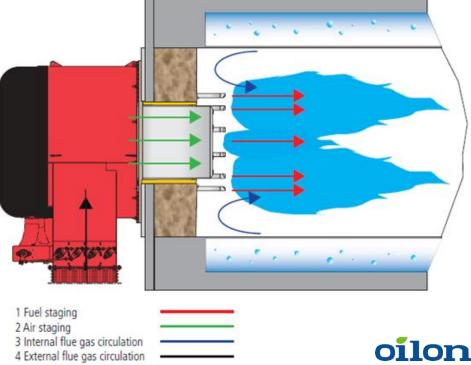
 \rightarrow

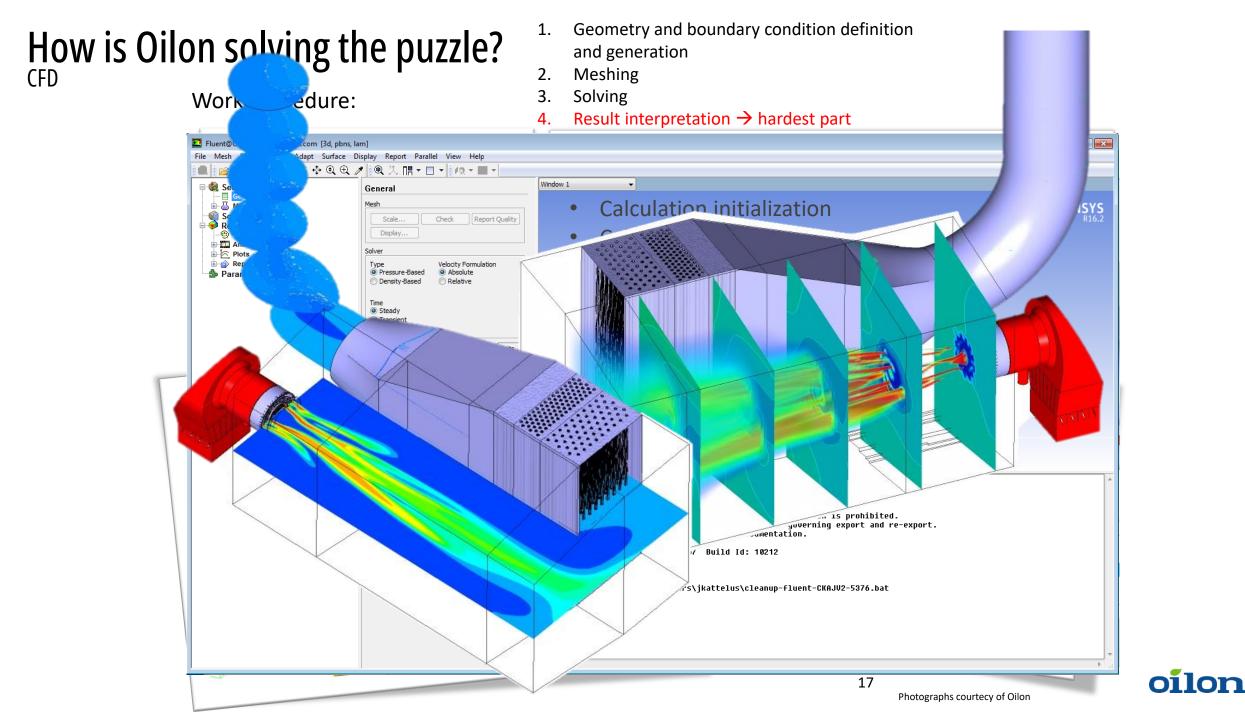
 \rightarrow


 \rightarrow 70-100 vol-% of H2

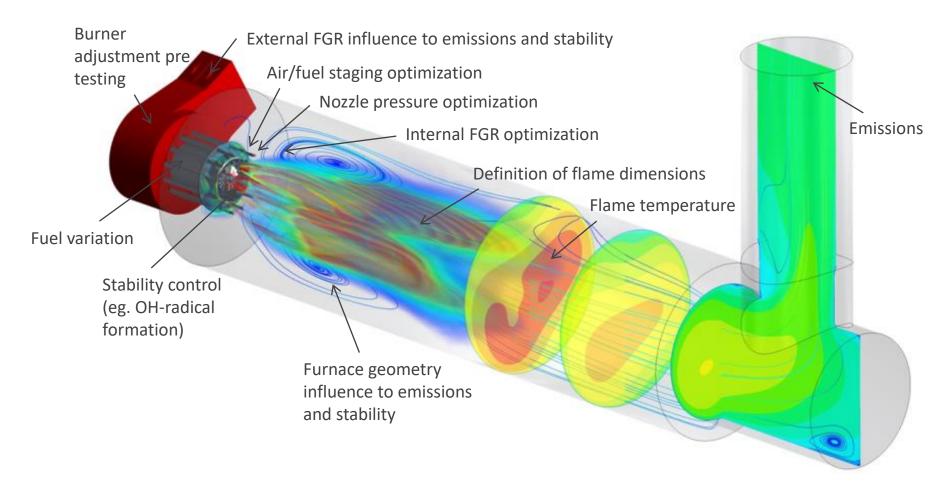
Automation:

- 0-20 vol-% of H2 \rightarrow \rightarrow
- 20-70 vol-% of H2
- 70-100 vol-% of H2


All Oilon burners All Oilon burners with special nozzle structure


- ACE burner series (LN80)
- Standard gas train configurations
- Standard gas train configurations
 - Special gas train with possibility for nitrogen purging and flame arrester
- All Oilon supported automations
- All Oilon supported automations
- Lamtec CMS/Siemens PLC, special flame detector

16


Photographs courtecy of Oilon

CFD modelling – Example: ACE1 development

performance optimization:

Q&A Common discussion