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Privacy in Speech Technology
Tom Bäckström, Senior Member, IEEE

Abstract—Speech technology for accessing information and
services has rapidly improved in quality. It is convenient and ap-
pealing because speech is the primary mode of communication for
humans. Such technology however also presents proven threats
to privacy. Speech is a tool for communication and it will thus
inherently contain private information. Importantly, it however
also contains a wealth of side information, such as information
related to health, emotions, affiliations, and relationships, all of
which are private. Exposing such private information can lead
to serious threats such as price gouging, harassment, extortion,
and stalking. This paper is a tutorial on privacy issues related
to speech technology, modeling their threats, approaches for
protecting users’ privacy, measuring the performance of privacy-
protecting methods, perception of privacy as well as societal and
legal consequences. In addition to a tutorial overview, it also
presents lines for further development where improvements are
most urgently needed.

Index Terms—speech technology, privacy and security, ma-
chine learning

I. INTRODUCTION

SPEECH is a mode of communication and thus inher-
ently contains a wealth of information (see table I).

Communicating information already known by the receiver
is pointless, and efficient communication will thus mainly
contain information that is not widely known or which is
private. In addition, speech contains also a wide range of side
information like the state of health and emotions, as well as
physical, psychological, and social identity, most of which is
private information. Finally, speaking is a dynamic interaction
between two or more speakers. Dialogues thus also contain
information about the relationship between participants such
as their level of familiarity, affiliation, intimacy, relative hierar-
chy, shared interests, and history. From an information content
perspective, we can thus expect that privacy is a multifaceted
issue in all areas of speech technology.

Studying and improving privacy in speech technology is
important because breaches in privacy can have serious conse-
quences. Table II lists examples of threats and exploits. The list
is incomplete and we can expect new threats to be discovered.
The generic solution template is however typically always the
same: Minimize transmission and storage of as well as access
to sensitive information which is irrelevant to the service that
the users want. It is then ”merely” a question of how such
minimization is achieved, what information is relevant, and
how to determine what the user wants (provide information
and enable control of services and threats).

With respect to threats, media attention is often focused
on breaches which have large economic consequences [1–3].
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TABLE I
A SELECTION OF CATEGORIES OF PRIVATE INFORMATION POTENTIALLY

IDENTIFIABLE FROM SPEECH SIGNALS, AND THE EXTENT TO WHICH THEY
ARE SUSTAINED OVER TIME AND CAN BE WILLFULLY CONTROLLED.

Category Examples Permanence Control
Biological Body characteristics Sustained No

State of health Variable No
Psychological Emotions Variable Partly

Intelligence Sustained No
Education, skill Sustained Yes
Gender identity Sustained No

Message Text, emphasis, style,
expression

Variable Yes

Mannerisms, context Variable Partly
Language
choice & skills

Partly Partly

Affiliation Ethnic, national,
cultural, religious,
political, etc.

Sustained No

Relationship
character

Hierarchy, familiarity,
attraction, intimacy

Sustained Partly

Has met with person Variable Yes
Physical
environment

Background sounds,
distance to sensor,
transmission distance,
reverberation, location

Variable Yes

Hardware
used

Sensor type & manufac-
turer

Variable Yes

TABLE II
PRACTICAL EXAMPLES OF THREATS RELATED TO PRIVATE AND SENSITIVE

INFORMATION THAT IS CONVEYED BY PEOPLE’S VOICES.

Exploit Example
Price gouging Signs of depression or other health problems in users’

voices could be misused to trigger an increase in their
insurance premiums. Signs of users’ emotions could be
exploited to offer them products at higher prices.

Tracking,
stalking

Voice re-identification could link users across platforms,
i.e., from work-related social media to online support
groups and dating apps, making it possible to follow
them anywhere.

Extortion,
public
humiliation

Private health problems and romantic affairs could be
detected in the voice and used for blackmail or made
public against a user’s wishes.

Algorithmic
stereotyping

Recommender systems based on voice can become bi-
ased with respect to age, identity, religion or ethnicity,
in ways that are nearly impossible to monitor.

Harassment,
inappropriate
advances

Users in chat rooms or virtual reality could be automat-
ically singled out by gender or opinions, making them
a target for unwanted attention and harassment.

While such breaches are important by themselves, the media
attention introduces unfortunate biases in two ways. First,
a breach is a worst-case event whereas threats, which have
not yet led to a breach event, can already have a large
impact. For example, users may choose not to use systems
that threaten their privacy; known weaknesses and even a lax
attitude of the service provider toward privacy can therefore
have an effect on the adoption, retention, and sales of products
and services. Importantly, users can avoid systems that are
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perceived threatening, even when there is no actual threat. To
maintain users’ trust, it is therefore important to both uphold
the users’ actual privacy, but also design systems to actively
and frequently communicate the level of privacy, including
known threats, their current status, and measures taken to
protect against them.

Second, while a single breach in a large service can
have large economic, psychological, societal, and legal con-
sequences, small crimes are so common that their joint effect
is comparable or larger in size [4]. With speech technology,
such ”small” crimes include stalking, extortion, harassment,
humiliation, and inappropriate advances (see table II). While
the economic damage of a single such incident can be small,
when combined, their joint psychological and societal effect
is potentially large and their prevalence makes them a consid-
erable threat also economically.

There are two primary uses of speech technology, telecom-
munication, and human-computer interfaces. With respect to
telecommunication, approaches to ethical, legal, and tech-
nological questions related to privacy in telecommunication
over landlines are well-established, and open discussions are
primarily related to how the existing regulation and oversight
should be extended to cover also mobile telecommunication
and voice-over-Internet protocols (VoIP) [5–7]. The scope of
this paper can thus be limited to human-computer interfaces
where a computer processes speech signals (see fig. 3). An-
other limitation is that focus is here limited to the acoustic
speech signal also known as the voice since natural language
processing is a distinct and largely independent field that
warrants its own treatment (e.g. [8]).

Privacy is closely related to challenges in security and it
is often difficult to distinguish between them. Here we strike
the balance by considering privacy scenarios where an agent
has legitimate access to some private speech data of the user,
but uses it for purposes contradicting with, or gains access
beyond, the users’ expectations or preferences. For example,
a voice interface can be used to control home automation,
but if the service provider shares that data also to advertisers
against the users’ preferences, then it is a violation of privacy
(see fig. 4). Consequently, security concerns such as identity
spoofing, deep fakes as well as attacks on devices or networks
are also excluded here, as these threats are more related to
security rather than privacy.

This paper presents a tutorial overview of privacy in speech
technology that covers a wide range of threats, methodologies,
and algorithms. Analysis of threats however demonstrates that
while attack surfaces have great variety, the threat models
are similar (see section II). Protection against those threats
have four distinct categories of approaches, removing side
information, improving overall system performance, limiting
access to private message and limiting access to reproduced
audio (see section III). To quantify of extent of protections we
further need methods for objective evaluation (see section IV).
While objective evaluation quantifies the actual level of pri-
vacy, users’ impressions of privacy do not necessarily follow
the objective level. For the best user experience, therefore, we
need to quantify and understand users’ perceptions, experi-
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Fig. 1. The high-level threat model of speech interaction, where a private
message is sent through a channel to the legitimate recipient, but consequential
side-information is bundled to that message. It is a threat to privacy when an
undesired recipient gains access to that private message or side information
(marked by red arrows and exclamation marks).

ences, and preferences related to privacy, as well as design
systems accordingly (see section V). The range of applica-
tions and content types where privacy-preserving processing
methods are needed is vast and section VI presents a brief
overview thereof. Finally, threats to and breaches in privacy
have considerable consequences on both societal, economic,
and individual levels, which has motivated governments to
increasingly regulate the use of technology (see section VII).

To the author’s knowledge, this is the first wider tutorial
overview of privacy in speech technology. Recent works in the
field however include an technical overview [9], as well as a
popular-science review [10] of this area, and several doctoral
theses have their respective summaries, e.g. [11–14]. Privacy
has been extensively discussed in other areas of science, such
as the neighboring field of natural language processing [8],
in statistical theory of privacy [15], in social sciences [16]
and psychology [17]. There is even an excellent and thorough
meta-study of all areas of science which discuss privacy [18].

II. THREATS

A. Exposure

Speech information can be exposed in two forms (see fig. 1):
First, when a private message is transmitted, it is a threat to
privacy when contrary to the preferences of the user, it is used
in an unexpected way or transmitted to a third party. Second,
since speech contains a wide range of private information (see
table I) which is bundled in the acoustic signal in complicated
ways, it is challenging to extract only the desired message.
Typically speech information thus always contains consequen-
tial side-information, bundled into the private message. It is
a threat to privacy when such private side-information is
transmitted to an undesired recipient alongside the private
message. Per definition, we here assume that the legitimate
recipient can be trusted with the side information and that any
undesirable use of it is labeled as an undesirable service.

The difference between the two forms of information makes
an important difference in approaches to mitigation. When a
private message is exposed, then our only available solutions
are to either reduce the accuracy or to limit access to the
private message for example through cryptography (see sec-
tions III-C2, III-D and IV-B). However when side-information
is exposed, as additional methods we can also use signal
processing to better remove, replace or distort such side-
information (see section III-A).
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Observe that the threat exposure does not depend on the
route of the information, as long as the content arriving to the
undesired recipient is the same. The attack surface or channel
which leaks information to the undesired recipient however
does have a large impact on the choice of mitigation (see
section II-E). The type of undesired recipient, be it a service,
device, or person, has an effect mainly on its potential ability
to extract and use private information in a nefarious way.
The main difference in the type of sender, person, device, or
service, is their different ability to remove side-information
from the speech signal prior to transmission.

B. Inference of Attributes and Identity

Threats to the speakers’ privacy can be categorized into
two varieties; property/attribute inference and re-identification.
The difference is that given a single known speaker, through
property inference we can associate new private information
or attributes to that speaker. In comparison, by analyzing
(anonymized) speech data of an unknown speaker, we can
assign the identity to the most likely speaker within a database
of a multitude of speakers. The only difference is thus that in
property inference we assign attributes to a single speaker,
whereas in re-identification we look at many speakers and
assign attributes to one (or a subset) of them. However, if we
treat the physical identity (like the name on the passport) as
a property or attribute of the speaker, then re-identification
means that we have been able to infer a property of the
speaker. Re-identification is, in this sense, one particular type
of property inference.

C. Attacker Scenarios

Attacks can further be classified according to the amount
of information available for the attacker, such as information
about the speakers and about the trained models. Access to
the training data as well as speech samples from the specific
user (known as enrollment data) are particularly useful for
the attacker. For example, in the anonymization task of the
VoicePrivacy 2022 challenge, the objective was to replace
(pseudonymize) speaker identity but retain all other speech
characteristics such as linguistic information. The anonymized
sentences are known as trial utterances. The attack scenarios
were then classified as [19]:

1) Unprotected: no anonymization is performed; attackers
have access to original trial and enrollment data.

2) Ignorant attacker: Trial data is anonymized, but attackers
are unaware of it, hence they use original data for
enrollment.

3) Lazy-informed: Both trial and enrollment data are avail-
able to attackers, but anonymized with different pseudo-
speaker.

4) Semi-informed: As in lazy-informed, attackers can also
train their model with the same anonymization system
but different pseudo-speakers.

With increasing information, obviously, the attacker’s task
becomes easier and the accuracy of the attacker’s models
improves. Further, such attack scenarios can then be devised

Private
data

Anonymization Public
data

Downstream
application

! Private
information

Found data Attacker

Fig. 2. An attack model for the evaluation of privacy-preserving anonymiza-
tion, where private data is anonymized to remove private information, and the
anonymized data is shared publicly. An attacker uses any available (found)
data and anonymized public data to infer private information contrary to the
users’ preferences. Anonymized data flow is indicated by dashed lines and
the attack by red lines and an exclamation mark.

according to the specific use case. For example, if the task is to
anonymize emotional or health status, we can define different
attack scenarios depending on the extent to which the attacker
has information about categories of emotions and health status
used in anonymization.

D. Attack Model

Figure 2 illustrates an attack model for measuring the extent
of privacy [20]. We assume that there is some private data,
which is anonymized such that it can be used in a trusted
task. The attacker has access to the anonymized data, which
is here called ”public data”. Observe that the public data
is not necessarily openly available for anyone to see, but it
only indicates that the data is sufficiently freely available that
the attacker has access to it. The attacker has also access to
some other data about speakers, found from some other source
(found data), which helps in extracting private information.
Again, the term ”found data” is a loose term and denotes any
data that is available to the attacker.

E. Attack Surfaces

We categorize scenarios according to the attack surface from
where information is extracted (see fig. 3); a channel between
cloud services (section II-E1), a user interface to the edge
device (section II-E2) or to the cloud service (section II-E3),
from the local network (section II-E4), the acoustic pathway
(section II-E5), or through the shared user interface of the
local device (section II-E6). We consider only cases where
a piece of technology is receiving or transmitting information
and exclude human-to-human communication without devices.
We also assume that devices and network connections are
secured such that only authorized services can communicate
with them. The threats we focus on are thus illustrated with
solid lines in fig. 3.

1) Cloud Leak: Suppose a user accesses a remote cloud
service through an edge device (see fig. 4). The cloud service
thus has legitimate access to the private message of the
user. The cloud server however can then use that private
message or bundled side information for some other purpose
than that requested by the user, extract more information
than anticipated, combine it with other information, or share
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Fig. 3. Threats to the privacy of a user Alice when speaking with another
person Bob or a local device, but where information is leaked or shared
through the acoustic pathways, the edge device, the network or the cloud
service, to another person Eve, device or service, contrary to the preferences
of Alice (red arrows). Each threat is marked with the number of the
corresponding part of section II-E. Dotted lines marked with ”X” indicate
threats outside the current scope and are not considered here.
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Fig. 4. Threat scenario ”Cloud Leak”, where a user Alice accesses a (primary)
cloud service using an edge device, but the information is shared to a
secondary service contrary to preferences (red arrow and exclamation mark).

information with a third party. For example, the cloud server
of a voice assistant could inappropriately share information
with an advertiser.

2) False Activation: Devices with speech interfaces can
hear all conversations in the same acoustic space as the
device and therefore need mechanisms to determine which
utterances are intended for the speech interface. A popular
approach is to use a specific utterance, known as a wake
word, to start all interactions with the interface [21]. The wake
word is then like a rudimentary password, which prevents the
interface from activating when speech is not directed to the
device. Unfortunately, designing wake word detectors is non-
trivial, and they will occasionally make mistakes. They might
sometimes miss a wake word when it is spoken (false negative)
or mistake some other unrelated sound as a wake word (false
positive). While false negatives are annoying for the user
when the service does not activate, false positives potentially
present serious threats to privacy. In some famous cases,
speech interfaces have activated from sounds on the television
to buy unwanted items at the users’ behest, and users’ private
conversations have been leaked to third parties [22, 23].

3) Cloud Access: Figure 6 illustrates the threat where a
user Alice accesses a cloud service through an edge device,
and where some private information of Alice is stored. A
second user Eve can then access the same cloud service
through another device and potentially gain access to the
stored private information, contrary to Alice’s preferences.
This attack surface is similar to the Cloud Leak scenario, with
the main difference being the recipient, which is here a person,
whereas, in the Cloud Leak scenario, it is an automated agent.

An example of this threat is medical records, which can be
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Alice

Local
device

Cloud
service

!

Fig. 5. Threat scenario ”False Activation”, where a user Alice accesses an
edge device, but the information is shared to a cloud service contrary to
preferences (red arrow and exclamation mark).
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Fig. 6. Threat scenario ”Cloud Access”, where user Alice uses a cloud service
through an edge device, where it is potentially stored and shared with user
Eve, contrary to Alice’s preferences (red arrow and exclamation mark).

collected from patients to a centralized database. A researcher
with authorization to access the database can then potentially
extract private information beyond the expected. [24]

4) WASN Authentication: The audio quality of speech
pickup as well as the usability of voice interfaces can be
improved by using all available connected devices with mi-
crophones that reside in the same room or acoustic space [25–
27]. Such collaboration can be realized with acoustic sensor
networks, where several independent devices simultaneously
pick up speech and where several channels are combined to
obtain a high-quality signal (see fig. 7) [11, 13]. A sensitive
question is however authorization; Which devices are allowed
to share information? One approach is to assume that those
devices which are in the same room or acoustic space can
hear the same signal [13, 28]. Presence in the same space
is thus already an implicit authorization to participate in a
joint signal pickup. To protect privacy, it is then necessary to
determine which devices reside in the same acoustic space.
Devices in a different room can belong to the same company
or family, and they can be connected to the same network,
but still, they are outside the sphere of the current discussion.
Without proper authorization mechanisms, devices outside the
room could then gain access to private speech inside the room.

5) Speech Interface and Discussion Leaks: Figure 8 il-
lustrates a scenario where a device or person overhears a
discussion between a user Alice and a local device. Similarly,
fig. 9 illustrates a discussion between two persons, overheard
by a local device. The defining property of both scenarios is
the leak in the acoustic pathway, which necessitates that the
eavesdropper is physically present in the same acoustic space
as the private communication. There are four distinct cases to
consider depending on whose speech is heard, Alice (or Bob)
or the local device, and who is the eavesdropper, Eve, or the
other local device.

In the case where Eve overhears Alice’s speech, we assume
that people have a learned awareness of which other people are
present in the same room and adjust their speech accordingly;
Then either Alice does not mind that Eve overhears her speech
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Fig. 7. Threat scenario ”WASN Authentication”, where a user uses a service
through a distributed sensor network inside a room, but another device, outside
the room in the same network, joins the distributed sensor network and shares
information contrary to preferences (red arrow and exclamation mark).
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Room

Fig. 8. Threat scenario ”Speech Interface Leak”, where a user Alice accesses
an edge device (potentially including also a remote service), but another local
person Eve, or device in the same room or acoustic space overhears the speech
interaction contrary to preferences (red arrow and exclamation mark).

(inconsequential information), Alice can change her speech
style to a whisper, or change content, such that Eve does not
hear anything private (reduced information transmission) or
she can go to a different room to continue the interaction in
private (modified acoustic channel).

6) Shared Device: Many practical scenarios include one or
several devices shared by multiple users. For example, a family
can share a smart speaker or television, an office meeting room
can have smart devices and customer service points can have
a phone shared across duty officers. Each of these devices can
collect private information about the user(s) over time and can
potentially share it with other users (see fig. 10). Notably, this
scenario highlights that leak happens over a distance in time,
whereas threats occurring over a spatial distance often receive
the majority of the attention.

This threat model clearly demonstrates that devices and
services used by multiple users need to employ access control
and authorization management if they store any private infor-
mation. It is also obviously related to many security threats
– unauthorized access to devices should be prevented – but
those are outside the scope of this work.

7) Levels of Trust: In the Cloud Leak-scenario in fig. 4,
observe that it represents a sequence of automated agents
– edge, primary and secondary cloud services – where it
would be desirable that with each step in the sequence, the
amount of information shared is reduced (see fig. 11). Such
minimization of the potential attack surface is sensible from a

Local
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service
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Bob

! !

Fig. 9. Threat scenario ”Discussion Leak”, where a dialogue between two
users, Alice and Bob, is picked up by a local device and potentially shared to
a remote service contrary to preferences (red arrow and exclamation mark).
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Fig. 10. Threat scenario ”Shared Device”, where user Alice uses an edge
device, where information is stored, and shared with another user Eve,
contrary to Alice’s preferences (red arrow and exclamation mark).

risk management perspective. However, at the same time, we
can interpret this as levels of trust. The user can exert direct
control over the local acoustic space and the edge device,
and thus correspondingly we can expect that the user has
the highest level of trust in the edge device. With each step
further in the sequence, the level of control will diminish and
similarly, the level of trust decreases.

Trust is clearly a concept that depends on at least the
psychological, social, and cultural context, making it hard
to define. Here we however define trust as follows. If user
Alice has observed an agent for some time, they can form
a prediction of how the agent will behave. If the probability
distribution of the prediction is narrow, then Alice has high
confidence in that prediction. We then say that Alice has
trust in the agent. We thus define that a prediction of high
confidence is equal to trust. If the prediction is also that
the agent behaves in a beneficial way for Alice, then they
perceive the agent as trustworthy. This is however dependent
on Alice’s ability to predict actions. If the agent actually
behaves beneficially, then the agent is objectively trustworthy.

III. PROTECTIONS

A. Reducing Side Information

The primary approach for reducing private side information
in speech signals is signal processing. It has two opposing
objectives corresponding respectively to utility and privacy;
1) the trusted task of processing or analysis, where some cat-
egory of information is extracted for a legitimate purpose and
2) protection against the threat task, where a nefarious operator
tries to extract private information beyond the legitimate objec-
tive. Quality of the trusted task typically follows classic speech
processing methodology, while protection against the threat
task can be achieved by removing, replacing, or distorting
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Fig. 11. Two alternative protections against the ”Cloud Leak” scenario, where
the transmission of private information to the cloud is either (a) reduced or
(b) prevented.

private information. The central question is how information
for the trusted task is separated from other private information.

The most common approach for protecting against this
scenario is to limit information flow from the local edge device
to the cloud server (see fig. 11). Such limitation or reduc-
tion in information flow can be implemented by removing,
replacing, or distorting private content as in fig. 11(a). At the
extreme, the edge device can be entirely disconnected from
the cloud or network, and process information only locally,
as in fig. 11(b) [29]. In doing so, we then need to assume
that the local device has sufficient capacity and software to
complete the requested tasks, that it is not compromised, and
that the restriction of information flow is sufficient to ensure
that private information is not leaked.

The two main approaches for removing private information
are based on an information bottleneck or an adversarial
model. Information bottlenecks are based on squeezing the
desired information through a metaphorical bottleneck, such
that there is no room for side-information to pass through [30].
Often such models follow an autoencoder structure, which is
trained to reconstruct the input signal from the transmitted
signal (see section III-A1).

Adversarial models (which should not be confused with
generative adversarial models) are in turn used in the training
of machine learning models to make sure that no private infor-
mation can be deduced from the transmitted information. It is
based on modeling both the trusted and threat tasks in parallel,
but the transmitted message is optimized so that the trusted
task succeeds and the threat task fails (see section III-A2).
A generalization of the information bottleneck idea is to
disentangle speech into multiple independent data streams.
This allows applications to cherry-pick the private information
that should be transmitted case by case (see section III-A3).

1) Information Bottleneck: To distill only the private mes-
sage and discard any side-information, with the information
bottleneck approach, speech information is passed through a
bottleneck so tight, that only the legitimate message can pass
through [31, 32] (see fig. 12). This approach thus provides
protection against an attacker who has access to the output
of the bottleneck. The challenges are to design a bottleneck
that is sufficiently tight such that private side information is
discarded and a model structure and training methodology
which optimizes the quality of the legitimate message.

Information content at the bottleneck can be reduced by

Inference
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User Encoder Bottleneck Decoder Loss

Output

Label

Local device
Primary
service

!

Fig. 12. Training of a privacy-preserving speech analysis method with the
information bottleneck principle. The point of attack is indicated by the red
arrow and exclamation mark.
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User Encoder Bottleneck Decoder Loss

Output
−!

+

Fig. 13. Training of a privacy-preserving an autoencoder structure as an
example of the information bottleneck principle. The point of attack is
indicated by the red arrow and exclamation mark.

either reducing the signal rank (reducing the number of units of
data passed through the bottleneck, e.g. [33]) or by quantizing
and coding the signal at a low bitrate (e.g. [9, 34]). The trade-
off between the accuracy of reconstruction and bottleneck
entropy then determines the extent of privacy (see section IV).

In parallel, when using a machine learning model, the
model has to be trained for the best trade-off between utility
and privacy. Typically this entails minimizing the loss in the
accuracy of the private message. For example, if the task is to
extract text content with an automatic speech recognizer, then
the error rate of that recognizer should be minimized.

A frequently used approach to implementing a bottleneck is
an autoencoder structure, consisting of an encoder, bottleneck,
and a decoder, where the objective is to reconstruct the
input signal from the bottleneck output [33, 35, 36] (see
fig. 13). However, to be privacy-preserving, the bottleneck
should be sufficiently tight that the original speech signal
cannot be perfectly reconstructed to resemble the original in
their waveform. This makes it challenging to design a loss
function because the output does not sufficiently resemble
the input. One solution akin to representation learning is to
feed the output of the autoencoder again to the encoder and
compare the bottleneck features [37, 38].

2) Adversarial Approach: An alternative to reducing the
size of the information bottleneck is to use an adversar-
ial model during training, such that side-information in the
bottleneck is minimized [39, 40]. Figure 14 illustrates the
model structure, where the trusted and threat tasks correspond
respectively to utility and privacy, which in turn respectively
correspond to the extraction of the private message and side-
information. The threat task is independently optimized to
extract private side information from the bottleneck output.
While keeping the threat task fixed, the encoder and the trusted
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Fig. 14. Training of a privacy-preserving speech analysis method with
an adversarial approach. The trusted task is authorized to extract some
information, while the threat task (drawn in red) is extracting some other
private information. During training, the trusted task is competing with the
adversarial threat task, such that in the encoder block, all private information
is removed. During inference, the threat task can be ignored.
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Output
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Fig. 15. Privacy-preserving speech processing through disentanglement,
where speech is decomposed into independent streams of information, each
representing a distinct category of information and where the level of
anonymization can be individually chosen for each category. The point of
attack is indicated by the red arrow and exclamation mark.

tasks are jointly optimized to maximize the accuracy of the
private message and to minimize the accuracy of private side
information.

Adversarial training thus has a mixture of maximizing and
minimizing the accuracy of private side information. This
forces the encoder to minimize private side information passed
through the bottleneck, since the threat task tries to maximize
the extraction of private side information.

An advantage of an adversarial configuration is that the
designer can specifically choose which type of threat and
information category is removed from the data. The system
can also be optimized end-to-end, such that all components are
jointly optimized for the best performance. This can lead to an
efficient model in terms of the trade-off between computational
cost and output quality.

The principal issue with adversarial training is that it does
not give any theoretical guarantees or measures of privacy.
The best it can do is to demonstrate the extent to which the
chosen adversarial model was unable to extract private side
information from the chosen category of private information.
We can thus expect that some other attacker with a better
model could still extract private side-information and that
other categories of private information are potentially present
in the bottleneck output.

3) Disentanglement: Information bottlenecks can be gen-
eralized to encompass multiple bottleneck channels, where
each bottleneck represents a disentangled representation (see
fig. 15). That is, each channel represents a distinct and

independent attribute of the signal such that the extent of
anonymization can be cherry-picked per channel as per use-
case e.g. [41–43].

The main challenge with disentanglement is to define the
constraints with which information is funneled to the corre-
sponding channel. For example, the model can be trained to
match specific channels with labels in the dataset (e.g. [42,
43]). Alternatively, using representation learning, we can con-
strain channels based on objective criteria such as time-scope,
i.e. the length of time over which data is integrated (e.g. [37,
44, 45]).

B. Improving Performance

In many use cases, like False Activation, the actual culprit
is the inadequate performance of the service. For example, if
a wake word detector is incorrectly triggered (false positive),
then the system will start to listen to a conversation when
it was not supposed to, thus breaching privacy. Since the
inadequate wake word detector is thus causing a privacy
breach, then the best solution is to improve the wake word
detector. The treatment thus addresses the cause rather than
the symptoms thereof.

This approach has however two principal challenges. First,
improving performance often requires an increase in computa-
tional power and other resource consumption. This is not only
financially costly but has also an environmental penalty [46].
In particular, balancing the computational load is easier on
a cloud server, and thus existing resources can be more
efficiently used. Second, even with improved performance,
speech interfaces will always have occasional errors. That
is, the design of privacy-preserving speech technology must
include multiple layers of protection, especially when it comes
to operations with large consequences [47]. Say, when the
wake word detector is activated, then before any actions which
would potentially breach privacy, the system could require
that the speaker is in the same room, or the speaker identity
is verified, or an extra confirmation step ”Are you sure?” or
similar. The intrusiveness of such additional protections should
then reflect the severity of the potential breach such that the
protections are not perceived as overly obtrusive and decrease
the utility of the service.

Improving performance can also mean that the system
requires additional functionalities. For example, in the case
a second local device overhears Alice’s interaction with Bob
(Discussion Leak) or the primary device (Speech Interface
Leak), the required privacy protection is that the secondary
device either 1) is aware that it is not the intended recipient of
speech (speech analysis), or 2) notifies the user of its presence
(user-interface design). This highlights the importance of trust-
ing the devices present in the acoustic space. The secondary
local device can hear everything spoken in the local space. The
user thus has to have a high level of trust in the device and
service provider that it is sufficiently competent to know when
it is part of a conversation, that it is sufficiently benevolent
to protect the users’ privacy as well as notify the user of
potentially privacy-infringing activity (cf. [48, 49]).
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Fig. 16. Protecting privacy by adding noise to private data, following the
idea of differential privacy.

C. Limiting Access to Private Messages

Every speech application involves the transmission of the
necessary information, which is likely to be private. Since
transmission of such private information is thus unavoidable,
it exposes the user to threats to their privacy. Insofar we need
the speech application, threats can be mitigated by 1) reducing
the accuracy of information by adding noise, 2) making
information inaccessible by e.g. encryption, or 3) choosing
not to send anything but apply the processing only locally,
known as edge processing (see section III-A).

1) Reducing Accuracy and Differential Privacy: Many ap-
plications require only population averages rather than infor-
mation about specific individuals. For example, a call center
could plausible need to know the distribution of genders, but
not need to know the gender identity of any specific customer.
This information can be extracted with a simple stochastic
scheme known from the area of differential privacy [50].
Namely, the customer would first flip a coin to determine
whether they should lie or tell the truth. When lying, the
customer then flips a coin again to determine which gender to
report (here we use only binary gender categories for brevity).
This gives a 75 % likelihood that the true identity was reported
and 25 % likelihood that it was false [51]. In other words, this
approach corresponds to distorting the signal, or to adding
noise to the signal to protect privacy (see fig. 16).

The customer can then always claim that they were lying,
such that this system gives plausible deniability. Simultane-
ously, given a sufficiently large sample, we can then always
estimate the true distribution from the noisy sample. Observe
that while this approach gives plausible deniability, informa-
tion is still statistically correlated with the true information.
Given multiple noisy pieces of information, it may then still
be possible to recover accurate, private information about the
speaker. It is thus paramount to quantify the extent of protec-
tion with measures of differential privacy (see section IV-B).

The above example readily generalizes to any categorical
information like political or religious affiliation, but also to
continuous parameters like the age of the speaker or other
biometric characterizations. Heuristically, reducing the accu-
racy of continuous parameters thus becomes similar to additive
noise, which can be measured by the signal-to-noise ratio.

2) Cryptography and Secure Computing Systems: If the
transmitted information is encrypted, then it cannot be used
for malicious purposes without access to the key. Surprisingly,
however, it is possible to process encrypted information when
using homomorphic encryption, such that the encrypted result
of the computation can be returned and opened [24, 52, 53]
(see fig. 17). This can be applied for example in the extraction
of spectral features of speech or speech recognition in the

User
Alice

Local
device

Remote
service

Encrypted

!

Fig. 17. Protecting privacy by encrypting communication and processing.
The gray area indicates domain which is encrypted and red, double arrows
marked with exclamation mark indicate the protected stream of data.
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Fig. 18. Federated learning as an example of distributed learning, where
devices train models locally and transmit only model updates to the cloud.
Red dashed arrows marked with exclamation marks indicate the reduced flow
of information.

cloud, without plain text access to the speech signal [54, 55].
The edge device would then encrypt the speech signal, and
send the encrypted data to the cloud which extracts encrypted
information, and returns it to the edge device, which can
open the encrypted result. While homomorphic encryption in
principle provides a beautiful solution to privacy, it comes at a
prohibitively great cost in computational cost. The number of
encrypted operations performed and bits transmitted increase
exponentially with the complexity of the original problem.

Another approach is secure multiparty computation (MPC),
where multiple parties can compute a joint function with-
out revealing anything to each other [56]. MPC provides a
much smaller overhead in computations and communication,
while it can simultaneously be shown that the unlinkability,
irreversibility, and renewability of biometric information are
granted [57]. It can be applied for example in speaker recog-
nition in the cloud, such that the users’ speaker model is not
revealed to the cloud and the recognition model is not revealed
to the user [58].

3) Distributed learning: A majority of advanced speech
processing today uses machine learning, which has to be
trained using large databases of speech. The best quality
data correspond closely to scenarios where the services are
used. Recording users’ interactions with their devices is then
attractive for training improved models since it corresponds
exactly to the use case. This presents a considerable threat to
privacy because such unrestricted recording could capture a
wide range of private information, including all interactions
with the device but potentially also any and all speech in the
vicinity of the device.

Distributed learning is an approach to training models
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Fig. 19. Protection against a reproduction leak by authorization tracking of
users, where the device keeps track of people present in the room such that
private information is not shared with unauthorized listeners (red dashed line
and exclamation mark).
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Fig. 20. Protection against a reproduction leak by using sound zones, where
constructive interference between loudspeakers is used to retain intelligibility
for user Alice, and destructive interference distorts it for user Eve (red dashed
lines and exclamation mark).

without the need for centralized data collection [59]. Models
are trained on local edge devices and only model updates
are shared between the nodes and/or with a central server
(see fig. 18). Since raw data then never leaves the edge
device, this corresponds to a privacy protection approach
where information flow is restricted (cf. section III-C1).

Federated learning is one of the flavors of distributed
learning, where a central, cloud server collects, merges, and
redistributes model updates. It has been used for example
in speaker and emotion recognition, language modeling, as
well as for unsupervised estimation of microphone clusters in
sensor networks [60–67].

Overall, distributed learning is a promising approach, even
if it has several challenges. First, constructing, training, and
testing systems architectures is much more complicated than
regular machine learning. Second, model updates are model-
specific and cannot easily be reused if the model structure
is updated. The learning accumulated during training is then
effectively lost every time the model is updated, which also
jeopardizes fair comparison of competing approaches. Third,
even if distributed learning does improve privacy, it is not a
guarantee for privacy, since model updates can also contain
private information [68].

D. Limiting Access to Reproduced Audio

When a user is interacting with a speech interface, then
the spoken answer of the speech interface can contain private
information. This private information can be overheard by
other users in the same acoustic space and that presents a threat
to privacy (see fig. 8 and section II-E5). In theory, it would
be possible to identify and track users in the same acoustic

space and communicate private information only when it
does not pose a threat to privacy (see fig. 19). This places
great trust in the local device and in its ability to track and
identify authorization levels of the people who are present in
the acoustic space. Such systems have however not yet been
widely published.

Figure 20 presents another solution, which uses constructive
and destructive interference between loudspeakers to create
sound zones where the private information is, respectively,
intelligible or distorted (see e.g. [69–71]). By choosing the
spatial location where speech is intelligible and assuming we
know where the target user is located, we can thus limit
access to private information only to the target speaker. Note
that sound zones with destructive interference do receive a
partial observation of the private message, but it is (hopefully)
distorted to the extent that it is unintelligible. This approach is
thus another method that uses distortion of the private message
to preserve privacy (cf. section III-A). The central challenges
of this approach are to make the constructive sound zone large
enough that it allows for small head movements, and to make
the destructive interference uniform everywhere else, such
that there are no isolated points with constructive interference
outside the desired sound zone. A benefit of this approach is
however that it requires tracking of only the target listener,
which is, while difficult, still much simpler than tracking all
the people in the room.

IV. EVALUATING PRIVACY

To evaluate the performance of any privacy-preserving
methods, we need performance measures for both utility and
privacy, corresponding respectively to the trusted and threat
tasks (see fig. 1). The performance measures of a trusted task
are defined by the application, they follow the typical pro-
cedures of conventional speech processing methodology [72,
73] and thus need not be discussed further here. Only need
to note that there is often a trade-off between measures of
utility and privacy, such that it is pointless to evaluate only
one, but proper experiments should always evaluate the trade-
off. The objective is then to define performance measures for
measuring the extent of privacy provided by the method.

A. Objective Metrics

Metrics applicable to the above attack model include:
• The equal error rate (EER) considers an attacker which

makes decisions by applying a threshold to a scoring
function, where the threshold is chosen such that false
positives and false negatives are equal [20, 74]. An
increase in EER means that the attacker has made more
errors and privacy has improved.

• The application-independent log-likelihood-ratio cost
function Cmin

llr generalizes the EER by considering op-
timal thresholds over all possible prior probabilities and
all possible error cost functions [20, 75].

• Linkability is defined as the (log-)likelihood that two
datasets are instances from the same or different ori-
gin [76].
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• Mutual information can be used to quantify how much
new information about a speaker we gain from a new
dataset [77].

Note that all above metrics share two notable weaknesses and
these are shared with the differential privacy approach (below,
section IV-B). First, they do not protect against future attacks.
This is particularly evident for the EER, which measures
the performance of one implementation of an attacker. It
is clear that a larger, more advanced model could make a
more powerful attack. This applies also to the likelihood-
based measures, where the definitions of metrics are model-
independent, but rely which rely on case-specific models of
probability distributions. When those statistical models are
improved, then new weaknesses may be discovered.

Second, each of the above metrics is related to single
observations. In contrast, speech is a continuous flow of
information that gives a series of observations. With each
observation, we can reduce the confidence intervals as long
as different instances have different probability distributions.
Repeated observations will thus, with all certainty, breach
privacy for all distinguishable characteristics, when the number
of observations is sufficiently high.

A more comprehensive evaluation of objective privacy met-
rics is provided in [78] and the VoicePrivacy challenge gives
a practical example of how to apply the metrics [19].

B. Differential privacy

Anonymization and privacy are never absolute. Even if
current methods and currently available datasets do not allow
us to infer anything private from an anonymized dataset, there
is no guarantee that the user would be protected also when the
novel methodology is introduced in the future or when new
associated datasets become available. We can therefore only
make claims about how well users are protected. Differential
privacy is such a theory and methodology for characterizing
the extent of protection to privacy for the users [50, 79].

Differential privacy operates with a database with private
information, such as the age of n users, from which we
calculate the average age mn. Such population statistics can
usually be treated as anonymized when the population size
is sufficiently large. However, suppose a new user Alice is
enrolled in the database, and the average age is updated to
mn+1. If an attacker then gains access to the two averages,
mn and mn+1 as well as the number of users before Alice n,
then we can trivially find Alice’s age as mn+1(n+1)−mnn. In
other words, by tracking changes in anonymized information,
we were still able to reveal private information!

To protect privacy, we can however add noise to individ-
ual measurements (see section III-C1), and this gives some
protection against the above demonstrated differential attack.
Calculation of the population statistics thus becomes a ran-
domized algorithm M. Formally, we say that the randomized
algorithm M gives ϵ-differential privacy if for all data sets
D and D′, differing by one user, and subset of the output
S ⊆ Range (M),

ln Pr [M (D) ∈ S] ≤ ϵ+ lnPr [M (D′) ∈ S] . (1)

Here Pr[·] refers to the probability, and ϵ is the loss of privacy.
The smaller ϵ the better privacy.

An interpretation of this definition is that it constrains
the effect of any single user on the overall log-likelihood
of the output to be smaller than ϵ. Since log-likelihoods
characterize entropy, ϵ thus corresponds to the amount of
private information available to the attacker. While differential
privacy is defined using membership in a dataset as its basis,
it can be applied to any attribute of the speaker. In other
words, if an attacker is interested in any particular attribute
of a speaker, then an algorithm with ϵ-differential privacy will
give at most ϵ nats of information about that attribute. Here the
unit nat corresponds to natural units of information, defined
as the natural logarithm of likelihood, whereas bits correspond
to the base-2 logarithm of the likelihood.

The benefit of differential privacy is that it provides an exact
mathematical framework for analysis of the extent of privacy.
It is however necessarily always based on a statistical model
which approximates the underlying system. Even if differential
privacy thus gives exact answers, their reliability then still
always depends on the accuracy of the underlying statistical
models. Nonetheless, with differential privacy, we can for
example analyze the effect of having two parallel sources of
information, with differential privacy of ϵ1 and ϵ2, respectively.
Since the ϵk values represent the loss in privacy, then the
combined loss of privacy from two sources of information
is at most their sum ϵ1 + ϵ2 [79].

Information bottlenecks (see section III-A1, [31]) have a
notable parallel with differential privacy. Where information
bottlenecks limit the amount of information that is allowed
to pass through, eq. (1) also quantifies the amount of infor-
mation leaked. The difference is that the bottleneck contains
both the intended private message and leaked information,
whereas eq. (1) contains only leaked information. If the bitrate
of the intended private message is known, then obviously
the leak size of a bottleneck can be quantified. This in-
terpretation is however based on two implicit assumptions.
First, the bottleneck has to be quantized, like in the vector-
quantized variational autoencoder (VQ-VAE) approach [80],
since a continuous-valued bottleneck can, in theory, hold an
unlimited amount of information because any N -dimensional
space can be mapped to a 1-dimensional scalar using space-
filling curves [81]. Second, eq. (1) holds only for a single
observation, whereas a time series gives repeated observations.
With every new observation, we receive new information. We
can expect such repeated observations to be correlated, but
nevertheless, with a sufficient amount of observations, we can
differentiate between any distinct distributions. In its plain
form, differential privacy thus does not give any protection
when we can observe a time series for a sufficiently long time.

Methodology of differential privacy has been only recently
introduced within speech technology, among others privacy-
preserving speech recognition [64], emotion recognition [60]
and speaker anonymization [82]. As the mathematical rigor of
differential privacy has obvious advantages, it is likely that the
adoption of this methodology will increase.
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V. PERCEPTION AND PSYCHOLOGY OF PRIVACY

People tend to have a deep sense of ownership of some
things, both material and immaterial. In particular, people
have a feeling of ownership toward information about them-
selves [83, 84]. Such feelings are to some extent detached
from the material consequences of breaches in privacy. For
example, even if publishing an audio recording revealing a
secret intimate relationship would not have direct economic
consequences, it can cause psychological damage and harm
personal relationships. The effect of threats to privacy then
necessarily becomes a question of psychology and social sci-
ences. To qualitatively or quantitatively measures such effects,
we then also need subjective tests with users.

Concurrently, people have well-established social rules re-
garding human-to-human privacy [16]. Moreover, users also
have a tendency to anthropomorphize technology, that is, treat
devices and services as if they were human [85, 86], such that
they will likely assume that devices apply human-like social
rules to privacy. Observe that such social rules are related to
human-like behavior and performance. That does not reveal
whether they are applicable to the super-human performance
that computers can possess, such as the ability to integrate
information over massive databases and to retain accurate
records of events long past. How machines should then behave
especially with respect to super-human capabilities, is then
not only a question of user-interface design but of moral
psychology [87]: We need discussions on a societal level
of how automated services should behave and how they are
allowed to behave (see also section VII).

A. Perception and Experience of Privacy

Irrespective of whether a system actually preserves privacy
or not, some users can perceive the system as threatening and
others can be oblivious to the threats it poses [88]. Clearly,
users do not like using services they perceive as threatening.
Understanding how people perceive privacy is interesting in
its own right but such understanding is essential in the design
of effective user interfaces.

Perception and experience of privacy can be approached in
two alternative ways. We can make user studies where people
interact with either machines or each other. The distinction is
important in the sense that human-to-human interaction relies
on social rules which are well-established and developed over
a long time. We can thus expect them to be stable over time,
whereas human-computer interaction is continuously evolving
as people learn more. Moreover, by using studies of human-to-
human interaction, we can learn effects related to human-like
performance but can probably not rely on observing effects
related to super-human performance. Studies of human-to-
human interaction are however always a proxy if the actual
target is to design human-to-computer interfaces.

Studies of human-computer interaction are thus character-
izing the desired phenomenon directly. The compromise is
however that people’s understanding of privacy with devices
might not reflect the true level of privacy, and conclusions
made based on the users’ opinions might then not reflect their
true preferences and those preferences are moving targets. As

people have more experiences with and as they learn more
about technology, their attitudes and perception of it change.

Despite these shortcomings, both types of experiments are
essential for improving our understanding of privacy and for
improving technology. For example, human-to-human studies
have revealed that people experience privacy differently in
different acoustic environments; a noisy cafeteria can be better
at masking sounds and defending against eavesdropping than
a reverberant hallway [12, 13, 89–91] and multiple-bed pa-
tient rooms in hospitals have privacy-concerns [92]. Similarly,
human-machine studies have revealed that when a chatbot
actively communicates choices related to privacy it improves
users’ experience of privacy [93], voice interfaces with un-
known features cause fear in users, and reduce retention of
services [94–96] and breaches in privacy are highly detrimen-
tal to the trust in services and reduce users’ willingness to use
the services, but such trust can be rebuilt [97].

B. User Interface Design

For usable privacy, it is important that information about
privacy is readily provided, changes in the extent of privacy
are promptly notified, and that users have control of the level
of privacy [93, 95, 97–99]. In comparison, visual interfaces
can use lights or icons for monitoring and tactile interfaces
for controlling the level of privacy. While sound can be
used to monitor system status with sonification [100, 101],
this is not in widespread use within signaling of privacy.
It is a compromise between filling the acoustic space with
information and the ability and tendency of the human auditory
system to block out monotonous sounds. To be effective,
the sound should be perceivable when the user consciously
wants to check the privacy level and changes in privacy level
should evoke correspondingly and appropriately large changes
in the soundscape that users consciously register such changes.
Furthermore, user interfaces should give correct information
about and allow controlling the privacy level [10, 95].

In any case, it is imperative that services are designed such
that they reflect the true extent of privacy. Observe that it
can well be possible to design systems that communicate an
advanced level of privacy even when the system does not
respect user privacy. In fact, service providers have short-term
incentives to follow such approaches to design as long as they
improve overall user satisfaction. However, such approaches
to design are known as dark patterns or deceptive design
patterns and they are considered unethical [102]. Through
deception, such dark patterns lull users to believe they are
safe when in fact they are abused. Good design of privacy
should therefore actively communicate and enable control of
the true extent of privacy. Such design practice is not only
ethical but also rewards service providers in the long term by
improving retention of that services [97].

VI. CONTENT CATEGORIES AND APPLICATIONS

To give a complete picture of the implications of privacy in
speech technology, this section provides a brief discussion both
on categories of private information, complementing table I
as well as the application of such information. Observe that
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this (nor table I) is not a complete list of the content nor
of application categories. The purpose is merely to provide a
characterization of work done and challenges in the research
field, with accompanying references.

First, note that while all presented categories are (po-
tentially) private information, all sustained information can
potentially be used to identify a speaker. For example, while
the current emotional state cannot alone identify a speaker, the
tendency to display emotional states can aid in identification.
However, where we want to verify that a speaker is who they
claim to be, we can use only information which cannot be
willfully changed. That is, speech style is a particular example
of a property that a good voice actor can freely choose,
making it ”easy” to change also for fraudulent purposes. Also
note that table I should not be interpreted as a complete
nor unambiguous categorization of information, but merely
provided as an illustrative example. Second, all information in
table I can be considered to be biometric information as it can
be used to identify a person [74, 78, 103, 104], though some
limit the term biometric to refer only physical and behavioral
characteristics.

Recognizing the speaker’s identity then becomes the natural
starting point for studies in privacy. We can attempt to recog-
nize who is speaking (speaker recognition), verify whether
a speaker has the claimed identity (speaker verification),
clustering audio to segments with a single speaker (speaker
diarization) and we can develop methods for deceiving identity
(spoofing), e.g. [33, 39, 40, 57, 58, 61, 62, 105–113]. Similarly,
by voice conversion we can anonymize a speaker identity
by replacing it with a random identity (anonymization) or a
specific one (pseudonymization), e.g. [20, 82, 111, 114–119].
Speaker characterization is the natural complement of speaker
idenfication [78, 120]. Such methods related to speaker iden-
tity can be applied for example to recognize the user of a
device, verify a customer at a bank, or as a voice avatar in
online gaming. Similarly, anonymization and pseudonymiza-
tion can be used to hide the identity from the public media
and gaming.

Speech recognition, as in speech-to-text, is probably the
largest sub-area of speech research. With respect to privacy,
it contains two obvious challenges for privacy. We can try
to limit to side-information, such as eliminating all non-text
information from the data stream, e.g. [64, 66, 121–125], or
we can use natural language processing to anonymize the text
content, e.g. [8, 126–130].

Privacy is even more important in always-on applications
like wake-word detection, i.e. when the interface is triggered
by a specific keyword like ”Computer” in ”Computer, lights-
off.”. This application is more sensitive exactly because it is
always on as users cannot choose when data is processed [28,
131–133]. The always-on characteristic is also prominent
in assisted-living applications, which can ”monitor people’s
daily exercises, consumption of calories and sleeping pat-
terns, and to provide coaching interventions to foster positive
behaviour” [134]. Such ambient voice interfaces are often
implemented through acoustic sensor networks which pose
their own challenges [26, 28, 35, 63, 106, 135].

Speech enhancement refers to removing background noises

and distortions from the desired speech signal (private mes-
sage) [72]. This task can have an impact on privacy in two
ways. First, the recording environment can reveal private
information about the speaker, and second, background noises,
like a competing talker, can contain private information [136,
137]. Attenuating background noises and competing speakers
as well as removing reverberation can thus improve privacy. In
addition, while using a sensor network to capture speech can
improve utility, it introduces novel threats as well [13, 63].

Speech is typically considered to be biometric information
in its entirety [104, 138], though a tight definition would
include only the physical and behavioral properties of the
speakers. Such properties include health [139], emotions [60]
and gender identity [39, 42, 132, 140], each warranting their
own treatment.

VII. LEGAL AND SOCIETAL LANDSCAPE

Privacy in speech technology has a great impact on both the
individual and societal levels, as already discussed in section I.
The magnitude of societal impact can be appreciated by
recalling the Cambridge Analytica privacy scandal [141, 142]
where private information was extracted from social media
and used for targeted political advertising. In both speech
technology and social media, services operate on massive user
bases and involve interaction between multiple users. This
exposes both areas to the same magnitude of risks. In the
case of Cambridge Analytica, the most famous consequence
was that it influenced election results in a large democratic
country. Another prominent scandal from biometrics is the
case where supposedly anonymized patient data for 10 % of
Australians was released to the public, only to later be shown
that individuals were readily identifiable [143]. All health
data of those patients was thus made public contrary to user
preferences and with unknown long-term consequences.

While we have not (yet) seen breaches related to speech
technology with consequences of comparable magnitude, these
parallels highlight the potential effect of breaches. Scandals
directly related to speech technology include eavesdropping
on private persons by employees and contractors of service
providers [1, 2, 144].

Section V-B also makes the point that service and technol-
ogy providers have clear short-term incentives which conflict
with users’ preferences for privacy. We can easily find ex-
amples where users do not have real choices in protecting
their privacy. For example, suppose all friends and family of a
user use a particular platform for social and voice interaction
even if its privacy configuration is inadequate. The individual
user faces then the choice of either disconnecting from their
social network or compromising privacy. This applies to all
users with a sufficiently large portion of their communities
participating in that platform. This is a version of the prisoner’s
dilemma, where no single user has any incentive to transition
to a solution that would be best for everyone.

On the individual level, the examples of potential exploits
in table II cause clear damage to individuals, including psy-
chological harm in particular (e.g. [139]). Additional dangers
include stalkers [145–147]. While such individual damage is
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”small” on the societal level, their prevalence makes their joint
impact significant [4].

These examples demonstrate the inherent need for society-
level regulation of speech technology with respect to privacy.
Governments have already responded to this need, with the
European Union spearheading the process with the General
Data Protection Regulation (GDPR) [148, 149], with the State
of California following soon thereafter with the California
Consumer Privacy Act (CCPA) of 2018 [150]. While these
laws cover only a small percentage of the global population,
as cloud services typically operate globally, they need the
capability to follow local laws. It can be, in many cases,
to apply the strictest laws on all users. Service providers
have therefore widely adopted the requirements of GDPR and
CCPA and that has likely had a large impact also on users
outside the scope of these regulations.

With respect to regulation, an important consequence of
the objective measures of privacy in section IV is that our
tools and measurements will give as an output only statistical
characterizations of privacy, but they can never give absolute
confidence. This is in stark contrast with the concept of
unique identifiability used in legal documents, such as the
General Data Protection Regulation (GDPR) by the European
Union [148], which does not explicitly leave room for statisti-
cal uncertainty. This is reflected for example in the Guidelines
for virtual voice assistants by the European Data Protection
Board, which states that: [138, page 13, §31]

... voice data is inherently biometric personal data.
As a result, when such data is processed for the
purpose of uniquely identifying a natural person ...
the processing must have a valid legal basis ...

This leaves the interpretation open. It is possible to argue that
it is never possible to obtain absolute confidence in speaker
identification such that the GDPR is never triggered. It is
also possible to argue that all voice data contains personal
information which can be used to uniquely identify a person,
such that all processing must have a valid legal basis. Both
interpretations lead to absurdity, which suggests that the truth
must lie somewhere in the middle. In fact, the GDPR in
practice requires (see [138, page 4]) that the design process of
voice assistants includes a data protection impact assessment,
where the risks and consequences are evaluated such that
the designer can take appropriate precautions to preserve
privacy. Authors of the GDPR are thus clearly aware that
it is impossible to give absolute guarantees of privacy, but
that the impact assessment (i.e. objective measures of privacy)
must necessarily be based on statistical measures, even if such
measures have not been defined.

While governments are in the process of regulating privacy,
corporations and non-governmental organizations have also
realized that proper privacy is an opportunity. For example,
the Open Voice Network seeks to develop and standardize
open technical standards and ethical guidelines for voice
assistance [151] and the MyData Global seeks to help people
and organizations to benefit from personal data in a human-
centric way [152–154]. Within the research community, the
author of this paper has been involved in establishing a special

interest group within the International Speech Communica-
tion Association (ISCA) devoted to ”Security and Privacy in
Speech Communication” [155]. It is as far as we know, the
world-wide largest community focused on this topic.

VIII. DISCUSSION AND CONCLUSIONS

The quality and use of speech interfaces have increased
rapidly in recent years. As with any new technology, the rapid
progress has also revealed the dangers and in particular the
threats to privacy it demonstrably poses. Unprotected users
are exposed to threats like stalking, algorithmic stereotyping,
harassment, and price gouging. Researchers, service providers,
and governments thus have the impetus to protect the users,
not only because it is ethical, but also because it makes for
better products and long-term business.

This paper is a tutorial on privacy for speech technology.
Its most notable contribution is an exhaustive categorization
of threats (see fig. 3 and section II). Protections against those
threats are further categorized according to whether they relate
to the private message or side information. The pertinent
difference is that transmitting a private message is the whole
purpose of communication and there is not very much we can
do to protect it other than encryption. With side-information,
that is, all the other information that is bundled into a speech
like health status and gender identity, we have a much larger
arsenal of protections. The primary approach is however to
remove as much of the side information as possible as early as
possible. As the private message is all that communication that
we need, all side-information should be removed to the extent
it is possible. Such removal rapidly however demonstrates that
paralinguistic information like speech style is often very useful
in conveying the intended message. It is thus not always clear
what constitutes the legitimate private message.

The first conclusion from this paper is that the range of
possible threats to privacy is vast. Each agent – be it human or
device – participating in an interaction as well as the acoustic
pathways and network connection through which they are
connected, is a potential attack surface. Any actor which can
interact with the other agent or listen to the connection is a
potential eavesdropper. Since we define privacy as a scenario
where an agent is authorized with some access, but over-
exceeds that authorization (intentionally or inadvertently), we
cannot just cut connections but need more refined designs and
methodologies. We thus need to dynamically adjust access ac-
cording to need. Conversely, systems need to actively monitor
the privacy status to determine appropriate actions.

Second, we find that privacy and ethics are largely over-
lapping challenges. Our ethical values govern our preferences
for privacy. Most potential breaches of ethics in speech tech-
nology are based on breaching privacy. That means that we
need a society-wide ethical discussion about what is allowed
with respect to user privacy. Such discussions are needed
to prevent an Cambridge Analytica-style scandal for speech
technology [142].

A third implication of this paper is that, while research in
this field has picked up only very recently, there is already
a substantial body of research available. The research is not
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however mature but in a phase of rapid development, and there
are important sub-areas that have not yet seen much work. This
makes it a fruitful area for research as we can expect important
understanding to be discovered in the coming years.

Particular research questions where the author sees an urgent
need for and expects to see new results include:

a) Consent: While management of acquiring informed
consent has established traditions and best practices for most
interface types [156], speech, audio, and ambient systems
are notably unique. Namely, acoustic information is a time-
varying stream. Reading out a pages-long consent form before
an interaction can start is clearly much too obtrusive and
unnecessarily detailed. Privacy requirements also vary over
time. Consent should thus be acquired per actual need basis.
In addition to being more usable, it would also make choices
better connected to the actual needs, since consent is acquired
only once it is actually needed.

b) Metrics for Streaming: The available theoretical met-
rics reflect privacy with respect to a finite dataset, whereas
speech is an open-ended stream of data. The consequence is
that, in theory, we can resolve any private attribute or identity,
provided that it has a unique probability distribution and we
have a sufficiently long observation. We would thus need
methodologies for characterizing the effect that the length of
observation has on privacy.

c) Metrics for Out-of-category Information: The metrics
discussed in section IV are all related to specific categories
of private information and in particular, we can provide
protection only to identified threats. For example, we can
measure the threat to privacy related to health information,
but that does not tell anything about the threat related to
information about ethnic background. We thus need methods
for evaluating privacy jointly with respect to all categories of
private information except the private message.

d) Future-proof Metrics: Metrics are generally based on
a model of the signal or the attacker. The metrics are thus
subject to change when those models are improved in the
future, and it will likely expose new threats. Though it is
likely difficult, it would be extremely useful if we could
characterize the potential range of threats by, for example,
increasing computational complexity.

e) Multi-user interaction: Privacy research is categor-
ically focused on personal and user-centric privacy. How-
ever, speech is by definition communication between mul-
tiple agents, and when exposed, threatens all participants
simultaneously. This is not an issue from a legal point of
view, because privacy protections apply to all individual users
equally. However, from an authorization and consent manage-
ment perspective, this is an underappreciated issue. If user A
records a discussion with user B, then both clearly have some
level of ownership and privacy requirements on that recording.
Another case is smart technology with multiple users, like
smart TVs; even if one user has consented to data collection,
that does not mean that others would agree. We do not yet
have any widely accepted standard approaches for handling
privacy, ownership, and consent in such multi-user scenarios.

f) Disentangelement: If we could disentangle all cate-
gories of speech information as in fig. 15, then it would be easy

to anonymize each category to an appropriate degree. This
approach thus seemingly solves all our problems. The issue is
that we do not yet have sufficiently sophisticated methods to do
that. The difficulty in developing disentanglement algorithms
is that information categories in table I are vaguely and heuris-
tically defined and there is significant overlap between them.
We cannot even demonstrate that this would be a complete
list of information categories. Without exact definitions of
those categories, we have no hope of developing methods for
them. An alternative approach is to use representation learning
methods to create unsupervised clustering of information cat-
egories. The compromise is that we cannot guarantee that the
learned representations correspond to heuristically meaningful
categories. Still, since disentanglement is the ideal solution,
that should continue to be a central focus of research.

g) Perception, Experience, and Design of Privacy: Most
of the speech-specific research on privacy has focused on
privacy-preserving processing and systems structures. This is
useful because it is the mandatory prerequisite for privacy-
preserving technology. However, as discussed in section V-B,
users’ experience of services is to some extent independent of
the objective level of privacy. We need much more user studies
on how, for example, voice characteristics and word choices
influence trust, how the privacy level can be monitored during
interactions and how changes are notified, how the environ-
ment and content of interaction influence user experiences,
etc. By improving the user experience with respect to privacy,
we are likely to improve user satisfaction and retention of the
overall service, while also improving the service objectively.

In conclusion, threats and breaches of privacy have signifi-
cant negative consequences on individual, societal, ethical, and
economic levels. While further improvements in smart tech-
nology are expected to improve the utility of the technology, it
likely also introduces new threats. The protection of privacy in
speech technology has thus been important already for a long
time and the importance is increasing. Fortunately, research
in the area has picked up speed and this tutorial presents the
most important concepts, approaches, and methodology. It is
however likely that fundamental results and new technologies
will be introduced in the near future. This is thus an exciting
time for researchers in the area.
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[73] Tom Bäckström et al. Introduction to Speech Processing. 2nd ed.
Aalto University, 2022. URL: http://speechprocessingbook.aalto.fi.

[74] ISO/IEC 19795-1:2021 Information technology – Biometric perfor-
mance testing and reporting – Part 1: Principles and framework.
Standard. Geneva, CH: International Organization for Standardiza-
tion, May 2021. URL: https://www.iso.org/standard/73515.html.
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Zarazaga. “The Use of Audio Fingerprints for Authentication of
Speakers on Speech Operated Interfaces”. In: Proc. 2021 ISCA
Symposium on Security and Privacy in Speech. 2021. URL: https:
/ / research . aalto . fi / files / 75674953 / Woubie Use of Audio
Fingerprints isca.pdf.

[107] Zhongxin Bai and Xiao-Lei Zhang. “Speaker recognition based on
deep learning: An overview”. In: Neural Networks 140 (2021),
pp. 65–99. ISSN: 0893-6080. DOI: https://doi.org/10.1016/j.neunet.
2021.03.004.

[108] Yaowei Han et al. “Voice-indistinguishability: Protecting voiceprint
in privacy-preserving speech data release”. In: International Confer-
ence on Multimedia and Expo (ICME). IEEE. 2020, pp. 1–6. URL:
https://doi.org/10.1109/ICME46284.2020.9102875.

[109] Tomi Kinnunen and Haizhou Li. “An overview of text-independent
speaker recognition: From features to supervectors”. In: Speech
Communication 52.1 (2010), pp. 12–40. ISSN: 0167-6393. URL:
https://doi.org/10.1016/j.specom.2009.08.009.

[110] John HL Hansen and Taufiq Hasan. “Speaker recognition by ma-
chines and humans: A tutorial review”. In: IEEE Signal processing
magazine 32.6 (2015), pp. 74–99. URL: https: / /doi .org/10.1109/
MSP.2015.2462851.

[111] Candy Olivia Mawalim et al. “X-Vector Singular Value Modification
and Statistical-Based Decomposition with Ensemble Regression
Modeling for Speaker Anonymization System”. In: Proc. Inter-
speech. 2020, pp. 1703–1707. DOI: 10 . 21437 / Interspeech . 2020 -
1887.

[112] Andreas Nautsch et al. “Privacy-Preserving Speaker Recognition
with Cohort Score Normalisation”. In: Proc. Interspeech. 2019,
pp. 2868–2872. DOI: 10.21437/Interspeech.2019-2638.
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