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A B S T R A C T

Supercapacitors have become the most significant energy conversion and storage system in recent renewable and
sustainable nanotechnology. Due to its large energy capacity and supply with relatively short time and longer
lifetime, supercapacitors breakthrough in advance energy applications. This review presents a comparative study
of different materials, working principles, analysis, applications, advantages and disadvantages of various
technologies available for supercapacitors. The aim of this article is to discuss the possibility of hybrid super-
capacitor for the next generation of energy technology. The development of composite materials containing a
wide range of active constituents (e.g., graphene, activated carbon, transition metals, metal oxides, perovskites
and conducting polymers) by in-situ hybridization and ex-situ recombination is also discussed. This review
consecrated largely the contribution of combining all materials (electrode and electrolyte) and their synthesis
process and electrochemical performance. Enduringly, the potential issues and the perspectives for future re-
search based on hybrid supercapacitors in energy applications are also presented.

1. Introduction

The expansion of renewable and sustainable energies has led to
many small decentralized energy producers, such as wind power plants,
hydropower plants and photovoltaic installations, being set up. It is
now essential that flexible, lightweight, conductive materials with low-
cost, CO2 free and environmentally friendly energy conversion and
storage systems are found in response to the needs of modern society
and emerging ecological concerns [1–4]. Effective storage is necessary
to be able to use these energy sources to cover the base load. Storage
systems can be based on potential energy (e.g. pumped storage), pres-
sure energy (e.g. compressed air storage), thermal energy (e.g. hot
water reservoir), chemical or electrochemical energy (e.g. accumu-
lator). Depending on the available energy, conversion into a storable
form is also required, and reconversion if necessary. To increase the
efficiency of a system, require kinetic energy to be stored somewhere
whenever the system slows down or stops. These storage systems can be
used in any energy devices, such as solar panels, batteries, fuel cells,
Aluminum electrolytic capacitors, supercapacitors or in hydrogen sto-
rage. One of the great challenges in the twenty-first century is

unquestionably energy storage. In response to the needs of modern
society and emerging ecological concerns, it is now essential that new,
low-cost and environmentally friendly energy conversion and storage
systems are found; hence the rapid development of research in this
field. The performance of these devices depends intimately on the
properties of their materials. Innovative materials chemistry lies at the
heart of the advances that have already been made in energy conver-
sion and storage. To date, a lot of research has been done on energy
storage materials and systems [5–8]. Unlike batteries, supercapacitors
can be successfully performed with large amounts of power for effi-
ciency enhancement as energy storage technologies [9]. Due to their
high-power capabilities and long cycle-life, these have attracted sig-
nificant attention, giving a very good chance to build more advanced
hybrid supercapacitors, for both on-board and stationary applications
such as electrochromic, hybrid battery, thermally chargeable, self-
healing, shape memory, piezoelectric etc [10]. Electrolytic capacitors
feature unlimited charge/discharge cycles, high dielectric strength and
good frequency response as AC resistance in the lower frequency range.
Supercapacitors can store 10–100 times more energy than electrolytic
capacitors, but they do not support AC applications. With regards to
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rechargeable batteries supercapacitors feature higher peak currents,
low cost per cycle, no danger of overcharging, good reversibility, non-
corrosive electrolyte and low material toxicity, while batteries offer,
lower purchase cost, stable voltage under discharge, but they require
complex electronic control and switching equipment, with consequent
energy loss and spark hazard given a short.
Though much of the most ground-breaking research has been done

relatively recently, the original concept of SCs dates to the 19th century.
Today, the performance of SCs has been drastically improved, but there
are still aspects that can be significantly enhanced. The actual perfor-
mance of a supercapacitor device is frequently being measured by the
power density and energy density of the system. Much of the research
being done and still going on SCs concerns the improvement of these
performance metrics along with other key performance metrics, such as
charge-discharge cycle, series/charge transfer resistance, frequency
response, materials miniaturization etc [11–13]. The efficiency and
performances of SCs in applications can be improved by improving the
voltage window, the superior cycling stability and miniaturization of
supercapacitors and their integration on chips or flexible, lighter and
transparent substrates [14,15]. There have been many studies on the
employment of electrode material for supercapacitor. The activated
carbons, conducting polymers and transition metal oxides are still the
generally used as electrode materials [10]. This review focuses on the
different types of SCs, providing a summary of advances and compar-
isons. Furthermore, we briefly discuss the uses and technical challenges
for developing electrode materials (carbon-based materials, metal
oxides, perovskites, conducting polymers and hybrid), electrolyte
choices and perspectives for future research.

2. Supercapacitors

The scientific community is focusing on energy due to the changing
global landscape. In this regard more, efforts are related to the devel-
oping and refining of the energy storage devices. Recently, super-
capacitor (SC) has been attracted as an energy storage device like a
battery in design and manufacture. The SCs are also called ultra-
capacitors or electrochemical capacitors, utilize high surface area
electrode materials and thin dielectrics to achieve higher capacitance as
compared to the conventional capacitors [16–19]. Batteries and capa-
citors seem similar as they both store and release electrical energy.
However, the crucial differences between them are how they function
differently on set-up applications. Different battery types are dis-
tinguished by their chemical makeup. The chemical unit, called the cell,
contains three main parts; a positive terminal called the cathode, ne-
gative terminal called the anode, and the electrolyte. The battery
charges and discharges through a chemical reaction that generates a
voltage. The battery can provide a consistent DC voltage. In recharge-
able batteries, the chemical energy that is converted into electricity can
be reversed using outside electrical energy to restore the charge.
However, in general, batteries provide higher energy density for sto-
rage, while capacitors have more rapid charge and discharge cap-
abilities [20]. Supercapacitor, an upgrade version of the capacitor, can
be successfully performed with large amounts of power for efficiency
enhancement as energy storage technologies [9]. Due to their high-
power capabilities and long cycle-life (> 100 times battery life), these
have attracted significant attention, giving a very good chance to build
more advanced hybrid ESSs, for both on-board and stationary appli-
cations. Table 1 compares the major parameters of the three main su-
percapacitor families with electrolytic capacitors and batteries [21].
In the future, the SC can be used either in conjunction with batteries

or replace batteries in the storage system (continuous power supply,
and load leveling). Recently electrochemical double layer capacitors
(EDLCs) were used in emergency doors on an airbus A-380 with pro-
viding the safety, performance and reliability issues [22,23]. For the
future energy storage systems, both SC and batteries are given
equivalent importance by US Department of Energy. The general public

shows great interest in the articles published on SC in popular maga-
zines [24,25].
In a conventional Lithium-ion battery, the electrochemical reaction

happens differently during discharging and charging period. In the
discharging period, battery works as a load. Working Lithium electrons
flow through separator from the anode (negative electrode) to cathode
(positive electrode). In charging period, battery works charger in where
electrons flow cathode to the anode. Similarly, in conventional capa-
citors, insulating dielectric material separated the two conducting
electrodes. Opposite charges accumulate on the surface of each elec-
trode as the voltage is applied to the capacitor. The dielectric keeps the
charges separated, by creating an electric field that allows the capaci-
tors to store energy. This is depicted in Fig. 1 (a). Fig. 2 shows the
regone plot of performance ranges of various energy storage devices.
Capacitance C is defined as the ratio of stored (positive) charge Q to

the applied voltage V:

C=Q / V (1)

For a conventional capacitor, C is directly proportional to the sur-
face area A of each electrode and inversely proportional to the distance
D between the electrodes:

C= ε0 εr A / D or C/A = ε0 εr / D (2)

Where ε0 = dielectric constant of free space and εr = dielectric con-
stant of insulating material between electrodes. The energy E stored in a
capacitor is directly proportional to its capacitance

E = ½ CV2 (3)

In general, the Power is the energy expended per unit time. For
capacitor power determination, the SC is mainly considered as a series
circuit with external load resistance R as shown in Fig. 3 (b). The in-
ternal components of the capacitors (e.g. current collector, electrodes,
and dielectric material) also contribute to the resistance which is
measured in aggregate by a quantity known as the equivalent series
resistance (ESR). The voltage during discharge is determined by these
resistances. When measured at matched impedance (R=ESR) the
maximum power P max for a capacitor is given by

P=V2 / 4×ESR (4)

This relation shows how the ESR can limit the maximum power of a
capacitor [16,19,26]. Capacitors store less energy per unit mass or
volume, but they deliver a lot of power, as the power density is usually
high. SC is governed by the same basic principles as the conventional
ones. But as the higher surface area of electrodes and no dielectric
between plates; rather, an electrolyte and a thin insulator are used the
capacitance and energy increase by using the above equations. The
performance improvement for SC is shown in Fig. 2 a graph termed as
Ragone plot, where power density is measured along the vertical axis
versus energy density on the horizontal axis [27]. This power vs energy
density graph is an illustration of the comparison of various power
devices storage, where it is shown that SC occupy the region between
conventional capacitors and batteries.
Specific capacitance (Cs) is used to reflect the property of the active

material on a single electrode. It is most reliably measured by the three-
electrode cell but can also be derived from the two-electrode cell.
For a commercial symmetrical supercapacitor,

= ×
×

C C
a W
4
%s

cell

cell (5)

where, Ccell is the cell capacitance, Wcell is the overall weight of the
device, and a% is the percentage of active material mass over the
overall cell weight. For the commercial asymmetrical cell, to calculate
the specific capacitance of each electrode material, the masses of the
active materials on both the positive electrode and negative electrode
must be known with Ccell and Wcell.
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Table 1
Parameters of supercapacitors compared with electrolytic capacitors and lithium-ion batteries.

Parameter Aluminum electrolytic
capacitors

Supercapacitors Lithium-ion
batteries

Double-layer capacitors for
memory backup

Super-capacitors for power
applications

Pseudo and Hybrid capacitors
(Li-Ion capacitors)

Temperature range (°C) −40 to +125 −40 to +70 −20 to +70 −20 to +70 −20 to +60
Cell voltage (V) 4 to 630 1.2 to 3.3 2.2 to 3.3 2.2 to 3.8 2.5 to 4.2
Charge/discharge cycles unlimited 105 to 106 105 to 106 2 • 104 to 105 500 to 104

Capacitance range (F) ≤ 2.7 0.1 to 470 100 to 12000 300 to 3300 —
Specific energy (Wh/kg) 0.01 to 0.3 1.5 to 3.9 4 to 9 10 to 15 100 to 265
Specific power (kW/kg) > 100 2 to 10 3 to 10 3 to 14 0.3 to 1.5
Self-discharge time at room

temperature
short (days) middle (weeks) middle (weeks) long (month) long (month)

Efficiency (%) 99 95 95 90 90
Life time at room temperature

(years)
> 20 5 to 10 5 to 10 5 to 10 3 to 5

Fig. 1. (a) Schematic of conventional capacitor, (b) Schematic of an electrochemical double layer capacitor and (c) Schematic of conventional discharging battery.
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As for the difference in material loading on the electrode, the value
is usually high (> 1mg/cm2) in commercial supercapacitors, whilst the
reported data in literature was measured from electrode with mass
loading being<0.1mg/cm2 which can produce over estimated specific
capacitance due to contribution from the surface of the current collector
[28].
Though the SCs exhibit greater capacitance than conventional ca-

pacitors yet SC must meet the demands of batteries and fuel cell re-
garding energy density. Supercapacitors are used in applications re-
quiring many rapid charge/discharges cycles rather than long term

compact energy storage: within cars, buses, trains, cranes and elevators,
where they are used for regenerative braking, short-term energy storage
or burst-mode power delivery. Smaller units are used as memory
backup for static random-access memory (SRAM). Supercapacitors do
not use the conventional solid dielectric of ordinary capacitors. They
use electrostatic double-layer capacitance and electrochemical pseu-
docapacitance, both of which contribute to the total capacitance of the
capacitor, however, with different amounts. The structure-property
relationship is very important to introduce and discuss the materials of
SCs. The porosity and surface area are the main booster for electrical
double layer capacitance, while redox charge transfer contributes sig-
nificantly to pseudo capacitance [29,30]. Supercapacitors can be clas-
sified into the following classes based on charge storage phenomenon.
Fig. 3 exhibits different types of supercapacitors. Supercapacitors can
be made in different geometrical forms, such as thin film and sandwich
type as flexible supercapacitors and integrated micro-supercapacitors as
planar supercapacitors. Flexible supercapacitors are super-fast re-
chargeable electrochemical energy storage device, combining the ad-
vantages of high storage capability and power output as well as high
malleability without any significant performance loss. Thus, flexible
supercapacitors require electrode materials not only with good elec-
trochemical properties, but also with high mechanical integrity upon
bending or folding, compact design and lightweight property. The
planar configuration design offers planar channels for electrolyte ions,
facilitating fast ion transport in the two-dimensional direction. This
type of supercapacitors pushes the performance of flexible super-
capacitors to a higher level [31–33]. Depending on the electrode ma-
terials supercapacitors can be divided in 3 categories (see Fig. 3) (i)
Electrochemical double layer supercapacitors, (ii) Hybrid

Fig. 2. Ragone plot of performance ranges of various energy storage devices.

Fig. 3. Classification of supercapacitors based on electrode materials.
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supercapacitors and (iii) Pseudo supercapacitors. Electrochemical
double layer capacitors can be divided in 3 types i.e. activated carbon,
carbon aerogels and carbon nanotubes. Hybrid capacitors also can be
divided in 3 groups as asymmetric hybrid, battery type hybrid and
composite hybrid. Similarly pseudo capacitors can be divided in 2 ca-
tegories as conducting polymers and metal oxides.

2.1. Electric double-layer capacitors

The electric double-layer capacitor (EDLC) has been considered as a
promising high-power energy source for digital communication devices
and electric vehicles. The advantageous features of the EDLC are its
better rate capability and longer cycle life as compared to modern
secondary batteries. EDLC utilizes the double layer formed at the
electrode/electrolyte interface where electric charges are accumulated
on the electrode surfaces and ions of opposite charge are arranged in
the electrolyte side. EDLC electrode materials should thus have a large
surface area for charge accumulation and should have an appropriate
pore structure for electrolyte wetting and rapid ionic motion. At pre-
sent, activated carbons or molecular-sieving carbons are used as the
EDLC electrode materials. Even if these conventional carbons have a
large surface area, their EDLC application is rather limited because they
contain pores ranging from micropores (< 2 nm dia) to macropores and
the pores are randomly connected [34]. The micropores are not easily
wetted by electrolytes, and the exposed surface in micropores may not
be utilized for charge storage. Moreover, even in the situation wherein
the micropores are wetted by the electrolyte, ionic motion in such small
pores may be so slow that the high rate capability, which is one of the
advantages of EDLCs, may not be realized [34]. Both charge storage and
rate capability are further limited if the pores are randomly connected.
The blind or isolated pores may not be wetted by electrolytes and ir-
regular pore connection makes ionic motion difficult [35,36]. There-
fore, high-surface-area carbon materials containing regularly inter-
connected mesopores (> 2 nm) are highly desirable for the EDLC

electrode [37].
Double-layer capacitance – electrostatic storage of the electrical

energy achieved by separation of charge in a Helmholtz double layer at
the interface between the surface of a conductor electrode and an
electrolytic solution electrolyte. The separation of charge distance in a
double-layer is on the order of a few Ångströms (0.3–0.8 nm) and is
static in origin [38]. Helmholtz laid the theoretical foundations of the
double layer phenomenon. It is used in every electrochemical capacitor
to store electrical energy. When Helmholtz first coined the phrase
“double layer” in 1853, he envisioned two layers of charge at the in-
terface between two dissimilar metals. Later, in 1879, he compared this
metal/metal interface with a metal/aqueous solution interface [39]. In
this model, the interface consisted of a layer of electrons at the surface
of the electrode and a monolayer of ions in the electrolyte. Eq. 2 shows
the phenomenon of polarization and the formation of double layer
capacitance C.
More specifically, commercial EDLCs in which energy storage pre-

dominant is achieved by double-layer capacitance, energy is stored by
forming an electrical double layer of electrolyte ions on the surface of
conductive electrodes. Since EDLCs are not limited by the electro-
chemical charge transfer kinetics of batteries, it can charge and dis-
charge at a lot higher rate with lifetimes of more than 1 million cycles
[40]. Commercial EDLCs are based on two symmetric electrodes im-
pregnated with electrolytes comprising tetraethyl ammonium tetra-
fluoroborate salts in organic solvents. Current EDLC with organic
electrolytes operates at 2.7 V, reach energy densities around 5–8W h/
kg and 7–10Wh/l. The EDLC energy density is determined by oper-
ating voltage and the specific capacitance (farad/gram or farad/cm3) of
the electrode/electrolyte system. The specific capacitance is related to
the Specific Surface Area (SSA) accessible by the electrolyte, its inter-
facial double-layer capacitance, and the electrode material density.
The use of the high specific surface area blocking and electronically

conducting electrode enable to achieve the high capacitance by char-
ging the double layer. The attractive candidate that fulfills this criterion

Fig. 4. Commercial supercapacitors as (a) EDLCs, (b) & (c) Pseudocapacitors, (d) & (e) Hybrid supercapacitors.
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is graphitic carbon used for the application. The properties include high
conductivity electrochemical stability and open porosity [41]. The most
widely used materials are activated carbons due to the high SSA and
moderate cost. The examples are activated template and carbide-de-
rived carbons, carbon fibers, carbon fabrics fibers, nanotubes [42],
onions [43] and nano-horns [44] etc.
The double layer capacitance is 150-300 Fg−1 in aqueous electro-

lytes but the values declines in organic electrolytes to 100-120 Fg−1 at
lower cell voltage as the electrolyte voltage window. is limited by water
decomposition. Fig. 5 displays cyclic voltammetry (CV) of (a) MCNWNT
in 1M NEt4BF4-PC electrolyte at 5-200 mVs−1 scan rate and (b) TiC-
CDCs in PYR14-TFSI electrolyte at 5mVs−1 scan rates in EDLC. The
rectangular curve is characteristic of the EDLC charge storage me-
chanism followed by the double layer capacitance mechanism

I=C × dV/ dt (6)

where I= current, C is double layer capacitance dV/ dt is potential scan
rate. The rectangular shape CV curve at constant C shows that the at
given scan rate the value of I is constant
A decreased capacitance (50-80 Fg−1) is observed in the case of

untreated carbon nanotubes [47] or nanofibers as compared to the
activated carbon in an organic electrolyte. This value can be increased
up to 100 Fg−1 by introducing oxygen groups to the substrates, but it
affects cyclability. An appreciable capacitance is provided by activated
carbon fabrics as possess similar SSA but are expensive. Graphene-
based platelets with mesoporous spacer material is a promising struc-
ture for increasing the SSA of the electrolyte [4]. The improved cycle
stability in EDLC capacitance is attained by pre-treating the carbon to
remove moisture or other functional groups as explained by et al. P.
Azais using NMR and x-ray photoelectron spectroscopic techniques
[48]. The instability caused by the presence of oxygenated groups is
also pointed out by the Pandolfo et. al in the review article resulting in
the increased series resistance and deformation of the capacitance.
Fig. 4 presents various commercial EDLCs. Energy capacitor system
(ECaSS) connected an EDLC with power-electronics devices is useful for
the compensation of fluctuating power since one is capable of con-
trolling both active and reactive power simultaneously [49].

2.2. Pseudocapacitors

Pseudocapacitor is another type of supercapacitor, which is between
a battery and an electric double layer capacitor. It also consists of two
electrodes separated by an electrolyte. It has a chemical reaction at the
electrode the electrical charge storage is stored electrostatically with no
interaction between the electrode and the ions. Pseudocapacitance is

accompanied by an electron charge-transfer between electrolyte and
electrode coming from a de-solvated and adsorbed ion. One electron per
charge unit is involved. The adsorbed ion has no chemical reaction with
the atoms of the electrode (no chemical bonds arise) [50] since only a
charge-transfer take place.
Chemical process involves charge transfer by means of reduction-

oxidation (redox) reactions. While the charge transfer is like that in a
battery, transfer rates are higher because of the use of thinner redox
material on the electrode or lower penetration of the ions from the
electrolyte into the structure. Because of multiple processes acting to
store charge, the capacitance values are higher in Pseudocapacitors.
Pseudocapacitance was discovered by Conway, Birss, Wojtowicz,

and Kozlowska in 1975, collaboration with Craig of Continental Group
Inc. [51,52]. Research is still ongoing towards identifying materials and
electrochemical characteristics that can render high energy density at
faster charge-discharge rates. Electrodes' ability to produce pseudoca-
pacitance strongly depends on the electrode materials' chemical affinity
to the ions adsorbed on the electrode surface as well as on the electrode
pore structure and dimension. To date, transition metal oxides have
displayed pseudocapacitive behavior with high specific capacitance and
multiple oxidation states that gains them a favor for capacitive appli-
cation [53,54]. Another approach uses electron-conducting polymers as
pseudocapacitive material. Although mechanically weak, conductive
polymers have high conductivity, resulting in a low ESR and a relatively
high capacitance. Such conducting polymers include polyaniline,
polythiophene, polypyrrole, and polyacetylene [55]. Such electrodes
also employ electrochemical doping or de-doping of the polymers with
anions and cations. Electrodes made from or coated with conductive
polymers are cost comparable to carbon electrodes. Conducting
polymer electrodes generally suffer from limited cycling stability [56].
However, polyacene electrodes provide up to 10,000 cycles, much
better than batteries. Fig. 4 (b) and (c) exhibits various commercial
pseudocapacitors.
Pseudocapacitance is characterized by two-dimensional or near

two-dimensional processes in storing charge. Fig. 6 shows three dif-
ferent mechanisms contribute towards pseudocapacitance: (a) under-
potential deposition, (b) redox pseudocapacitance and (c) intercalation
pseudocapacitance [27]. Underpotential Deposition occurs at potentials
positive with respect to the Nernst potential. The deposition of a metal
on to the electrode surface of another metal is at a reduction potential
higher than that when it is deposited onto itself. The thickness of the
deposit does not normally exceed a monolayer. The fractional surface
coverage occurs over a continuous range of potentials. An example of
Underpotential Deposition is the electrosorption of hydrogen on pla-
tinum or lead on gold. The chemical reaction involving the deposition
of lead on gold can be represented [53] as [20]: The reaction rates and

Fig. 5. Cyclic voltammetry of EDLCs at different (a) scan rates [45] and (b) current density [46].
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the resulting surface structures depend on the nature and concentration
of anions. Depending on the level of lattice match between the ad-
sorbate and substrate, the structures of the substrate and the grown
layers are in proportion [52,57].
The charge transfer between electrode and electrolyte occurs by

means of redox reactions in the case of redox pseudocapacitance and
hence Faradaic in nature. Redox reactions mean reduction-oxidation
reactions. Both result in the change of oxidation state of the species
involved. Reduction occurs when electrons are accepted, and the oxi-
dation state gets lowered. Oxidation indicates release of electrons and
an increase in the oxidation state. For the case of ruthenium oxide
(hydrated) which was first discovered to exhibit pseudocapacitance,
redox occurred by accepting protons from the electrolyte and releasing
them back to the electrolyte. While accepting protons it also takes in
electrons and changes its oxidation state from +4 to +3 [58].
Insertion of cations into the bulk lattice of a solid electrode is

termed intercalation. There should be an appropriate number of

electrons transferred to the host during insertion to maintain the elec-
trical neutrality of the electrode. Insertion is limited by the ability of the
ion to diffuse through the electrode material. Current flow in this case
at a given voltage varies with the square root of the sweep rate [59].
Fig. 7 shows cyclic voltammogram and charge-discharge curves of a
pseudocapacitor electrode material.

3. Materials

Material selection is very important for supercapacitors. Various
materials are used as an electrode (anode & cathode) and electrolyte in
supercapacitors system. The properties of supercapacitors come from
the interaction of their internal materials. Especially, the combination
of electrode material and type of electrolyte determine the functionality
and thermal and electrical characteristics of the capacitors.

Fig. 6. Different types of reversible redox mechanisms that give rise to pseudocapacitance: (a) underpotential deposition, (b) redox pseudocapacitance and (c)
intercalation pseudocapacitance [27].

Fig. 7. Nickel foam based 2-electrode (symmetric) configuration: (a) comparative cyclic voltammogram for OLC and OLC/MnO2 at 5mV s−1, (b) comparative
galvanostatic charge–discharge curves for OLC and OLC/MnO2 at 0.1 Ag−1, (c) CVs at different scan rates for [60].

A. Afif, et al. Journal of Energy Storage 25 (2019) 100852

7



3.1. Electrode

Electrodes for any energy storage and conversion system must have
good conductivity, high-temperature stability, long-term chemical sta-
bility, high corrosion resistance, high surface areas per unit volume and
mass, environmental friendliness and low cost. Supercapacitor elec-
trodes are generally thin coatings applied and electrically connected to
a conductive, metallic current collector. These are typically made of a
porous, spongy material with an extraordinarily high specific surface
area. Additionally, the ability of the electrode material to perform
faradaic charge transfers enhances the total capacitance. Electrode
material fabrication is very important to get high-performance super-
capacitor [61,62]. As an example, a novel colloidal self-assembly
method was used to fabricate graphene-MWCNT-polypyrrole nanofi-
bers composite electrode materials [63–68]. Also, chemical deposition,
electrodeposition, electrophoretic deposition, hydrothermal, non-
covalent functionalization, electrochromic, liquid-phase deposition
(LPD), linearized augmented-plane-wave (LAPW) are various promising
methods to fabricate electrode materials for supercapacitors [69–72].
With respect to electrode materials, there are the following categories:
carbon-based, metal oxides based, perovskite-based and conducting
polymer based. The detailed descriptions of the various systems will be
discussed in the following sections. For each type, the present status is
summarized first and then prospects for future development are dis-
cussed. There have been many excellent reviews focusing on the elec-
trode materials reported during the past several years [53,73–77].

3.1.1. Carbon-based
The most commonly used electrode material for supercapacitors is

carbon. For high availability, established industrial production pro-
cesses and low cost, various carbon-based materials are widely used in
many applications for supercapacitors [78]. Carbon electrodes can be
manufactured as several forms of 1D to 3D structure such as foams,
fibers, and nanotubes. One might expect the specific capacitance to be
directly proportional to the carbon electrode’s surface area, however,
this is not always the case. Often, a type of carbon with a lower surface
area will have a higher specific capacitance than a type with a larger
surface area [77].
Activated carbon (AC) is used as active electrode material for su-

percapacitor due to relatively low cost and high specific surface area
(SSA) around 1000-2000m2 g−1 [40,73,79]. It is obtained from carbon-
rich organic precursors by carbonization (heat treatment) in an inert
atmosphere, with subsequent oxidation in CO2, water vapor or KOH to
increase the SSA and pore volume. Natural or synthetic materials like
coconut shells, wood pitch, coal or polymers can be used as precursors
respectively. A network of micropores (< 2 nm), mesopores (2–50 nm),
and macropores (< 50 nm) was created in the bulk of carbon grains by

activation [80]. The broad distribution of pore size is characteristic of
the porous structure of carbon. Higher temperature or longer activation
time leads to larger pore size. To increase the pore volume by SSA
preliminary research was focused on the refining the activation process
of the activated carbon. But the capacitance increase was not very ap-
preciable even for the most porous samples. A nonlinear relationship
between SSA and capacitance is understandable from various activated
carbons with different pore sizes in various electrolytes [81–83]. Sev-
eral investigations reveal that the pores smaller than 0.5 nm were not
approachable by the hydrated ions [84], even 1 nm pores are not ac-
cessible mainly in case of organic electrolytes as the solvated ion has a
larger size than 1 nm [85]. The new findings are in accord with the
previous investigations where the removal of the solvation shell [86]
sheath needs several kilojoules per mole in case of water molecules
[87]. To improve the energy density and power capability a pore size
distribution in the range of 2–5 nm was considered appropriate as it is
larger than the size of two solvated ions. The moderate improvement is
depicted by the gravimetric capacitance in the range of 100-120 Fg-1 in
organic solvents and 150-200 Fg−1 in aqueous electrolytes [88,89] and
ascribed to improve ionic mass transport inside mesopores. It is re-
ported that micropores show better performance in comparison to the
fine-tuned mesoporous carbon. Salitra et. al. suggested that partial
desolvation can help in better capacitance by accessing the small pores
(< 2 nm) [90]. Mesoporous carbon having small pores exhibited a high
capacitance, suggesting that partial ion desolvation might be the reason
for capacitance [91–93]. Microporous carbons (< 1.5 nm) in organic
electrolytes showed (120Fg−1 and 80 Fcm-3) contradicting the solvated
ion adsorption theory [94,95]. Raymond-Pinero et al. found the same
capacitance results using activated microporous coal-based carbon
materials of 0.8 and 0.7 pore sizes in organic or aqueous electrolytes
[96]. The use of the carbide-derived carbons (CDCs) resulted in a
promising rise in capacitance by smaller pores than solvated ion size
[97–101]. The porous carbons are obtained by extraction of metals
from carbides by etching halogen at high temperature are

+ +TiC 2Cl TiCl C2 4 (7)

During the above process Ti is leached out of TiC carbon atoms
adopt amorphous or random organization by sp2 bonding linkage the
pore size can be controlled by chlorination temperature and other
parameters. A contracted uni-modal pore size distribution can be
achieved accordingly in (0.6–1.1 nm) range, with controlled pore size
up to sub-angstrom level accuracy [102].
A theoretical analysis published by Huang et al. proposed two ap-

proaches depending on pore size for the capacitive behavior. The pores
of mesoporous carbon larger than 2 nm model describing the charge of
the double layer were used [103].

C/A = ε0 εr / b ln (b/b–d) (8)

Where b is the pore radius and d is the distance of approach of the ion to
the carbon surface. Fig. 8 shows the mesoporous range (zone III) were
fitted with Eq. 8. For micropores (< 1 nm) it was assumed that ions
enter a cylindrical pore and line up, thus forming the electric wire in a
cylinder

C/A = ε0 εr / b ln (b/aº) (9)

where aº is the effective diameter of the desolated ion. This model
matches with the normalized capacitance change versus pore size (zone
I Fig. 9). This research suggests that the removal of the solvation shell is
mainly by the ion’s entry in the micropores. Eq. 8 suggests that ionic
radius aº is close to the bare ion size, mean full desolvation can happen.
The interaction of CDCs with the solvent-free electrolyte [EMI+, TFSI−]
where both ions have a maximum size of about 0.7 nm pore size at 60 °C
showed maximum capacitance for 0.7 nm samples. This may be due to
single ion per pore produces the maximum capacitance, proposing that
ions cannot be absorbed on both pore surfaces, in contrast to the

Fig. 8. Specific capacitance normalized by SSA as a function of pore size for
different carbon samples.
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traditional supercapacitors. Carbon hollow fibers as promising material
were reported to achieve 287 Fg-1 at 50 mAg-1 with capacitance re-
tention of 86.4% at 1Ag-1 [104].
Carbide-derived carbons (CDCs) with Titanium was shown to have

the highest gravimetric capacitance, up to 220 Fg−1 in KOH and
120Fg−1 in organic electrolyte whereas SiC-CDC has the highest volu-
metric capacitance 126 Fcm-3 in KOH and 72 Fcm-3 in organic elec-
trolyte [107]. Carbon nanotubes (CNTs) were used as supercapacitor
electrode materials with a specific capacitance of 115.7 Fg-1 in 1M
H2SO4 and good electrochemical stability [108].
Graphene is the monolayer of graphite, which can be prepared by

several techniques. Geim et al. prepared graphene from graphite and
demonstrated an experimental method to prepare a single layer of
graphite with a thickness in the atomic scale, named as graphene. Fig. 9
presents the schematic diagram of the synthesis process of porous
graphene. Graphene oxide (GO) is another important member of the
graphene-graphite family, which is considered as derivatives of gra-
phene. They that can be readily made from graphite, exhibit the layered
structure and the surface related properties [109,110]. Graphene-based
supercapacitors were reported with a specific capacitance of 75Fg−1

and energy density of 31.9 Whkg−1 with ionic liquid electrolytes [111].
Zhang et al. reported a method to prepare porous 3D graphene-based
materials which produce 92 Fcm-3 volumetric capacitance, 231 Fg−1

specific gravimetric capacitance and 98 Whkg−1 energy density [112].
Lee et al. fabricated vertically aligned graphene which produces 171
Fcm-3 volumetric and 1.83 fcm-2 areal capacitance [113]. Tho et al.
reported that a maximum specific capacitance of 199 Fg−1 was mea-
sured in KOH electrolyte is achieved by using GO [114]. Reduced
graphene with low agglomeration reached a maximum specific capa-
citance of 205 Fg−1 in aqueous electrolyte exhibiting an energy density
of 28.5 Whkg-1 [115].
Recently Y. Yang et al. reported graphene-based materials as po-

tential perspective electrode materials for energy conversion and sto-
rage for future research. He compiled as highest specific capacitance
843 Fg−1, highest energy density 155.6 Whkg−1 and highest power
density 400 kW kg−1 as reported all potential GBMs [116]. At the same
time period Q. Ke et al. summarizes recent development on graphene-

based materials for supercapacitor electrodes, based on their macro-
structural complexity, i.e., zero-dimensional (0D) (e.g. free-standing
graphene dots and particles), one-dimensional (1D) (e.g. fiber-type and
yarn-type structures), two dimensional (2D) (e.g. graphene and gra-
phene-based nanocomposite films), and three-dimensional (3D) (e.g.
graphene foam and hydrogel-based nanocomposites) [117]. Table 2
shows the various carbon-based materials with electrochemical per-
formances.
The application of SCs calls for an electrode with a structure that

allows for the long and continuous transfer channels of electrons and
short diffusion distances for the ions of the electrolytes, stimulating the
development of fabricating carbon-based materials as 3D graphene and
graphene and CNT hybrids. The capacitance performance of CNT/gra-
phene-based nanomaterials with high chemical stability in high voltage
is encouraging, since their hexahedral surface configuration and me-
sopores in large amount have improved the power density of the elec-
trode significantly, while the energy density also increases because it's
proportional to the square of the voltage.

3.1.2. Metal oxide based
Metal-oxides present an attractive alternative as an electrode ma-

terial for high energy and high power supercapacitor because of high
specific capacitance and conductivity, low resistance, possibly making
it easier to construct high-energy, high-power supercapacitors [17]. A
variety of metal oxides have been employed as an electrode in super-
capacitors. These include of RuO2, MnO2, NiO, SnO2, In2O3, IrO2,
MoOx, Co2O3, V2O5, Fe2O3, Bi2O3, BiFeO3 etc. Fig. 10 (a) shows the
morphologies of various metal oxide films.
Ruthenium IV Oxide was the first material to exhibit highest specific

capacitance), high proton conductivity, good thermal stability and
electrochemical reversibility, high rate capability, wide potential
window, and long cycle life [129–132] and it has a specific capacitance
of 720 to 1340 Fg−1 in water. It has three oxidation states within a
potential of 1.2 V. Limited occurrence and high costs inhibit further
exploration of the material [53]. The maximum Sc of over 768 Fg−1 has
been obtained in RuO2.xH2O [133]. Because of the high cost, RuO2 was
combined with other low-cost materials. It is reported that with RuO2-

Fig. 9. Schematic illustration for the synthesis of porous graphene [105,106].
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SnO2 composite electrode showed Sc of 710 Fg−1 in KOH electrolyte
[134] and RuO2-TiO2 showed 534 Fg−1 [135]. Further, RuO2 has been
also co-deposited with InO2 and V2O5 using sol-gel and dip coating
methods. Fig. 10(a) shows the morphologies of various transition metal
oxide thin films [99] and Fig. 10(b) shows the cyclic voltammograms of
a MnOx based electrode material [100].
After RuO2, most attention had focused on manganese oxide (MnO2)

as electrode material due to lower cost, lower toxicity, environmental
safety and theoretical high capacitance (1100-1300 Fg−1). Various
synthesis methods, such as sol-gel, dip or drop coating, electrochemical
deposition etc.; were used to prepare MnO2 thin film. Fig. 10 (b) ex-
hibits the cyclic voltammograms of MnOx based electrode 1M Na2SO4
at a scan rate of 50mV s−1. It is reported that, MnO2 showed a Sc of
600-700 Fg−1 in 1M Na2SO4 [136], 195-275 Fg−1 in 2M KCl, 310
Fg−1 in 2M (NH4)2SO4 [137] and 720 Fg−1 in LiClO4 aqueous solution
electrolyte [138]. Recent studies reported that MnO2 coated MWCNT
composites could be prepared N-doped activated carbon (N-AC) as a
sacrificial template [139,140]. The problem of MWCNT degradation in
the reaction with KMnO4 has been avoided by the N-AC layer. This
process offers the advantages of the small size of MnO2 nanoparticles,
the fibrous microstructure of composite and good electrical contacts.
The result shows high specific capacitance of 311.7 Fg−1 (6.29 Fcm-2)
at a high mass loading of 20mg cm-2 and in the asymmetric device of
Na2SO4 electrolyte, the energy density is 26.4 mWhg−1 with a power
density of 1.7 Wg−1.
Nickel cobaltite has displayed very high specific capacitances in the

range of 330 to 2680 Fg−1. The existence of multiple oxidation states
for Nickel and Cobalt and high electrical conductivity boosts the ca-
pacitance. Moreover, the ease of availability of both Nickel and Cobalt
makes the substance more accessible [141]. Nanowire arrays of nickel
cobaltite prepared by a hydrothermal process exhibit the highest re-
ported capacitance obtained at a current density of 2Ag−1 in PVA-KOH
polymer gel as the electrolyte. The arrays were grown on Ni foam and
had a mass loading of 3mg cm-2 [142]. Nickel Cobaltite aerogels pre-
pared through an epoxide-driven sol-gel procedure have a specific ca-
pacitance of 1400 Fg−1 at a scan rate of 25mVs−1 in a potential
window of 0.5 V in 1M NaOH solution. The mass loading was at
0.4 mg cm-2. Electrodeposition is also utilized in the synthesis of Nickel
Cobaltite [54]. Cobalt Hydroxide synthesized by means of electro-
deposition as an ordered mesoporous film on foamed Nickel mesh has a
specific capacitance of 2646 Fg−1. The film studied under electron
microscopes exhibits a surface with interlaced nano-sheet like appear-
ance, pores of nanometer dimension and a regular nanostructure with
extended periodicity [143]. Amorphous Nickel Hydroxide nano-spheres
deposited on a graphite rod in 1M potassium hydroxide and cycled at
current densities of 20-70 Ag−1 show specific capacitances between
1868 to 1330 Fg−1. Irregular surfaces and amorphous character render
such high capacitance [144].
For intercalative pseudocapacitance properties Co(OH)2, Co3O4 and

CoOx are promising electrode materials for supercapacitors. It was re-
ported that a Sc of 280 Fg−1 was obtained by Co(OH)2 [145], 291 Fg−1

by CoOx xerogel [146] and 730 Fg−1 by (CO+Ni)(OH)2.nH2O [147].
Zhao et al. obtained a Sc of 578 Fg−1 in 3% KOH electrolyte [148]. Wu
et al. used nickel foil and graphite obtaining Sc of 135 and 195 Fg−1

respectively [149]. A maximum Sc value of 840 Fg−1 was obtained
with electrochemically deposited nickel and cobalt mixed oxide onto
CNT film substrate [150]. Recently it is reported that Ni and Co- based
oxides/hydroxides has been termed as battery-type faradic electrode
materials based on their electrochemical behavior in aqueous electro-
lytes. The capacitance for these materials was not constant over the
whole potential window in cyclic voltammogram test [22,151–154]. It
is confusing to use these materials as pseudocapacitive, that might ex-
hibit high-rate capability, but with the electrochemical signature of a
‘battery’ electrode.
Due to high conductivity, tin oxide (SnOx) is used for electrode

materials in supercapacitor. It was reported that a Sc of 285 Fg−1 wasTa
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obtained in 0.1 Na2SO4 electrolyte [155]. Kuo and Wu reported that a
Sc of 930 Fg−1 was obtained with supercapacitor containing sol-gel
SnO2 and electroplated RuO2 [156]. In the non-aqueous electrolyte
category, Vanadium oxide aerogels immobilized on a sticky carbon
electrode in 1M Lithium perchlorate in propylene carbonate gave
specific capacitance of 2150 Fg−1. The aerogels were prepared by
ambient drying method. The drying was done with a low surface ten-
sion solvent at ambient pressure resulting in larger pores of 10–30 nm
size range. Large pores combined with significant pore volume im-
proved the probability of electrolyte penetration. Electron, ion and
solvent transport are enhanced by the choice of the current collector
and the aerogel morphology ensuring shorter diffusion lengths. It has
ion incorporation like a battery and response of a capacitor [157].
Vanadium pentoxide (V2O5) plays an important role in the elec-

trochemical supercapacitor. Lee and Goodenough reported with Sc of
350 Fg−1 in aqueous KCl [158]. In an organic electrolyte (LiClO4 in
propylene carbonate), the V2O5.xH2O/CNT film electrode showed Sc of
910 Fg−1 at 10mVs−1 of scan rate [159]. Indium oxide (In2O5) was
used as electrolyte materials in supercapacitor and showed Sc of 190
Fg−1 at a scan rate of 10mVs−1 in 1M Na2SO3 electrolyte [160].
Polycrystalline monoclinic Bismuth oxide (Bi2O3) electrolyte showed a
Sc of 98 Fg−1 in 1M NaOH electrolyte [161]. Wang et al. reported that

an Iron oxide (Fe3O4) thin film electrode exhibited Sc of 170 Fg−1 in
aqueous 1M Na2SO3 [162]. The capacitive current of magnetite elec-
trode originates from the combination of EDLC and pseudo-capacitance
that involves successive reduction of the specifically adsorbed sulfite
anions. The bulk ferrites (MF2O4, where M=Mn, Ni, Co, or Fe) showed
potential electrode candidate for supercapacitor. Kuo and Wu used
MnFe2O4, which exhibited Sc of 100 Fg−1 and had high power delivery
capabilities of 10 kW kg-1 [163,164] and Gunjakar used spinal NiFe2O4
films exhibited Sc of 354 Fg−1 at 5mVs−1 [71,165]. Table 3 shows the
different values obtained from different metal oxide thin film-based
supercapacitors. The supercapacitors exhibited superior values com-
pared to their bulk and composite electrode.
Metal oxide-based supercapacitors also exhibited superior values

compared to their bulk and composite electrodes and for some oxide
materials, are higher than the carbon and polymer-based electrode
systems. Further, increase in energy density of supercapacitor is pro-
jected if the nanostructure of electrodes and surface faradaic charge-
storage properties are combined. Considering that metal oxide-based
supercapacitor technology is still in its infancy, future research and
development should ultimately yield high-performance, low cost, and
safe energy storage devices.

Fig. 10. (a) Morphologies of various transition metal oxide thin films [127] and (b) Cyclic voltammograms of a MnOx based electrode material [128].

Table 3
Metal oxide-based electrode materials with electrochemical performances.

Electrode Electrolyte Characterization Method Emax
(Wh/kg)

P at Emax
(W/kg)

Max Specific
Capacitance (F/g)

Current
density (A/g)

Scanning rate
(mV/s)

Retention with
cycle

Reference

RuO2 1M H2SO4 Electrophoretic deposition 25 21 734 10 1 91% @200 [166]
MnO2 0.1M Na2SO4 Sol-gel dip coating 698 50 73.6% @1500 [167]
Ca3Co2O6 Solid-state calcination and

co-precipitation
563 5 [168]

SnO2 0.1M Na2SO4 Sol-gel 285 0.3 mA/cm2 10 88% @1000 [155]
Co(OH)2nanowires 6M KOH Hydrothermal 13.6 153 358 0.5 1 86.3% @5000 [169]
In2O3 1M Na2SO3 Potentiodynamic 190 3 10 @1000 [160]
Al0.2Cu0.4Co0.4Fe2O4 Sol-gel 0.27 548 100 [170]
Bi2O3 1M NaOH Electrodeposition 98 100 @1000 [161]
V2O5 2M KCl Solvothermal 350 @100 [158]
Fe3O4 1M Na2SO3 Wet chemical 170 2 [162]

1M Na2SO4 25
1M KOH 3

NiFe2O4 Na2SO3 Modified chemical 354 5 @1000 [165]
95 200

MnFe2O4 1M NaCl Co-precipitation 7.6 10 100 0.5 20 [163] [164],
Ti (RhOx+Co3O4) 0.5M H2SO4 Thermal decomposition 500-800 @ 20-

60mol% RhOx
20 @100 [171]
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3.1.3. Perovskite based
Perovskite term is used when referring to a large group of com-

pounds with a crystal structure resembling the minerals CaTiO3, which
is very stable and orthorhombic at high temperatures, was named after
the Russian mineralogist Lev Perovski [172]. The general formula of
perovskites is ABX3, where A and B represent cations, and X is an anion.
A-site cations are usually bigger and more electropositive in comparison
to ones located at B-site, while the X site is commonly occupied by
oxide or halide ions (O2‾, Cl‾, Br‾, F‾). Combination of the large oxide
ion with a smaller radius metal ion gives a cubic close-packed crystal
structure of ions along with interstitial metal ions. The possible use of
ABO3 structures as catalysts in the replacement of noble metals is an
idea that has been proposed in the early 1990s, based on the mixed
oxide-ion/electronic conductivity and the low cost of these materials.
Fig. 11 shows the structure and performance of the perovskite super-
capacitor electrode material [173].
The perovskite crystal structure is a combination of metal oxides.

Perovskite-based materials exhibit high chemical stability and good
electrochemistry performance. Due to its good performance perovskite-
based electrode materials for supercapacitor. Garche et al. reported that
SrRuO3 showed a Sc of 10 Fg−1 in KOH electrolyte. Doping La on A-site
the Sc value increase to 20-30 Fg−1 [175]. Wohlfahrt made the same
electrode with a better result (270 Fg−1) [176]. Lee et al. reported CO
sensing characteristics of rGO/GdInO3 nanocomposite by one step hy-
drothermal method showed high response at low temperature [177].
Atma et al. prepared La1-xAlxFeO3 (x=0, 0.3) as electrode made by
chemical route in 1M H2SO4 exhibited a Sc of 260 Fg−1 at 500 mVs−1

[178]. Jung and his coworker prepared (Na, K)NbO3-CaCu3Ti4O12
perovskite composite for supercapacitor with a maximum dielectric
permittivity of 796 Fg−1 [179]. Han et al. prepared BiFeO3 thin film
electrode for electrochemical supercapacitor which showed a Sc of 81
Fg−1, specific energy of 6.68 Jg−1 and specific power as 3.29 Wg−1 in
aqueous NaOH [180]. Fig. 11 shows an idealized cubic ABO3 perovskite
structure (a), cyclic voltammograms (CVs) of LaxSr1−xCo0.1Mn0.9O3−δ

in the different solutions at a sweep rate of 5mVs−1 (b) and Nyquist
plots of LaxSr1−xCo0.1Mn0.9O3−δ in 1M KOH (c) [139].
Hwang and Kim reported LaNiO3 nanofibers as electrode for su-

percapacitor with a Sc of ˜160 Fg−1 at 10mVs−1 [181]. Lin et al be-
come successor on using perovskite electrode materials for super-
capacitors. LaxSr1-xCu0.1Mn0.9O3-δ (0.3≤ x≤1) exhibited a Sc of 464
Fg−1 at 2 Ag−1 and maximum current density 64.5 Whkg−1 at
2 kW kg−1 of power density [182]. Doping with Ni and Co the electrode
exhibited a Sc of 719 Fg−1 and 747 Fg−1 [183,184]. Jie and Hao made
LaMnO3/graphene film by sol-gel with the spin-coating method. Mobin
et al. developed nanocomposite rGO/SrTiO3 electrode material with

rapid electronic communications [185,186]. Yang et al. made pro-
mising lanthanum based perovskite electrode material in a different
aqueous solution which showed good specific capacitance and excellent
electrochemical behavior [187]. Liu and Shao et al developed
SrCo0.9Nb0.1O3-δ (SCN) as a novel anion-intercalated electrode material
for supercapacitors, demonstrating a very high volumetric capacitance
of about 2034.6 Fcm-3 [188]. Table 4 shows the different values ob-
tained from different perovskite-based supercapacitors.
Perovskite based electrode materials were mainly combination of

metal oxides. But due to the unique structure, this material has been
used in supercapacitors application to get the better performance. The
perovskite materials can achieve high capacitance through the anion-
insertion mechanism, paving a new way for the development of su-
percapacitors with high energy and power density. The perovskite-
based materials have potential as remarkable electrodes in the next-
generation high-performance supercapacitors.

3.1.4. Conducting polymer based
Conducting polymer has high electric conductivity (104 Scm−1). As

expected for a capacitor, the typical cyclic voltammogram of a con-
ducting polymer is not rectangular and exhibits a current peak at a
redox potential of the polymer. Conducting polymers store and release
charge through redox processes. When oxidation occurs (doping), ions
are transferred to the polymer backbone. When reduction occurs (de-
doping) the ions are released back into the solution. Charging in con-
ducting polymer films, therefore, takes place throughout the bulk vo-
lume of the film, and not just on the surface as is the case with carbon.
This offers the opportunity of achieving high levels of specific capaci-
tance. Fig. 12 shows the different characteristics of PANI electrode for a
supercapacitor application.
Polyaniline was first described by Henry Letheby in the mid-19th

century, who investigated the electrochemical and chemical oxidation
products of aniline in acidic media [192]. Due to its large theoretical
capacitance, low cost and facial synthesis among conducting polymers,
polyaniline (PANI) is the most widely used for the energy storage ap-
plication, especially supercapacitors, either as a conducting agent or
directly as an electroactive material. PANI morphology is very im-
portant in all solid-state cell in which the electroactive material is not
soaked in the electrolyte to increase the electrode/electrolyte interface
and increasing the electrochemically accessible surface area by forming
porous PANI can also significantly improve the supercapacitor perfor-
mance [193,194].
Kaner et al is the first studied PANI as an electroactive material of

supercapacitor [195] and Rudge studied the doping effect of PANI on its
performance in supercapacitor [196]. Arbizzani et al reported that the

Fig. 11. (a) Idealized cubic ABO3 perovskite structure, (b) Cyclic voltammograms (CVs) of La0.85Sr0.15MnO3−δ in 1M KOH at scan rate of 100 mVs−1 and (c) Nyquist
plots of LaxSr1−xCo0.1Mn0.9O3−δ in 1M KOH [173,174].

A. Afif, et al. Journal of Energy Storage 25 (2019) 100852

12



charge/discharge profile could be a line rather than flat plateau of
battery like performance in a comparative study of various conducting
polymers [197]. Bian and Yu developed de-doped PANI in which the
specific capacitance is 29% higher than doped PANI [198]. Sharma and
his coworker synthesized a nanoporous PANI with a specific area of
1059m2 g−1 delivered a Sc of 410 Fg−1 [199]. Zhang et al reported
that PANI nanofibers can deliver a Sc of 1210 Fg−1 [200] and depos-
iting a thin layer of PANI onto porous carbon showed a high Sc of 2200
Fg−1 [201]. PANI/SWCNT supercapacitor delivered a Sc of 485 Fg−1

with a good cyclability [202]. A flexible sheet made of PANI-coated
graphene nanofiber displayed a Sc of 976 Fg−1 at 0.4 Ag−1 [203].
Using PANI vertically on a graphene sheet with ordered alignment, a
high Sc of 1665 Fg−1 has been achieved [204].
Hu and Chu employed iridium doped PANI film with an operating

voltage window of 0.7-0.8 V [205]. Prasad and Miura electrodeposited
MnOx on PANI and achieved a Sc of 715 Fg−1 with only 3.5% in the
specific capacitance loss after 5000 cycle [206]. Recently, a super-
capacitor of KCa2Nb3O10 perovskite/PANI has been reported to deliver
a Sc of 250 Fg−1 [207] and a nano-composite of graphene/Fe2O3/PANI
delivered a Sc of 638 Fg−1 with 92% capacity retention after 5000
cycles [208]. PANI growth on graphene/ZrO2 exhibited a Sc of 1360
Fg−1 [209]. Polyprrolecand poly (3, 4-ethylenedioxythiophene)
(PEDOT) delivered an excellent capability for supercapacitor as elec-
trode [210,211]. Table 5 shows the electrochemical performance of
various supercapacitors fabricating based on PANI electroactive mate-
rial.
To get high capacitance, long lifetime, and great mechanical flex-

ibility polymer binders were used to manufacture supercapacitor elec-
trode materials. Nafion, polyvinylpyrrolidone (PVP), Poly-tetra-
fluoroethylene (PTFE), Poly-vinylidene difluoride, polyvinylidene
chloride, Sulfonated poly-ether ether ketone (SPEEK) were some
polymer binders and additives, which were used as integral component
of supercapacitor electrode materials [220–222]. Conducting polymers
have substantial differences with the inorganic materials utilized for
supercapacitors because of the polymer matrix structure. While the
lattice structure of most inorganic materials provides suitable places for
the adsorption/intercalation of electroactive species within the material
porosity at sub-surface, the polymer matrix has plenty of empty spaces,
but the electroactive species does not simply fit in there and cause se-
vere volume changes. The future of conducting polymer-based super-
capacitor depends on the appropriate architecture of the corresponding
nanocomposites.

3.2. Electrolyte

The electrolyte is another key component of ESs and provides ionic
conductivity. The electrolyte within an electrochemical supercapacitor
(ES) not only plays an influential role in EDLCs and reversible redox
process for the charge storage but also determines the ES performance.
The interaction between electrode and electrolyte material also plays an
important role. Increasing the capacitance and cell voltage with a high
specific area are the key to develop the ES. A large variety of electro-
lytes have been developed and reported in the literature to date.
Aqueous electrolytes, organic electrolytes, ionic liquids electrolytes,
redox-type electrolytes and solid or semi-solid electrolytes have been
explored during the past several decades [77,223–225]. Liquid elec-
trolytes can be further grouped into aqueous electrolytes, organic
electrolytes and ionic liquids (ILs), while solid or quasi-solid state
electrolytes can be broadly divided into organic electrolytes and in-
organic electrolytes [226,227]. Fig. 13 shows the supercapacitor per-
formance in the different electrolyte at 10mV s−1 scan rate. There has
been no perfect electrolyte developed, meeting all the requirements.
Each electrolyte has its own advantages and disadvantages. In Tables
2–7, various electrolytes with different electrode materials have been
reported. Table 6 shows different types of electrolyte-based super-
capacitors and their performances.Ta
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Due to the narrow voltage windows, aqueous electrolytes are the
low choice for commercial ES, though exhibit high conductivity.
Aqueous electrolytes can be grouped into acid, alkaline and neutral
solution in which H2SO4, KOH and Na2SO4 are the most frequently used
electrolytes. There were more than a 10% loss in the specific capaci-
tance of some asymmetric ESs after a certain number of cycle
(1000–5000) using alkaline electrolytes for hybrid capacitors
[229,230]. It is reported that a high energy density of 50 Whkg−1 was
achieved by using neutral electrolytes [231]. Due to the high operating
potential window, organic electrolytes are suitable for ESs. Jiang et al.
developed theoretical modeling and simulation of EDL using organic
electrolytes, which may provide useful guidance EDLC design [232].
Among organic electrolytes, acetonitrile (ACN) and propylene carbo-
nate (PC) is the most widely used solvents. 1M LiTFSI/CAN used as
organic electrolytes with carbon//V2O5 hybrid capacitor electrode ex-
hibited wide operating cell voltage [233]. In the fuel cell vehicle ap-
plication, ionic liquids (IL) are a good solution to improve the perfor-
mance of ES [234]. Other than IL, some good key components as
electrolyte materials have been identified, which can improve ES per-
formance. Fig. 13: (a) Variation of supercapacitor performance of LiCl
and LiOH electrolyte and (b) Variation of the capacitance with pressure
in different electrolyte [190].

4. Hybrid supercapacitor

Instead of using graphene, metal oxides and polymers separately,
combining each other we can get low cost, good electrical conductivity,
mechanical flexibility and good chemical stability as hybrid electrode
materials for supercapacitors.
Hybrid electrode configurations show considerable potential, con-

sisting of two different electrodes made of different materials.
Composite electrodes consist of one type of material incorporated into
another within the same electrode. During research into polymer
electrodes at the University of Bologna it was found that a sufficiently
high polymer concentration could not be realized in the negative
electrode. The positive polymer electrode was successfully constructed,
however, and activated carbon was used as the negative electrode. This
hybrid configuration resulted in a supercapacitor that outperformed a
cell comprised of two carbon electrodes [38]. Also, of interest are the
results of experiments into depositing polymers onto carbon substrates
to form composite electrodes. Fig. 4 (d) & (e) presents various com-
mercial hybrid supercapacitors.
In the past few years, research focus is directed toward the devel-

opment of hybrid electrochemical capacitors (HECs), which asymme-
trically and simultaneously store charges by surface ion adsorption/
desorption on the cathode and by lithium/sodium-de/intercalation in
the anode. HECs, including lithium-ion capacitors (LICs) and sodium-
ion capacitors (NICs), are expected to bridge the gap between high-

energy LIBs/sodium-ion batteries (SIBs) and high-power ECs, becoming
the ultimate power source for electric vehicles and uninterruptible
power systems [250–252]. One of the major issues for HECs, however,
is the imbalance in the charge/discharge rate between the two elec-
trodes due to the intrinsic differences in the energy-storage mechan-
isms. Under the normal operating conditions of a HEC, this imbalance
in the kinetics prevents full energy utilization of the intercalation
electrode and imposes a high overpotential in the capacitive electrode,
thus deteriorating the overall efficiency. Using high-rate-intercalation
pseudocapacitive materials as the anode is promising to balance the
kinetics and power capability of both electrodes. The insertion-type
materials are broadly classified into metal oxides, lithium/sodium
metal oxide-based composites, transition metal carbides, and transition
metal dichalcogenides and so on. Particularly, some kinds of electrode
material, such as lithium and sodium metal-based materials and rutile
TiO2, cannot be defined as pseudocapacitive materials because of their
voltage plateaus and phase changes during the de (intercalation) pro-
cess. But their high rate capabilities ensure their applicability as high-
rate electrodes in hybrid capacitors. Fig. 14 shows the various char-
acteristics of a hybrid supercapacitor.
Dr. Yamabe from Kyoto University first discovered PAS (polyacenic

semiconductive) material in 1981, collaboration with Dr. Yata from
Kanebo Co. It is prepared by the pyrolysis of phenolic resin at
400–700 °C and amorphous carbonaceous material have excellent fea-
tures as the electrode for high-energy-density rechargeable devices. The
related patents were filed in the early 1980s by Kanebo Co and started
to develop towards the commercialization of PAS battery and lithium
ion capacitor (LIC). The PAS battery was put in use in 1986 and LIC in
1991 [253].
Hybrid supercapacitors attempt to exploit the relative advantages

and mitigate the relative disadvantages of EDLCs and pseudocapacitors
to realize better performance characteristics. Utilizing both Faradaic
and non-Faradaic processes to store charge, hybrid capacitors have
achieved energy and power densities greater than EDLCs without the
sacrifices in cycling stability and affordability that have limited the
success of pseudocapacitors. Research has focused on three different
types of hybrid capacitors, distinguished by their electrode configura-
tion [254]:

• Asymmetric hybrids
• Battery-type hybrids
• Composite hybrids
Asymmetric hybrids combine Faradaic and non-Faradaic processes

by coupling an EDLC electrode with a pseudocapacitive electrode
[17,254]. In principle, as a negative electrode usually carbon-based
material is used, and as a positive some pseudocapacitive materials. The
combination of a negative carbon electrode with a conducting polymer

Fig. 12. (a) FESEM images, (b) CV curves at different scanning rates and (c) Nyquist plots at different potentials of polyaniline thin film [191].
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or metal oxide positive electrode received a great deal of attention
[255,256]. Asymmetric hybrid capacitors that couple these two elec-
trodes reduce the extent of this trade-off to achieve higher energy and
power densities than comparable EDLCs. Also, they have better cycling
stability than comparable symmetric pseudocapacitors [254,257,258].
Similarly, to asymmetric hybrids, the battery-type hybrids couple

two different electrodes; however, the battery-type hybrids are unique
in the combination of a supercapacitor electrode with a battery elec-
trode. This configuration replicates the demand for higher energy su-
percapacitors and higher power batteries, combining the energy char-
acteristics of batteries with the power, cycle life, and recharging times
of supercapacitors [254]. Although there is less experimental data on
battery type hybrids than on other types of supercapacitors, the data
that is available suggests that these hybrids may be able to bridge the
gap between supercapacitors and batteries. Despite the promising re-
sults, the consensus is that more research will be necessary to determine
the full potential of battery-type hybrids [259].
Composite electrodes integrate carbon-based materials with either

conducting polymer or metal oxide materials and incorporate both
physical and chemical charge storage mechanisms together in a single
electrode. The carbon-based materials facilitate a capacitive double-
layer of charge and provide a high-surface-area backbone that increases
the contact between the deposited pseudocapacitive materials and
electrolyte. The pseudocapacitive materials can further increase the
capacitance of the composite electrode through Faradaic reactions
[254,260]. The synergetic mechanism could improve corrosion stabi-
lity, increased the specific capacitance and the operating potential
windows. Many different materials have been investigated, mostly
exotic and very expensive (starting materials and preparation proce-
dures) for asymmetric composite supercapacitors [261–263]. Fig. 15
presents the possible combinations of all hybrid supercapacitors.
Recently many scientists developed hybrid supercapacitors for dif-

ferent applications. Table 7 shows the electrical performance of various
hybrid supercapacitors. Mastragostino et al. reported that a hybrid p-
type poly (3-methylthiophene) (pMeT)/AC supercapacitor delivered
higher average and maximum specific power and higher specific energy
than n- and p-type pMeT supercapacitor in a double-layer activated
carbon supercapacitor (DLCSs) [234]. He and his co-workers also de-
veloped a hybrid supercapacitor (AC/1-buthyl-3-methyl-imidazolium/
pMeT), showed a Sc of 115 Fg−1 [223]. Gomez-Romero et al developed
organic-inorganic hybrid nanocomposite materials for energy storage in
solid-state electrochemical capacitors [264]. Li4Ti5O12 nanostructured
as anode and AC as cathode exhibited a specific energy 11 Whkg−1

with the specific power of 800 Wkg−1 at 95% efficiency [265]. Zhang
and Gong et al. made a self-stacked solvated graphene films (SSG) in
flexible solid-state supercapacitor [118]. SSG films exhibited a high
gravimetric Sc of 245 Fg−1. Maher et al. developed hybrid super-
capacitors and micro-supercapacitors for high-performance integrated
energy storage with the energy density between 22∼42 Whl−1 and
power densities up to ∼10 kWl−1, which is 100 times faster than high-
power lead-acid batteries and 1000 times faster than a lithium thin-film
battery [266].
Songhun et al. reported a mesoporous niobium pentoxide/carbon as

anode material which showed excellent energy density of 74 Whkg−1

and power density of 18,510 Wkg−1 [267]. Lee et al. developed an
asymmetric hybrid supercapacitor using AC as the cathode and urchin-
like TiO2 as the anode, which showed a Sc of 61.2 Fg−1 and energy
density of 50.6 Whkg−1 at a power density of 194.4 kW kg−1

[268,269,268,269]. Xie et al. fabricated graphene-MnO2 3D nano-
composite hybrid electrode using Ni foam produce 1.42 Fcm-2 areal
capacitance at a mass loading of 9.8 mg cm-2 [270]. Yongsheng et al.
fabricated Fe3O4/graphene as the electrode for hybrid energy storage,
which exhibited high reversible Sc of 1000 mAhg-1 at 90 mAg-1 [271].
Fe3O4/G//3D graphene showed energy density of 147 Whkg−1 at a
power density of 150 Wkg−1. AC@La2NiO4/NiO exhibited a Sc of 710
Fg−1 at a scan rate of 1 mVs−1 in 7M KOH electrolyte [272]. A Sc ofTa
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1382 Fg−1 at 1 Ag−1 was obtained by hollow sphere NiS2 as hybrid
supercapacitor electrode material [273]. Zhou reported that T-Nb2O5/
MNSs/rGO showed a power density of 25,600 Wkg−1 and a Sc of 86
Fg−1 [274]. Kwan et al. reported NiAl-LDH-NF as electrode material
which showed a Sc of 1250 Cg−1 at 2 Ag−1 and LDH-NF as positive and
GNS-NF as negative electrode delivered high energy density 30.2
Whkg−1 at a power density of 800 Wkg−1 [70]. NMO/MWCNT/PEPOT
exhibited a Sc of 836.27 Fg−1 [275]. Vlad et al. designed high energy
and high power battery electrodes by hybridizing a nitroxide-polymer
redox supercapacitor with a Li-ion battery material (LiFePO4) [276].
PTMA=poly (2, 2, 6, 6-tetra-methyle-1-piperinidyoxy-4-4-metha-

crylate); PEDOTT=poly (3,4 ethylenedioxythiophene); EC= ethylene
carbonate; DEC=diethyl carbonate; DMC=dimethyl carbonate; LDH-
NF= layard double hydroxide-nickel foam; PTFE=polytetraflu
oroethylene.
All other based electrode materials were not enough individually to

get high performance in supercapacitor application. By making com-
posite materials as hybridization can only possible to get high perfor-
mance. The need for hybrid supercapacitors can be justified due to the
limitations of current energy storage devices. Each type of super-
capacitors like EDLC and pseudocapacitor find their applications as per
their tendency. This factor limits their broader usage and as such, it is
essential to develop hybrid supercapacitor systems to increase the ap-
plicability range. The applications of the hybrid supercapacitors are on

the rise especially in the field of hybrid energy vehicles.

5. Perspectives

Supercapacitors have some advantages and disadvantages. Unlike
batteries, because there is no chemical reaction going on, the charge-
discharge cycle life of a supercapacitor is almost unlimited.
Supercapacitors have higher specific power than most batteries, but low
energy density. They provide peak power and backup power, energy
storage and source balancing when used with energy harvesters.
Supercapacitors minimize space requirement, size and weight, so it is
cost effective storage and meets environmental standards. They have
high self-discharge as compared to electrochemical batteries and do not
support AC applications. They are used in applications with fluctuating
loads such as laptop computers, GPS, photovoltaic systems and portable
devices. With steady progress, supercapacitors are getting traction in
these mainstream application markets such as the low-power equip-
ment power buffer, voltage stabilizer, and temporary energy storage
devices for energy harvesting system, incorporation into batteries,
aviation and military instruments, the automotive and rail sectors and
opening new possibilities in emerging sectors. The performance char-
acteristics of supercapacitors are suiting them for applications requiring
a high number of rapid charge and discharge cycles and for systems
implementing energy recovery. These include hybrid-electric vehicles,

Fig. 13. (a) Variation of supercapacitor performance of LiCl and LiOH electrolyte and (b) Variation of the capacitance with pressure in different electrolyte [228].

Table 6
Different electrolyte materials with electrochemical performances.

Electrolyte Electrode Specific Capacitance (F/
g)

Cell voltage
(V)

Emax (Wh/
kg)

P at Emax (W/
kg)

Reference

Aqueous electrolyte
2M H2SO4 MMPGC 105 at 4 mVs−1 0.8 4 20 [235]
1M H2SO4 ANS-rGO 375 at 1.3 Ag−1 2 213 1328 [236]
1M H2SO4 PANI-grafted rGO 1045.51 at 0.2 Ag−1 0.8 8.3 60000 [237]
6M KOH p-CNn/CGBs 202 at 0.325 Ag−1 0.9 4.9 150 [238]
2M KOH Poros NiCo2O4 nanotubes 1647.6 at 1 Ag−1 0.41 38.5 205 [239]
1M KCl MnCl-doped PANI/SWCNTs 546 at 0.5 Ag−1 1.6 194.13 ˜ 500 [240]
1 Li2SO4 Mesoporous MnO2 284.24 at 1 mVs−1 1 ˜ 28.8 ˜ 70 [241]
1M Na2SO4 Hydrous RuO2 52.66 at 0.625 Ag−1 1.6 18.7 500 [242]
Organic electrolyte
1M TEABF4/ACN Highly poros interconnected carbon nanosheets ˜ 120-150 at 1 mVs−1 2. 25 25000-27000 [243]
1.6M TEAODFB/PC AC 21.4 at 1 Ag−1 2.5 ˜ 28 ˜ 1000 [244]
1M LiPF6/(EC-DEC 1:1) Heteroatom doped porous carbon flakes 126 at 1 Ag−1 3 29 2243 [245]
0.5M B4NBF4/ACN Heterostrctred poly(3,6-dithien-2-yl-9H-carbazol-9-yl acetic

acid)/TiO2 nanoparticles composite
462.88 at 2.5 Ac−2 1.2 89.98 [246]

1M LiTFSI/ACN MnO2 nanorodes-rGO//V2O5 NWs-rGO 36.9 2 15.4 436.5 [247]
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wind turbines, rail transit, consumer electronics, and electric grid sys-
tems.
Supercapacitors continue to gain usage as more applications require

storing and releasing high amounts of energy in short periods. Market
research studies continue to project a bright future for the technology.
As of 2016 worldwide sales of supercapacitors is about US$400 million
[289]. One recent study, by Zion Market Research of Sarasota, Florida,
projects the supercapacitor market to grow from $684.7 million in 2016
to over $2 billion by 2022, at a compound annual growth rate of 20.5%.
Another recent study, by Research and Markets, projects the super-
capacitor market to grow at a compound annual growth rate of 18.6%
from 2017 through 2022, reaching $2.44 billion [290]. IDTechEx es-
timates that the high-power energy storage market is expected to grow
almost ten-fold to $2 billion a year by 2026 up from about $240 million
currently, Supercapacitors could capture about $800 million to $1
billion of that potential market opportunity [291]. The study adds that
the limitations to more rapid growth include high supercapacitor prices
and the lack of industry-wide experience. Supercapacitor manu-
facturers continue to improve the power handling and performance of
their parts. Table 8 shows differences among capacitors of various
manufacturers in capacitance range, cell voltage, specific power and
energy [21,79].
Scientists continue to look at new applications and materials for

supercapacitors. Current applications include the automotive industry,
hybrid transportation systems around the world, grid stabilization,
utility vehicles, and rail-system power models. One of the coolest

applications that’s already available is the combination of super-
capacitors with fuel cells for maximized energy storage and rapid
charging capabilities. Recently, researchers at UCLA and the University
of Connecticut developed a bio-friendly energy storage system called a
biological supercapacitor, which operates using charged particles, or
ions, from fluids in the human body. The research team envisions the
supercapacitor leading to longer-lasting cardiac pacemakers and other
implantable medical devices. Scientists are researching to develop new
and advanced materials (hybrid) for better performance in super-
capacitor applications and looking at alternative materials to the con-
ventional carbon, which requires high processing temperatures and the
use of harsh chemicals to produce [292–296]. Scientists are also
looking at alternative materials to conventional carbon, which require
high processing temperatures and the use of harsh chemicals to pro-
duce. Researchers at the Massachusetts Institute of Technology devel-
oped a supercapacitor that uses no conductive carbon, instead of em-
ploying a series of metal organic frameworks that provide a large
surface area. To develop and boost the performances, scientists and
researchers have explored and modified materials structures modified
from certain ways to deliver high power and energy as covalent organic
frameworks (COFs), metal-organic frameworks (MOFs), MXenes, metal
sulphides, metal nitrides, mixed conductors, ultrafast 2D, 3D materials
and 2D to 3D structures [297]. Recent developments and innovations in
the materials used in supercapacitors manufacturing mainly center on
reducing the possibility of self-discharge or short circuit. Stakeholders
in the supercapacitor market are aiming to capitalize on various

Fig. 14. (a) Schematic illustration showing the fabrication of the LDH@CNPs hybrid electrode; (b) SEM image of the conductive fibers (CFs); (c) and (d) top-view
SEM images of the NiAl-LDH NPAs on the surface of CFs; (e) XRD pattern of as-prepared LDH NPAs on CF [248] and (f) cyclic voltammetry and charge-discharge with
areal capacitances of the Co3O4@ppy hybrid electrode at a scan rate of 50mV s−1 with a current density of 2 mA cm−2 [249].

Fig. 15. Merging the characteristics of hybrid supercapacitors.
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performance characteristics of pseudo-capacitors and hybrid capacitors,
which can reflect higher energy density than any other types of su-
percapacitors. In the coming years, supercapacitors are likely to witness
ubiquitous acceptance in various industry verticals. The future of su-
percapacitors market is likely to witness the emergence of ECs that will
power the future of modern wearables and consumer electronic pro-
ducts. Solar supercapacitors are also a thing from future, which is ex-
pected to have a huge sales potential in the wearable sensors landscape,
especially in wearable health devices. The ongoing research activities
and developments in the power electronics industry continue to hint at
supercapacitors replacing batteries soon. The exponential growth rate
of the supercapacitors market is expected to amplify lucrative oppor-
tunities for researchers, manufacturers, and other stakeholders in the
landscape.

6. Conclusion

Supercapacitors were relegated to mundane applications such as
memory protection and internal battery backup, but in the last few
years, the application space has broadened significantly into hybrid
vehicles, smartphones, and energy harvesting. New technologies on the
horizon promise to bring supercapacitors into full competition with
rechargeable batteries.
In this review, we gathered different electrode and electrolyte ma-

terials with their performances, pointing out their advantages and
disadvantages in supercapacitors. To realize the expected full-scale
practical application, the quality and reproducible quantity of the
electrode and electrolyte materials both will have to be further im-
proved, with the development of the most desired structures tunable in
nano-, micro-, meso- and macroscales. The selected methods should be
able to produce materials with a controllable particle size that can cater
for supercapacitor applications. Therefore, nano-dimensional materials

have received tremendous acceptance due to their capability to en-
hance the capacitive performance of the supercapacitor systems while
maintaining high cycle life and great kinetic reversibility. On the other
hand, the potential of carbonaceous materials like activated carbon,
carbon-nanotubes, graphite and graphene in supercapacitor application
should be taken note of. Nowadays, a combination of carbons with
metal oxides, perovskites or conducting polymers to form composite or
hybrid supercapacitors may portray as another interesting alternative
or remarkable breakthrough in these energy-related applications.
Batteries and supercapacitors combined to offer the best solution for
many energy systems from the automotive sector to grid energy storage,
allowing batteries not only to perform better but also to extend their life
whilst reducing both CAPEX and OPEX. The supercapacitor industry is
carving its place in the future of energy systems. Manufacturers based
in the USA, Asia and recently Europe are set to address market needs in
the automotive sector, aerospace, public transport and rail, and the
future smart grids and many more. Finally, we suggest that super-
capacitors become an emerging energy storage technology that will
take a key role in the future of energy systems.
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