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1. Introduction

The increasing cost of fuels, pollution, global warming and
geopolitical concerns are among the problems connected with the
dependence of modern societies on fossil fuels. Reducing these
issues is an increasingly important goal that can be achieved
through developing other energy sources and storage technolo-
gies. As a result, recently there has been a growing interest in high
power and high energy density storage systems. A more wide-
spread use of renewable sources and a better efficiency of trans-
portation systems are two important goals to be pursued to
overcome this problem.

Energy storage systems (ESSs) are the key to deal with the
intermittent nature of renewable energy sources and increase the
power transmitted into the grid from systems such as wind and
solar power. In addition, an increase in the efficiency of a vehicle
requires kinetic energy to be stored somewhere whenever the
vehicle slows down or stops. Although these operations have been
successfully performed with batteries on a low-power scale, new
methods for efficiency enhancement will require large amounts of
power that can only be provided by other energy storage tech-
nologies such as supercapacitors. These have attracted significant
attention due to their high power capabilities and long cycle-life,
giving a very good chance to build more advanced hybrid ESSs, for
both on-board and stationary applications.

2. Supercapacitors within energy storage systems

Supercapacitors are devices capable of managing high power
rates compared to batteries. Although supercapacitors provide
hundred to many thousand times higher power in the same
volume [1], they are not able to store the same amount of charge
as batteries do, which is usually 3-30 times lower [1]. This makes
supercapacitors suitable for those applications in which power
bursts are needed, but high energy storage capacity is not
required. Supercapacitors can also be included within a battery-
based ESS to decouple the power and energy characteristics of the
ESS, thus improving the sizing while fulfilling the power and
energy requirements, and probably enlarging its lifetime.

The power output of supercapacitors is lower than that of
electrolytic capacitors, but can reach about 10 kW kg~!. On the
other hand, their specific energy is several orders of magnitude
higher than the one of capacitors [2]. These devices are interesting
because they fill the gap between aluminum electrolytic capacitors
and batteries, which are capable of storing large amounts of
energy, but do not offer very high power densities ( <1 kW kg™1)
due to their storage mechanism. This can be graphically explained
in a Ragone plot, in which the energy and power densities are
represented in horizontal and vertical axes, also showing the
discharge time of the devices in diagonal lines (E=Pt). Different
storage technologies are represented in a Ragone plot in Fig. 1.
However, the Ragone plot does not reflect many other perfor-
mance parameters such as cost, safety and cycle life. They need to
be mentioned separately for a complete understanding of advan-
tages and limitations of a particular energy storage technology.

Thus, it is extremely important to note that supercapacitors can
not only be discharged in a matter of seconds, but also be charged
in such a short time period. This is an important benefit for energy

recovery systems, e.g. for dynamic braking of transport systems.
Table 1 compares supercapacitors with capacitors and batteries.
Another great advantage of supercapacitors is their cycle life.
These devices can withstand millions of cycles thanks to their
charge storage mechanism, which does not involve irreversible
chemical reactions, storing charges physically at the surface of the
electrodes in an electric double layer. This allows exceeding the
cycle life of batteries, which are at best capable of withstanding a
few thousand cycles. The highly reversible electrostatic storage
does not produce changes in the electrode volume, eliminating the
swelling occurring in typical redox reactions in the bulk of a
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Fig. 1. Ragone plot. Detail window shows energy drop due to internal dissipation
and leakage losses for sufficiently high and low power [185].

Table 1
Comparison table among selected electrochemical energy storage technologies.

Characteristics Capacitor Supercapacitor  Battery
Specific energy (Whkg=") <0.1 1-10 10-100
Specific power (W kg~1) >10,000 500-10,000 <1000
Discharge time 10-%to 103 s to min 0.3-3h
Charge time 10-%to 103 s to min 1-5h
Coulombic efficiency (%) About 100 85-98 70-85
Cycle-life Almost infinite > 500,000 about 1000

s Data taken from [2].

Table 2

Comparison between batteries and supercapacitors [1].

Comparison Battery Supercapacitor

parameter

Storage mechanism Chemical Physical

Power limitation Reaction kinetics, mass Electrolyte conductivity
transport

Energy storage
Charge rate

Cycle life limitations

High (bulk)
Kinetically limited

reversibility

Limited (surface area)
High, same as discharge
Mechanical stability, chemical Side reactions
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CONVENTIONAL IONIC SOLUTION

IONIC LIQUID

Fig. 2. Schematic difference between ionic liquids and conventional electrolytes based on dissolved salts [186]. “+” and “—" denote the cations and the anions, corre-

spondingly, S - the solvent.
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Fig. 3. Classification of different supercapacitors.

battery's active material during charge and discharge cycles. A
supercapacitor electrode has no such rate limitations as those of
redox battery electrodes due to electrochemical kinetics through a
polarization resistance [3]. The main disadvantage related to the
charge storage mechanism is the operating voltage of a super-
capacitor cell, which should be kept low in order to avoid the
chemical decomposition of electrolytes. Table 2 compares the
main differences in the properties of batteries and supercapacitors.

The working temperature range is another feature to be poin-
ted out. High power performance down to —40 °C can be achieved
with supercapacitors [3], which is not possible at the moment
with batteries. Besides, supercapacitors are generally safer than
batteries for high power-rating charging and discharging [1].
Double layer capacitor cells do not rely on metals chemistries and
do not thus run the risk of metal plating, which is an important
battery degradation and failure mechanism as well as a safety
concern that can lead to short circuits and uncontrollably ener-
getic chemical reactions.

A supercapacitor cell comprises two electrodes with a separator
between them. The electrodes can be identical for symmetric cells
or different for asymmetric cells. The separator is soaked in elec-
trolyte and prevents the electrical contact between the electrodes.
The separator material should be ion-permeable, to allow the ionic
charge transfer, while at the same time having a high electrical
resistance, high ionic conductance, and low thickness in order to
achieve the best performance. Usually polymer or paper separators
are used together with organic electrolytes while ceramic or glass

fiber separators are usually coupled with aqueous electrolytes [4].
The electrolyte breakdown potential at one of the electrodes limits
the attainable cell voltage whereas the equivalent series resistance
(ESR) of the cell will depend strongly on the electrolyte con-
ductivity. Aqueous electrolytes typically have a breakdown voltage
of around 1V, which is significantly lower than the one achievable
with organic electrolytes (around 3 V), but the conductivity of
aqueous electrolytes is higher than that of organic electrolytes,
which is desirable for high power devices. Aqueous electrolytes also
feature such important assets as low cost and easiness in handling.

Depending on the storage mechanism or cell configuration,
electric double-layer capacitors (EDLCs), pseudocapacitors, and
hybrid capacitors can be distinguished. EDLCs are based on high
specific-surface area (> 1000 m2g~') nanoporous materials as
active electrode materials, leading to a huge capacitance in com-
parison with electrostatic capacitors. The electrodes are usually
made of nanoporous carbon materials thanks to their availability,
existing industrial production and comparatively low cost. Pseu-
docapacitors are based on conducting polymer or metal oxide
based electrodes, and sometimes functionalized porous carbons,
combining electrostatic and pseudocapacitive charge storage
mechanisms. These materials can hold much higher specific
capacitance values as compared to EDLCs, with the charge storage
mechanism relying on fast redox reactions occurring on the elec-
trode surface but not in the bulk like in batteries. However, like in
the case of batteries, redox reactions can lead to mechanical
changes making the electrodes swell and shrink, giving rise to
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Fig. 4. Symmetric supercapacitor schematic diagram.
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Fig. 5. Constant current discharge supercapacitor cell test.

poor mechanical stability. Consequently, lower cycle life is an
important deficiency of pseudocapacitive materials. Finally, hybrid
capacitors are composed of an EDLC electrode and a pseudoca-
pacitive or battery type electrode, combining the properties of
both systems and leading to an intermediate performance in some
cases. A good example of such a system are the lithium-ion
capacitors (LiCs). Different types of supercapacitors are classified
in Fig. 3. Here two main research lines can be distinguished con-
cerning pseudocapacitors and EDLCs [2].

As macroscopically these devices work like capacitors, the
capacitance, C, will depend on the dielectric constant of the elec-
trolyte, ¢, the effective thickness of the double layer, d (separation
between charges), and the accessible surface, A, as follows:

eregA

€=

M

where ¢ is the dielectric constant of the vacuum. The capacitance
for an electric double layer (EDL) on carbon surface varies usually

from 5 to 20 uF cm~? depending on the electrolyte [5], although
much higher values are sometimes reported for edge carbon atoms.
The energy (E) stored within a supercapacitor is

E=1cv? (2)

where V is the cell voltage. Formula (2) shows that the stored
energy is proportional to both the capacitance of the device and
the square of the cell voltage. Therefore, increasing both of them is
a general strategy to increasing the energy density of the cell.

The maximum instantaneous power P4 that a supercapacitor
is able to deliver, depends on the voltage and the internal resis-
tance R as follows:

2

Pmax = Z*R (3)

Also the current across the supercapacitor will be

dv
I=Cgr 4)
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In industry, constant current tests are performed to determine
the main characteristics of devices. This includes capacitance cal-
culation (integral of the area contained during the discharge), and
resistances associated to the cell such as ESR and equivalent dis-
tributed resistance (EDR), which represents ESR and the resistance
in the pores (part of the discharge with curvature). These are
calculated using the notation in Fig. 5 with the following expres-
sions:

C= I discharge tdischarge

U0, €)

EsR— U4 (6)
I discharge

EDR— U3 (7)
discharge

The electrical properties of a supercapacitor are mainly deter-
mined by components such as electrode materials, electrolytes,
separators and current collectors. Electrode fabrication is made
through coating a metallic current collector with an about 100 pm
thin layer of high surface area material. This active material is
mixed with a binder so as to form slurry. The thickness of the
slurry should be controlled for making the coated layer of active
material sufficiently thin to be conductive throughout the
material.

Since the ESR of supercapacitor cells must be very low, special
attention must be paid to the contact resistance between the
active material and the current collector. The surface of current
collectors should be treated before coating it with active materials.
Surface treatments decrease the Ohmic drop at the current col-
lector/active material interface [6]. For supercapacitors designed to
work with organic electrolytes, treated aluminum foils or grid
current collectors are used. Using nanostructured current collec-
tors with increased contact area is a way to control the current
collector/active material interface [7].
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A widely used measurement is the specific capacitance, which
is the intrinsic capacitance of an electrode material expressed in
F g~ . Although this is a very useful characteristic of the material, a
higher specific capacitance does not necessarily mean that the
material will be a highly performing supercapacitor electrode.
There are other factors substantially impacting capacitance such as
electrical conductivity (both that of materials and between elec-
trode particles), which governs electron and ion transfer into the
layer [8].

3. Electric double layer

An electric double layer is a structure appearing when a
charged object is placed into a liquid. The balancing counter
charge for this charged surface will form on the liquid, con-
centrating near the surface. There are several theories or models
for this interface between a solid and a liquid. In Fig. 6 the
Helmholtz model, the Gouy—Chapman model and the Stern model
are illustrated, where ¥ is the potential, ¥, is the electrode
potential, IHP refers to the inner Helmholtz plane, and OHP refers
to the outer Helmholtz plane explained in the Stern model.

In Fig. 6 the models explained below are illustrated, where y is
the potential, yo the electrode potential, IHP refers to the inner
Helmholtz plane, and OHP refers to the outer Helmholtz plane
explained in the Stern model.

3.1. Helmholtz model

This theory is the simplest approximation for modeling the
spatial charge distribution at double layer interfaces. The charge of
the solid electronic conductor is neutralized by opposite sign ions
at a d distance from the solid. This is the distance from the surface
to the center of the ions. This theory considers rigid layers coun-
terbalancing the charges from the solid. As of today, this is taken as

30V4dNS Ad39dVHO AT3AILISOd

— =+ o+t S+ + + + ++

@

OHP

IHP

Stern layer | Diffuse layer

@ Anion

Fig. 6. EDL models, (a) Helmholtz model, (b) Gouy—Chapman model, and (c) Stern model.
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the simplest theory, which does not adequately explain what
occurs in nature [9,10].

3.2. Gouy-Chapman or diffuse model

Gouy suggests that the same amount of opposite ionic charge
appears in a liquid surrounding a charged solid, but the ions are
not rigidly attached to the surface [9]. These ions in the solution
tend to diffuse into the liquid phase until the counter potential set
up by their departure restricts this tendency. The kinetic energy of
the ions in the solution will partially determine the thickness of
the diffuse layer.

Gouy and Chapman developed theories of this diffuse layer in
which the ion concentration in the solution near the surface fol-
lows the Boltzmann distribution. This model fails for highly
charged double layers [10]. Experimentally, the measured thick-
ness of double layers is greater than the calculated.

3.3. Stern modification of the diffuse double layer

The Gouy-Chapman model makes a better approach to the
reality than the Helmholtz model, but still has limited quantitative
applications. It assumes that the ions are point charges and that
they can approach the surface with no limits, which is not true.
Stern modified the Gouy-Chapman model stating that the ions
have a finite size, so limiting their approach to the surface. The
first ions in the Gouy-Chapman model are at the § distance away
from the surface, but the Stern model assumes that there can be
specifically surface-adsorbed ions in plane §, this is known as the
Stern layer. Ions are strongly adsorbed by the electrode within this
so-called compact layer. In the compact layer there are specifically
adsorbed ions (forming the inner Helmholtz plane), and non-
specifically adsorbed counter-ions (forming the outer Helmholtz
plane) [11].

Summarizing, in order to resolve the shortcomings of the
Gouy-Chapman model for the diffuse layer, Stern suggested the
combination of both previous models, giving an internal Stern
layer (e.g. the Helmholtz layer) and an outer diffuse layer (e.g. the
Gouy-Chapman layer).

3.4. Electric double layer in supercapacitors

Although the above models give a satisfactory description of
the electrical double layer on plane surfaces, they fall short of
describing the real charge distribution in nanoporous electrodes
employed in supercapacitors. The peculiarities of ion electrosorp-
tion in porous media make the process of charge storage extre-
mely difficult, and there is still a lack of complete understanding of
ions behavior in nanopores.

When a supercapacitor is charged, electrons are forced to go
from the positive electrode to the negative electrode through an
external circuit. As a consequence, cations within the electrolyte
concentrate in the negative electrode and anions in the positive
electrode forming an EDL that compensates the external charge
unbalance. During the discharge, electrons travel from the nega-
tive electrode to the positive electrode through an external circuit,
and both kinds of ions in the pores become mixed again until the
cell is discharged.

Ions do not move in the bulk electrolyte the same way as they
do within the pores of an electrode material. The mobility of ions
into the pores is greatly influenced by the pore size, which if too
small makes the pores inaccessible, not contributing to double
layer capacitance [4].

Since not all the pores are accessible to the ions, there is no
linear relation between the capacitance exhibited by a material
and its specific surface area [12-15] measured with a small gas

molecule probe such as N, or Ar. Various studies suggest that pore
size below 0.5 nm is not accessible to hydrated ions [15,16], and
pores smaller than 1 nm can be too small for organic electrolytes
[17]. Generally, there is a controversy regarding the effect of pore
size on capacitance. Chmiola et al. claimed that pores with sizes
below 1nm greatly contribute to the capacitance [18]. This
increase was explained with the distortion of the solvation shell,
thus reducing the distance between charges and enhancing the
capacitance [5,19]. On the other hand, constant capacitance in the
micropores was measured in organic electrolyte on the basis of a
detailed assessment of pore size using complementary adsorption
techniques. The decrease in the distance between the electronic
and ionic charges is counterbalanced by the corresponding
decrease in the effective dielectric permittivity inside the pores,
which occurs due to gradual ion desolvation [20-22]. Leaving the
controversy of capacitance vs. pore size behind, it is worth men-
tioning that industrially important values are also calculated on a
volumetric basis. It then becomes clear that too wide pores contain
free space, which is not used for capacitive charge storage, but
decreases the density of electrodes. This effect is detrimental to
volume-based capacitance as well as the existence of narrow
electrolyte-inaccessible pores. Thus, tuning pore size is anyway
needed to have carbon materials with narrow, short and
electrolyte-accessible pores [18].

Apart from it, there is a general agreement that the power
capability of a supercapacitor can be enhanced by the presence of
a small amount of mesopores (pores wider than 2 nm) for a rapid
supply of electrolyte to the micropore surface where main charge
storage takes place [23].

There have been numerous attempts to properly describe the
capacitance of carbon materials depending on the pore shape and
size and the specific character of their interaction with electro-
lytes. For mesoporous carbons with cylindrical pores, the tradi-
tional model is used [24]:

C ereg

A binGEy ®

where b is the pore radius and d the distance between the ion and
the carbon surface. But for micropores, it is assumed that the ions
line up in the center of a cylindrical pore, so the capacitance is
calculated from [24]:

C__ a0 _ ©9)

A pln (%)
where qg is the effective size of the ion. This ionic radius was found
to be close to the bare ion size, which means that the ions could be
fully desolvated.

However, as the more realistic approximation to the pore shape
in carbons is a slit, not a cylinder, a sandwich capacitance model
was later proposed [25].

Crot _ E _ fréo

- b—ag (10)

20 A

4. Pseudocapacitance

Pseudocapacitance is a Faradaic charge storage mechanism
based on fast and highly reversible surface or near-surface redox
reactions. Importantly, the electrical response of a pseudocapaci-
tive material is ideally the same as the one of a double-layer
capacitor, i.e. the state of charge changes continuously with the
potential, leading to proportionality constant that can be formally
considered as capacitance. Some materials can also store a sig-
nificant charge in a double layer such as functionalized porous
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carbons, combining thus both capacitive and pseudocapacitive
storage mechanisms.

A material's pseudocapacitance can be intrinsic or extrinsic
[26]. In the first case, materials exhibit pseudocapacitive behavior
in a broad range of particle size and morphologies. Extrinsic
pseudocapacitance only appears under several conditions for
nanosized material whereas the same material does not show
pseudocapacitive behavior in the bulk. Kinetically, pseudocapaci-
tive materials can be distinguished from battery-type materials
through electroanalytical experiments, with their kinetics being
limited by a surface-related process as opposed to diffusion-
controlled reactions governing the electrochemical response of
battery electrodes.

Different charge storage mechanisms can be distinguished in a
pseudocapacitive electrode: underpotential deposition, redox
reactions of transition metal oxides, intercalation pseudocapaci-
tance [27], and also reversible electrochemical doping and de-
doping in conducting polymers. Materials used for building such
electrodes are normally carbons, metal oxides, and conducting
polymers [1,28,8].

Faradic processes occurring together with EDL charge storage
increase the specific capacitance of an electrode. The capacitance
of a pseudocapacitor can be 10-100 times higher than that of an
EDLC. Nevertheless, the power performance of a pseudocapacitor
is usually lower than that of EDLCs, due to the slower Faradic
processes involved [29].

Electrodes exhibiting pseudocapacitance are more prone to
swelling and shrinking on charge/discharge cycling, which can
lead to poor mechanical stability and low cycle life [30].

5. Electrode materials

The most important electrode materials are gathered here,
giving a brief explanation of their characteristics. This section is
divided in three subsections comprising carbon based materials,
metal oxides, and conducting polymers.

5.1. Carbon materials

Carbon based materials are widely used in many applications.
As they feature relatively low cost and an established industrial
production processes, their availability is quite high. This section
details carbons for supercapacitors, from the most widespread
types to the newest developments. These materials show a nearly
rectangular shape cyclic voltammogram as illustrated in Fig. 7
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Fig. 7. Cyclic voltammogram of an EDLC cell at 5mVs~!
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which presents cyclic voltammograms for carbon materials in
both, aqueous and organic electrolytes.

5.1.1. Activated carbon

Activated carbon is the most widely used active material for
supercapacitor electrodes due to its high surface area and rela-
tively low cost [5,31,11]. These are obtained from carbon-rich
organic precursors through a heat treatment under inert atmo-
sphere (carbonization) and activation resulting in porosity for-
mation. These precursors can be obtained from natural renewable
resources such as coconut shells wood, fossil fuels and their
derivatives such as pitch, coal or coke, or from synthetic pre-
cursors such as polymers [5,31].

Carbonization is the process of producing amorphous carbon
by the thermal chemical conversion of precursors while activation
leads to a high surface area. This is achieved through making a
partial controlled oxidation of the carbon precursor grains by a
physical or chemical activation [11]. Physical activation is done at
high temperature under oxidizing atmosphere (e.g. CO,, H50...)
[31], whereas chemical activation is performed on amorphous
carbons previously mixed with chemicals such as alkalis, carbo-
nates, chlorides or acids (e.g. KOH [31], K;COs...). The result of any
activation process is the formation of a porous network in the bulk

Table 3
BET specific surface areas for different carbon precursors. Data taken from [37].
Carbon precursor Activation method Spee (M2 g~ 1)
Furfurol Steam 1040
Coconut shell KOH 1660
Eucalyptus wood KOH 2970
Firwood Steam 1130
Bamboo KOH 1290
Cellulose KOH 2460
Potato starch KOH 2340
Starch KOH 1510
Sucrose CO, 2100
Beer lees KOH 3560
Banana fiber ZnCl, 1100
Corn grain KOH 3200
Sugar cane bagasse ZnCl, 1790
Apricot shell NaOH 2335
Sunflower seed shell KOH 2510
Coffee ground ZnCl, 1020
Wheat straw KOH 2316
Fish scale - 2270
Cherry stone KOH 1300
Rice husk NaOH 1890
Rice husk KOH 1390
200 A
150 -
o 100 -
L 50
8 o-
c
8 .50 -
8
% <100 -
O -150
-200 -
T T T T T T T T T T
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of the carbon particles with high specific surface area (SSA).
Nanopores can be broken down according to their size, namely
into micropores ( < 2 nm), mesopores (2-50 nm), and macropores
(>50nm). The accurate measurement of SSA is not a straight-
forward task, depending greatly on the calculation method and
measurement conditions. Specific surface areas of 3000 m? g~!
are sometimes reported, but the useable SSA falls usually in the
range of 1000-2000 m? g~! [5]. Table 3 summarizes different
precursors and the corresponding Brunauer-Emmett-Teller (BET)
surface area values for activated carbons derived from them.

Most of the commercially available devices are constructed
with activated carbon electrodes and organic electrolytes. These
devices reach operating cell voltages of 2.7V with a specific
capacitance of 100-120 Fg~![32,33] and up to 60 F cm 3 [5]. This
can be illustrated by a few examples. As a promising material for
mass production, low-cost carbon-rich biochar (red cedar) mate-
rial was reported to achieve a gravimetric capacitance of 115 Fg~!
in aqueous electrolyte [34]. In [35] carbon hollow fibers were
reported to achieve 287 Fg~! at 50 mA g~ ! with a capacitance
retention of 86.4% at 1 Ag~'. In [36] a specific capacitance of
340 Fg~! was reported for carbon prepared by phosphoric acid
activation from a sugarcane bagasse precursor. In aqueous elec-
trolytes the operating cell voltage is limited to 0.9V [5] and the
specific capacitance reaches 300 Fg~! [31].

Activated carbon powders can be mixed with carbon blacks and
organic binders to make active material films, these films can be
used to coat current collectors. The pore size distribution in acti-
vated carbon powders is in most cases broad and is often not
optimized due to the difficulty of the activation process [5]. Longer
activation times of activation or higher temperatures lead to a
larger average pore size [31]. As explained above, the whole SSA of
the material is underused, i.e. part of it does not contribute to
capacitance [5].

5.1.2. Carbide derived carbons (CDC)

Carbide derived carbons (CDCs) are prepared by high-
temperature extraction of metals from carbides serving as pre-
cursors. The most common methods for CDC production are high-
temperature chlorination [38,39] and vacuum decomposition [40].
CDCs have been touted as promising for supercapacitors because
carbide precursors allow the fine-tuning of porous networks
[18,41] and better control over surface functional groups than
activated carbons [42]. The porous network in CDCs can be tailored
owing to the availability of varied distribution of carbon atoms in
carbide precursors as well as by changing the synthesis tempera-
ture. To illustrate the first point, a comparison between titanium
and silicon carbide derived carbons can be drawn, which shows
that the same synthesis temperature of 1200 °C leads to the
narrower pore size distribution and smaller average pore size of
SiC-CDC [42]. The effect of the synthesis temperature reveals a
common trend of increasing pore size with increasing synthesis
temperature, independently of the precursors used [18,43]. It is
worth noting that porous structure often collapses if the synthesis
temperature exceeds 1300 °C whereas the graphitization of car-
bon occurs at temperatures higher than 1000 °C [44]. The prop-
erties of CDCs can be improved by post-treatment such as treat-
ment with hydrogen [45].

CDCs’ application to supercapacitors shows that the capaci-
tance is governed by the CDC structure, whereas the rate perfor-
mance depends significantly on starting carbide. Titanium CDCs
was shown to have the highest gravimetric capacitance, up to
220Fg~! in KOH and 120 Fg~! in organic electrolyte whereas
SiC-CDC has the highest volumetric capacitance 126 Fcm ™2 in
KOH and 72 Fecm ™2 in organic electrolyte [40]. In another work
[46], the specific capacitance of TiC-CDC in an organic electrolyte
using (CH3CH;)3CH5NBF; as a salt was found to be between 70 and

90Fcm~2 or between 100 and 130Fg~' depending on the
synthesis conditions.

A series of CDCs with tailored porosity prepared in the tem-
perature range 600 °C-1200 °C were used to specifically study
the effect of pore size, suggesting that pores narrower than 2 nm
have a much larger effect on capacitance than the higher surface
area CDCs with pores larger than 2 nm [18,47]. Another general
trend derived from various studies on CDCs is that capacitance
decreases with increasing the synthesis temperature despite the
rise in the specific surface area and pore volume, again suggesting
that pore size dominates capacitance value. CDC can also be
adapted for either higher energy or higher power applications [48]
by changing the synthesis temperature.

5.1.3. Carbon nanotubes (CNT)

Carbon nanotubes (CNTs) and carbon nanofibers, are produced
by the catalytic decomposition of certain hydrocarbons [2,5]. It is
possible to obtain different nanostructured formations controlling
their crystalline order by manipulating different parameters [2].
Depending on the synthesis parameters, single walled carbon
nanotubes (SWCNTs) and multi-walled carbon nanotubes
(MWCNTSs) can be prepared. These, have a fully accessible external
surface area and high electric conductivity [2,5]. The specific
capacitance of CNTs is greatly influenced by the purity and the
morphology of the material [2]. The surface of CNT electrodes is
mainly mesoporous, associated to the external face of the tubes
[2]. Many research efforts are focused on the development of a
dense and aligned, perpendicular to the current collector, CNT
forest, which could increase the capacitance retention at high
current by tuning the distance between tubes. This material seems
to be promising for microelectronics applications [49,50].

CNTs can be grown in a conductive substrate without needing a
binder. This minimizes the contact resistance between the active
material and the current collector and simplifies electrode fabri-
cation [51,52].

Mainly attributed to the hydrophobic property of CNT surface,
the specific capacitance of purified CNT powders is in the range of
20 to 80 F g~ [49,2]. The specific capacitance can be increased by
subsequent oxidative processes up to about 130 F g~ . These oxi-
dative treatments modify the surface texture and introduces
additional surface functionality which is able to contribute to
pseudocapacitance [53-55]. In [56] it catalytically grown MWCNTSs
of 8 nm diameter having a BET surface of about 250 m? g~ ! were
developed. CNTs were subsequently treated with nitric acid and
formed into electrodes consisting of freestanding mats of entan-
gled CNTs having an increased surface area of 430 m? g~ '. This mat
contained a negligible microporosity and an average pore diameter
of 9.2 nm, which is 1.2 nm larger than the diameter of the nano-
tube itself. Much of the porosity in the nanotube mats is due to the
interstitial spaces created by the entangled nanotube network. The
specific capacitance in sulfuric acid was determined to be 102 Fg~!
at 1 Hz corresponding to a double layer of 24.2 uF cm~2. This cell
also had an estimated power density of more than 8 kW kg~ 1.

Chemical activation of CNTs with potassium hydroxide can
increase the surface-area maintaining the nanotubular morphol-
ogy. These treatments have a negligible effect on nanotube dia-
meter, but can considerably shorten their length and develop
cracks and irregularities at the surface through a partial erosion of
outer carbon layers. Using this activation, the BET surface-area of
MWOCNTs increased from 430 to 1035m?g~'. This material
maintained a high degree of mesoporosity, but microporosity was
increased. The specific capacitance achieved was 90Fg~!
(8.7 pF cm~2) in alkaline media and 65 Fg~' (6.2 pF cm~2) in non-
aqueous media [54].

50 nm diameter CNTs were grown on graphite foil, with a
specific capacitance of 115.7Fg~' in 1M H,SO, and good
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Fig. 8. Conformal deposit of pseudocapacitive material onto CNTs.

electrochemical stability [52]. Also, well aligned MWCNTs were
grown on an aluminum film with lengths of 1-10 pm and dia-
meters of 5-100 nm. This reached a volumetric capacitance of
120 Fcm ™3 and very high power density [51].

SWCNTs were also prepared as composites from polyvinylidene
chloride (PVDC). After carbonization, the electrodes exhibited a
maximum specific capacitance of 180 F g~ ! and a measured power
density of 20 kW kg~! in potassium hydroxide [57]. This high
specific capacitance for such a surface area of only 357 m? g~ ! was
attributed to a redistribution of CNT pore size to smaller and more
optimal values of 3-5 nm [2].

As CNTs have limited SSA, leading to moderate capacitance,
there is some interest in creating composites combining both CNTs
and conducting polymers. These composites take advantage of the
double layer capacitance of the CNTs and the pseudocapacitance of
the conducting polymers, achieving higher capacitance than
achievable with any of these materials alone. A graphical example
in Fig. 8 illustrates a conformal deposit of pseudocapacitive
material in CNTs. The composites are typically prepared by an
in situ chemical polymerization of a suitable monomer, which
usually forms a uniform coating on the CNT surface [2]. MWCNTs
electrodeposited with polypyrrole (PPy) have achieved a specific
capacitance of about 170 Fg~! [58,59], but due to the degradation
of the polymer a cycle life greater than 100,000 cycles may not be
achievable [60,61]. Similar composites using SWCNTs instead of
MWCNTs have achieved specific capacitances up to 265Fg~'. In
these composites the PPy acts also as a conducting agent, thus
reducing the ESR of the supercapacitor [2].

The degradation of these composites can be accelerated due to
a possible overcharging/overdischarging during operation. In that
case carbon-supported transition metal oxides can enhance sta-
bility [62]. Introducing a 1 wt% RuO, into MWCNT electrode can
increase the specific capacitance from 30 to 80 Fg~'. Besides, it
also exhibits longer cycle life than CNTs coated with a conducting
polymer thin layer [62].

5.1.4. Graphene

Graphene is a one-atom thick sheet made of sp? bonded carbon
atoms in a polyaromatic honeycomb crystal lattice [63-67]. This
material is suitable for high performance energy storage systems
due to their rate and cycle capability and improved capacity and
excellent physiochemical properties [68]. Among the advantages

of this material its large surface area, good flexibility, good elec-
trical conductivity, good chemical and thermal stability, wide
potential window and abundant surface functional groups can be
highlighted [69].

Graphene based supercapacitors were reported with specific
capacitance of 75 Fg~! and energy density of 31.9 W h kg~ ! with
ionic liquid electrolytes [70], and specific capacitances of 135 Fg~!
in aqueous electrolyte and 99 Fg~! in organic electrolytes [71].
Reduced graphene with low agglomeration reached a maximum
specific capacitance of 205 F g~ ! in aqueous electrolyte exhibiting
an energy density of 28.5 W h kg~' [72].

It is difficult to determine the intrinsic capacitance of graphene
because it exhibits a tendency to re-stack. A study reported that
the intrinsic capacitance of the electric double layer in graphene is
21 uF cm~! [73]. The interfacial capacitance of graphene depends
on the number of layers, which can be calculated from the surface
area. For graphene based supercapacitors in ionic liquids capable
of operating up to 4.5V, an energy density of 85.6 Whkg~! is
reached at room temperature, and 136 W h kg ' at 80 °C [74].

The electrical conductivity of graphene is much higher than the
one of graphitic carbon, and the theoretical surface area of a
mono-layer is 2620 m? g~ !. It also has a high surface to volume
ratio, short diffusion distance due to its thinness, structural flex-
ibility, thermal and chemical stability, abundant surface functional
groups, wide electrochemical window, and an open pore system
which improves ion transport kinetics. On the other hand, this
material suffers from irreversible capacity loss due to the re-
stacking of the graphene sheets, which also reduces the initial
Coulombic efficiency. This re-stacking occurs due to the van der
Waals interaction between adjacent sheets, and reduces the sur-
face area lowering its energy density [63].

To avoid the re-stacking of graphene sheets, composites made
of graphene and metal oxides seem to be a good solution. This is
beneficial for both materials because of their synergistic effect.
Metal oxides prevent graphene from agglomeration and re-stack-
ing, and also increase the available surface area. Besides, graphene
helps the formation of metal oxide nanostructures with uniformly
dispersed controlled morphologies, suppressing the volume
change and agglomeration of metal oxides. The oxygen-containing
groups within graphene will ensure good electrical contact,
interfacial interactions, and bonding between graphene and metal
oxide. This will lead to a composite with an electron conducting
network and shortened ion paths [63]. In [75] different electrodes
fabricated with graphene oxide are compared, achieving 352 Fg~!
at 5mV s~ ! for three-dimensional porous network electrodes.

The experimentally obtained capacitance in graphene/metal
oxide composites is higher than the sum of the calculated capaci-
tances for each material individually. Also improvements in cycle
capability, rate capability, energy density, and power density were
reported for these composites owing to the integrated 3D structure.
These enhancements in performance were also found in other non-
metal oxide materials such as graphene nanosheets/polyaniline
[76,77], graphene/Co(OH ), [78], graphene/Ni(OH ), [79], graphene/
CNT [80], poly(sodium 4-styrensulfonate) intercalated graphene
nanosheets [81], Pt-exfoliated graphene [82], carbon black sup-
ported graphene [83], and graphene/Si [84]. As examples the latest
publications report exfoliated graphene with anchored polypyrrole
reaching an energy density of 65.1 W h kg~! at a power density of
13kWkg~!, and 824Whkg~! at 650 W kg~! [85]. Ruthenium
oxide-graphene hybrid material reached 479Fg~! per hybrid
material mass [86], and a graphene nanosheet-tungsten oxide
composite was reported to reach 143.6 Fg~! [87].

Chemical doping of graphene with electron donors and
acceptors is another way to improve the electrochemical proper-
ties of graphene-based electrodes. In [88] a N-doped graphene
oxide supercapacitor was reported to reach 242 Fg~! with good



1198 A. Gonzdlez et al. / Renewable and Sustainable Energy Reviews 58 (2016) 1189-1206

capacitance retention and cyclability. In [89] a capacitance of
320 Fg~! was reported for highly nitrogenated graphene oxide.

5.1.5. Mesoporous carbons

Mesoporous carbons can be prepared following different
methods. Particularly, a high surface ordered meso-structures are
interesting as they are capable of dealing with high power ratings
without a significant capacity fading. Usually microporosity con-
tains bottlenecks that can decrease ion mobility drastically, thus
reducing the power capability of the electrode. Mesopores are not
narrow paths slowing down the ion transport, so these can
maintain capacitance even at high current densities.

There are several methods to synthesize mesoporous carbons:
high-degree activation, carbonization of precursors composed of
one thermosetting component and one thermally unstable com-
ponent, catalyst-assisted activation of carbon precursors with
metal oxides or organometallic compounds, or carbonization of
aerogels or cryogels. These methods result in broad pore size
distributions of mesoporous carbons, also exhibiting considerable
microporosity [90]. Mesoporous carbons can also be synthesized
using a replication synthesis with hard templates, and by self-
assembly using soft templates through co-condensation and car-
bonization. These two methods are preferred because the pore size
and distribution can be better controlled [90].

In hard template synthesis, templates serve as a mold with no
significant chemical interactions between templates and carbon
precursors, leading to well defined nanostructures. The soft tem-
plate generates nanostructures through self-assembly of organic
molecules. The pore structure is determined by synthetic condi-
tions like, mixing ratios, solvents and temperature. These two
methods have been proved as best suitable for the preparation of
mesoporous structured carbons having a defined pore structure
and narrow pore size distribution [90].

In [91] a mesoporous carbon obtained from lignin using
Pluronic F127 surfactant is reported to achieve a SSA of
624 m? g~ ! after CO, activation and a gravimetric specific capa-
citance up to 102 Fg~'. In [92] a mesoporous carbon using rice
husk precursor is reported. This reaches a BET surface area of
1357 m? g~ ! with a total pore volume of 0.99 ml g~ ! and a 44.4%
of mesoporosity. This carbon has a specific capacitance of
114 Fg~! in organic electrolyte at 5mV s~ ! scan rate.

5.2. Metal oxides

Metal oxides have high specific capacitance and conductivity,
making them suitable for electrode fabrication focused on high
energy and high power supercapacitors [4]. There are several
different metal oxide materials used for electrode fabrication such
as Ru0, [93,94], IrO, [95], MnO, [96,97], NiO [98,99], Co,05 [100],
Sn0, [101], V05 [102-104] or MoOy [105,106]. The most studied
ones are ruthenium and manganese oxides [8].

5.2.1. Ruthenium oxide

Ruthenium oxide (Ru0O-) is one of the most explored electrode
materials due to its advantages vis-a-vis other materials. This
material has the highest specific capacitance among pseudocapa-
citive materials, about 1000 Fg~' [1]. Besides, it has a wide
potential window, highly reversible redox reactions, high proton
conductivity, good thermal stability, long cycle life, metallic-type
conductivity, and high rate capability [107-110]. It also has three
oxidation states accessible within 1.2V [8,31]. But it has a very
high cost [1], which reduces its applications to aerospace and
military. The double layer capacitance only contributes to about
10% of the stored charge in RuO, electrodes, working in parallel
with pseudocapacitance [8]|. The pseudocapacitive behavior of
ruthenium oxide involves different reactions in acidic and alkaline

solutions [111,112]. In acidic electrolyte solutions, a fast reversible
electron transfer and an electro-adsorption of protons onto the
surface occurs where ruthenium oxidation states change from (II)
to (IV) [113-117,111]:

RuO, +xH™" +xe~ < Ru0,_,(OH), an

where xe[0 .. 2]. The change of x during proton insertion/de-
insertion occurs over 1.2 voltage window and leads to capacitive
behavior due to ion adsorption following a Frumkin-type isotherm
[117]. Specific capacitances above 600Fg~! [118] have been
achieved, but ruthenium-based aqueous systems are expensive,
and their 1 V working voltage window limits their applications to
small electronic devices [31]. In order to work with wider voltage
windows, organic electrolytes with proton surrogates (for example
Li+) must be used [31].

In alkaline solutions, it has been suggested that ruthenium is
oxidized to RuO3~, RuO; and RuO, on charging and reduced back
to RuO, on discharging [112,119].

Prototype cells developed by the US Army Research Lab were
reported with an energy density of 8.5Whkg~! and power
density of 6 kW kg~ [120].

As charge storage comes mainly from pseudocapacitance of the
surface on RuOy, several attempts were made to increase electro-
active surface, such as depositing RuO, films on substrates with
rough surface, coating high surface areas with a thin RuO, film, or
making nanometer-sized oxide electrodes [121-125]. Thus, a
nanosized 3 nm hydrous RuO,/carbon composite at a low loading
of RuO, (10 to 20 wt %) achieved specific capacitances of
850-1200 F gg,q, . As the content of ruthenium oxide increases, the
specific capacitance in Fg~! of RuO, decreases due to low utili-
zation by particle aggregation, at 50 wt.% of RuO, it was 288 F
8ruo, [126].

Hydrous ruthenium oxide (RuO,-0.5 H,0) has a high specific
capacitance of around 900 Fg~' [127] (theoretically 1358 Fg~!
[28]) and high electrical conductivity 3 x 10> @~ cm~"' [28]. This
occurs because the inter-particle and inter-layer hydrous regions
allow protonic conduction leading to a high power and high
energy supercapacitor [128]. When the water content is decreased
to RuO, - 0.3 H,0 the capacitance drops down to 29 Fg~! and for
anhydrous ruthenium oxide down to 0.5 Fg~! [127]. Amorphous
hydrous ruthenium oxide prepared by sol-gel methods reaches a
capacitance of 720Fg~! [111,129]. Nevertheless, this value
decreases at higher rates due to proton depletion and over-
saturation in the electrolyte during cycling [130]. RuO,xH,0
thin-film electrodes electrodeposited on a titanium substrate
show highly reversible characteristics, excellent cycle stability, and
good power capabilities, achieving a maximum electrode specific
capacitance of 786 F g~ ! [123]. Particles which are small, uniform
in size, and highly dispersed on a carbon surface, prepared with
the polyol method, exhibit a redox specific pseudocapacitance of
914Fg~' [121]. Also specific capacitances of 1300 Fg~' were
reported using nanotubular arrayed electrodes with hydrous
ruthenium oxide [131].

The water content in ruthenium oxide depends strongly on the
process followed for the preparation and the synthesis conditions.
Usually only a fraction of chemically formed ruthenium oxide is
active whereas electrolytically formed ruthenium oxide can have
more hydrated oxide states for which more surface will be active
in redox reactions. Typical water content x for a product dried at
room temperature is 0.9, but dihydrated and trihydrated phases
can also be obtained depending on the conditions [132]. Higher
annealing temperature can result in a lack of chemically bound
water, thus decreasing the specific capacitance [133,134].

The smaller size of a hydrated ruthenium oxide particle
increases the gravimetric capacitance as this shortens the diffusion
distance, facilitates the proton transport in the bulk, increases the
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surface area, and enhances the electroactive sites. Thus, the par-
ticles should be nanosized to maintain high electrical and protonic
conductivities throughout them [132,135]. If the nanopores are
ordered, this enhances electrolyte diffusion into electrodes,
improving the redox reaction and leading to higher pseudocapa-
citance [136].

The ionic concentration of the electrolyte should match the
needs of the electrical double layer and the faradic reactions. In
some electrolytes, pseudocapacitive behavior does not emerge
regardless of the ruthenium oxide loading, but in other electro-
lytes pseudocapacitance is proportional to the RuO, content
[137,138].

As ruthenium oxide is too expensive, there are several studies
focused on combining it with other low cost materials. For a SnO,-
RuO, composite electrode in which the ruthenium oxide was
deposited with the incipient wetness precipitation method, a
specific capacitance of 710 Fg~! was reported for a KOH electro-
lyte [112]. It is also reported that a RuO, (33%)-VO, (67%)/Ti
electrode has a 50 times more specific charge than a RuO,/Ti
electrode [139]. Vanadium extends the potential window, and
increases the utilization of ruthenium species and electrochemical
stability [140]. Using TiO, nanotubes the utilization of RuO, is
greatly enhanced [141]. Besides, double layer capacitance is
enhanced, and TiO, facilitates the transport of ions [141].

5.2.2. Manganese oxide

Manganese oxides appear to be an alternative to RuO, thanks
to their relatively low cost, low toxicity and environmental safety,
and theoretical high capacitances going up to 1100-1300 Fg~!
[142-145].

The main pseudocapacitive energy storage mechanism in this
material is attributed to a reversible redox transitions involving
the exchange of protons and/or cations with the electrolyte and
transitions between different oxidation states, Mn(IIl)/Mn(II), Mn
(IV)/Mn(lIll), and Mn(VI)/Mn(IV) [146,147]. This can be expressed
using the following equation [8,142,146,148,149]:

MnOa(OC)/;—HSCJr +6et - MnO,_4(00),, 5 12)

where C* represents the protons and alkali metal cations (Li™,
Na*, K*) in the electrolyte, and MnO,(0C),; and MnO,_4(0C);, 5
are MnO,nH,O0 in high and low oxidation states, respectively.

Physical and chemical factors affect the pseudocapacitive
behavior of manganese oxides [143,150,151]. Cycling stability is
mainly controlled by the microstructure, whereas the specific
capacitance is controlled mainly by the chemical hydrated state
[152].

If the crystallinity of manganese oxide is too high, proton
exchange will be limited as for ruthenium oxide. This will lead to a
loss in surface area, but an increase in conductivity. If there is a
low crystallinity, conductivity will decrease, so there must be a
tradeoff between electrical conductivity and available surface area.
As crystallinity is temperature dependent, heat-treated samples
with an annealing temperature of 200 °C show a higher specific
capacitance at high scan rates, and lower specific capacitance at
low scan rates [153]. This is attributed to the lower surface area
[8].

The morphology, composition and structures of MnO, depend
on the preparation conditions, affecting pseudocapacitive
response in the material. The morphology of MnO, is usually
controllable by the preparation process or the reaction conditions
[154]. For a-MnO, specific capacitances of 265-320 Fg~! were
reported for the 0-1 V voltage window in a 0.1 M Na,SO,4 aqueous
electrolyte solution [146]. Specific capacitances of 195-275Fg~!
were achieved in 2 M KCl solution, and 310 F g~ in 2 M (NH,4),S04
[146]. For »-MnO,, a specific capacitance of 240 F g~ ! was achieved
at 1 mA cm~2 [155], but usually the specific capacitances are in

the range 20-30 F g~ ! [156]. 5-MnO, synthesized in different ways
exhibits specific capacitances of 236 Fg~! at 0.5 mA cm~2in 0.1 M
Na,SO, electrolyte, but also specific capacitances exceeding
350 Fg~! [157,158] are reported.

In general, the specific capacitance of the material drops as the
thickness of the electrode film is increased, as the result of the low
conductivity characterizing MnO,. For example, when the loading
was increased from 50 to 200 pg cm 2 the specific capacitance
dropped from 400 to 177 Fg~! [159]. Some benefits of using thin
layers are the lower series resistance, and easy access of the
electrolyte to the electrode [8], but the energy of the device will be
lower due to the lower contribution of the thin film electrode to
the overall mass/volume of the device as compared to thicker
electrodes. Several MnO, thin film based systems were reported,
reaching specific capacitances of about 600 F g~! within potential
windows going from 0.9 V until 1.2 V in aqueous electrolytes such
as KCl, K,S04, Na,SO4, and KOH [160,152,161-167].

As with ruthenium oxide, physically and chemically bonded
water enhances the transport of electrolyte ions. This means that
hydrated forms have better ion conductivity, thus exhibiting
higher pseudocapacitance [168,169]. It was reported that heat-
treatment above 200 °C removes all adsorbed water [143].

5.3. Polymers

Polymers electrodes have high electric conductivity, up to
10%S cm~! for doped polyacetylene, high electroactivity, which is
the ability of an electrode coated with a polymer film to reversibly
change its oxidation-reduction state in a solution under the
application of an external electric field, the ability to form passive
layers on metal surfaces, and the semiconductor band structure
[170].

The typical cyclic voltammogram of a polymer electrode is not
rectangular, as expected for a capacitor, but exhibits a current peak
at redox potential of the polymer, while metal oxide electrodes can
exhibit a series of redox reactions, giving an almost rectangular
cyclic voltammogram shape. Regarding charge and discharge
kinetics studied by cyclic voltammetry, devices made of these
materials are battery-like. As a result the shape of a galvanostatic
test is not triangular anymore, as expected for capacitors. An
example of pseudocapacitor cycling is shown in Fig. 9 along with
the shape obtainable from a capacitor.

These materials have reduced ESR and sometimes cost as
compared to carbon materials. However the lack of efficient n-

Voltage

Charge

Fig. 9. Galvanostatic cycling with potential limitation of an ideal pseudocapacitor
cell and a cell based on conducting polymers [187]. Cells using conducting poly-
mers in black, ideal pseudocapacitor in dashed red. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)
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doped conducting polymers makes it impossible to reach the same
cell voltages found in carbon based cells [171,172].

Swelling and shrinking of polymers upon cycling can cause
long term degradations [3,173,174]. Aromatic polyimides (PIs) are
interesting as matrix for conducting composites because of their
thermal stability, good mechanical properties and environmental
stability. Composites made of intrinsically conducting polymers
(ICPs) and PI matrix have improved mechanical properties, che-
mical stability and electrical properties under varying tempera-
tures. For example, polypyrrole/polyimides (PPy/PI) composites
show enhanced temperature and environmental stability [170].
The excellent miscibility between PPy carbonyls and PI's NH is
caused by hydrogen bonding. This composite has also an excellent
electroactivity [175].

A thin (less than 100 pm) high surface area conducting polymer
can be grown on a current collector in order to make an electrode.
During this electrochemical formation process the electrode can
be p-doped or n-doped. On charging or discharging the electrode
the dopant ions move in or out of the polymer electrode forming
an electric double layer. These materials’ charging mechanism is
claimed to be pseudocapacitive rather than double layer charging,
reaching very high capacitances (400-500 F g~ ! of active material
if the surface area is large enough) [170].

PPy is electroactive at positive electrode potentials [170]. Pls
are electroactive at negative potentials, and under certain condi-
tions also at positive potentials [175]. This makes it possible to use
PPy/PI composites for supercapacitors.

6. Electrolytes

The electrolyte also plays an important role in the super-
capacitor performance. The electrolyte concentration has to be
high so as to avoid depletion problems during the charge of the
supercapacitor, especially for organic electrolyte (“the electrolyte
starvation effect”) [176]. If the electrolyte reservoir is too small as
compared to the large electrode surface the performance of a
supercapacitor cell will be reduced. Concentrations higher than
0.2 molar are normally sufficient [3].

Most important properties to take into account in electrolytes
are the temperature coefficient and the conductivity, which
mainly determines the ESR of a supercapacitor. Other require-
ments include a wide voltage window, high electrochemical sta-
bility, high ionic concentration, low solvated ionic radius, low
viscosity, low volatility, low toxicity, low cost, and availability at
high purity [8]. The specific conductivity of a solution can be
empirically optimized by means of choosing mixed solvents,
modifying thus the solvation of the ions and the viscosity of the
solution. Besides, the thermodynamic potential range of electro-
chemical stability is very important, being higher for non-aqueous
electrolytes than for aqueous solutions. The corrosion of electrodes
and current collectors is important as well. This depends on the
nature of electrolytes, and for aqueous electrolytes on the pH. A
preliminary study on the potential range of safe and reversible
operation for any material/electrolyte couple is needed to ensure
the viability of final systems.

6.1. Aqueous and organic electrolytes

Electrolytes widely used in supercapacitors can be classified as
aqueous and organic. Aqueous electrolytes have limited their cell
voltage typically to 1V due to the water decomposition at 1.23 V,
whereas cells based on organic electrolytes can reach voltages of
2.7V and higher [8]. Nevertheless organic electrolytes exhibit at
least 20 times higher specific resistance than aqueous ones, typi-
cally a 50 times higher specific resistance [3], which leads to a

reduced power capability. The conductivity of aqueous electrolytes
is about 1S cm™! [2]. Aqueous electrolytes also have lower mini-
mum pore size requirements compared to organic electrolytes
[177]. Aqueous electrolytes can also provide more capacitance
than organic electrolytes due to higher concentration and smaller
ionic radius [8].

Regarding industrial production, organic electrolytes are more
expensive due to the purification from water, which is needed to
provide the higher cell voltage without degrading the electrolyte
[3]. Water content should be kept below 3-5 ppm in organic
electrolytes [8].

Among organic electrolytes, the most widely used solvents are
acetonitrile (ACN) and propylene carbonate (PC). ACN is capable of
dissolving larger amounts of salts, but is toxic, while PC-based elec-
trolytes are more environmentally friendly, offering a wide working
voltage, wide working temperature, and lower but relatively good
conductivity [8]. Among the salts used in organic electrolytes, tetra-
ethylammonium tetrafluoroborate, tetraethylphosphonium tetra-
fluoroborate, and triethylmethylammonium tetrafluoroborate can be
found. The salts exhibiting less symmetric structures have lower
crystal lattice energy, therefore increased solubility [8].

6.2. Ionic liquids

Low-temperature ionic liquids (ILs), which are the type of ILs of
interest to supercapacitors, are pure organic salts containing no
solvents with melting points below 100 °C. If the liquid state in
maintained at ambient temperature, they are termed room tem-
perature ionic liquids (RTILs). RTILs are of interest to super-
capacitors because they are nonvolatile, poorly combustible, and
heat-resistant, with these properties being very peculiar and
unachievable with conventional solvents. In RTILs, at least one ion
usually has a delocalized charge (very often aromatic structures)
and one component is organic, which prevents the formation of a
stable crystal lattice. Properties such as melting point, viscosity,
and conductivity are controlled by both the substituents on the
organic ion and by the counterion. Many ionic liquids can be and
have been developed with the extensive variation of physico-
chemical properties. For this reason, ionic liquids have been
termed “designer solvents”.

Ionic liquid gel polymer electrolytes (ILGPEs) are also devel-
oped by incorporating ionic liquids into a polymer matrix. These
are mechanically strong, electrochemically and thermally stable,
and highly conductive.

Ionic liquids are resistant to the reduction and the oxidation in
a wide voltage potential window, which depends on the counter
ion, providing a cell voltage of around 4.5V, with some of them
being able to reach 6 V [178]. Since ILs are solvent free, as shown in
Fig. 2 there is no solvation shell, so the ion size is better known
[19]. The most important properties of ionic liquids from the point
of view of the electrochemistry are, conductivity, viscosity, and the
potential range of electrochemical stability. The main drawback of
IL electrolytes is their low electrical conductivity, which is typically
less than 10 mS cm ! [178], and is significantly lower compared to
aqueous electrolytes. The conductivity of ionic liquids is strongly
correlated to their viscosity, with strong temperature dependence
[179]. In order to overcome the low conductivity, a dilution with
organic solvents is sometimes applied [8]. Some ILs have a rea-
sonably good ionic conductivity, comparable to the best organic
solvent electrolytes [179].

Also a good electrode structure is needed to assure the proper
wettability by the electrolyte [180].

The classical EDL theories in aqueous electrolytes and high-
temperature molten salts are not expected to describe accurately
the structure and properties of EDLs forming between ionic liquids
and electrified surfaces. Experimental data suggest that the
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thickness of the EDL between ionic liquid and electrode is of one
ion layer (typically 3-5 A). This supports that EDLs in ionic liquids
are essentially the Helmholtz layers.

Preliminary results demonstrate that the ionic liquids are a
good solution to improve the performance of electrochemical
capacitors, particularly for temperatures in fuel-cell vehicle
applications [179]. On the other hand, ILs often have prohibitive
cost and require more stringent conditions for drying carbon
materials in order to provide water-free environments in the cells.
As of today, these are major impediments to the industrial use of
ILs as supercapacitor electrolyte. Another issue with ILs is poor
compatibility with microporous carbons.

7. Electrochemical configuration of supercapacitor cells

The electrochemical configuration of supercapacitor cells is
detailed in Fig. 3, which shows that supercapacitors can be sym-
metric or asymmetric. Typically, the symmetric supercapacitors
are made up of two identical carbon electrodes, schematically
shown in Fig. 4.

The asymmetric supercapacitors are fabricated with different
electrodes. This can be two electrodes made of the same carbons
but having different thicknesses (masses) or two different carbons,
or a pseudocapacitive material in at least one electrode. A more
distinct type of supercapacitor cells are hybrid cells (so-called
internal hybrids [181]), combining the non-Faradaic and Faradaic
battery-type behavior in a single cell. These can be broken down
into internal series hybrids (ISHs) and internal parallel hybrids
(IPHs). In the case of ISH, one electrode is a battery-type electrode,
ideally working at a constant potential and being limited by a slow
diffusion-process with a high charge storage capacity whereas the
other is a capacitive electrode exhibiting a sloppy potential profile
typical of a supercapacitor. A representative example of such a
commercial system is the LiC. By contrast, an IPH combines battery
and capacitive materials at each electrode, providing higher
energy at low current, but also being able to operate at a current
non-typically high for battery materials because of the presence of
a capacitive material in the electrode. These systems provide
higher energy owing to the higher operating voltage and higher
capacity than symmetric systems as explained below.

Commercially available hybrid devices with specific energies
exceeding 10 W h kg ! can be found, which are suitable for traction
applications with charge times of about 10 minutes [1]. The rated
voltage (U,) of these devices is given as the difference between the
potentials of the positive (AE, ) and the negative electrodes (AE_).
Ur=AE, —AE_. The amount of charge accumulated on both elec-
trodes is identical, Q . =AE,C, =AE_C_ =Q_. Since one of the
electrodes in an ISH has much higher capacitance, the potential range
of the other electrode is higher [182]. The use of a non-polarizable
electrode raises the voltage of the single cell, and, since the second
capacitive electrode of a symmetric capacitor is removed, the total
capacity increases. This changes increases in 2-5 times the specific
energy comparing to symmetric designs [183]. Since the self-
discharge of an EDLC it is basically only due to the capacitive car-
bon electrode, the asymmetric types have lower self-discharge than
symmetric ones. However, the service life is reduced due to the
cycling of the Faradaic (non-polarizable) electrode. It is important to
make the right choice of capacities ratio to reduce the depth of dis-
charge of the Faraday electrode [183]. The discharge time constant is
larger in this type of devices. This occurs due to a high inertness of
the asymmetric systems because of a relatively slow electrochemical
reaction in the non-polarizable electrode. For example, one of the
fastest electrochemical reactions, a proton exchange in a solid phase,
is still slower than the process of electric double-layer formation on
the phase boundary solid/electrolyte. Therefore the discharge time

constant of a series-produced asymmetric EC, is higher, typically
more than 1s [183].

7.1. Lithium-ion capacitors

LiCs are a kind of advanced asymmetric energy storage devices.
These systems have functionalities derived from both batteries and
conventional EDLCs, and are capable of storing 5-10 times more
energy than conventional EDLCs. These devices are high power
and long cycle-life energy storage systems [184].

The typical LiC is built with a high surface area activated carbon
as the positive electrode, and an intercalation compound, which
supports fast reversible intercalation of lithium ions, as the
negative electrode.

During the charge of a LiC, lithium ion intercalation proceeds
inside the bulk of the negative electrode, while anion adsorption
occurs onto the surface of the positive electrode. During discharge,
lithium ion deintercalation occurs from the bulk of the negative
electrode, while anion desorption takes place on the surface of the
activated carbon positive electrode. As the process on the positive
electrode is non-faradaic, it is faster in comparison with the
lithium-ion exchange process in the negative electrode. This
means that the power density of the device will be determined by
the rate capability of the negative electrode [184].

There are various materials evaluated as negative electrodes, all
of them in non-aqueous electrolytes: Nanostructured LisTisOq;
(LTO), disordered or semi-crystalline graphite, graphite, pre-
lithiated graphitic carbon, LiFeSiO4. Fig. 10 shows the voltage
profile for graphite/AC and LTO/AC cells, comparing them to EDLCs.

There are also configurations using activated carbon as a
negative electrode. These devices have lower cell voltages due to
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Fig. 10. Typical voltage profiles for LiC cell (a) and LTO-CNF/AC cell (b) compared to
a symmetric EDLC cell.
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limited operating potential windows of the electrodes in such
arrangement. The positive electrodes can be made of graphite or
LiNio5MH1V504.

Partially disordered graphitic carbons have lower redox
potential than LTO, ideally providing higher voltage and higher
energy. Cells assembled with negative graphitic carbon electrodes
have a wider operating voltage range and an improved energy
density. Using disordered carbon or semi-crystalline graphitic
materials, the lithium-ion intercalation/de-intercalation process
can occur over a wide voltage range, which leads to a steep
decrease in cell voltage during discharge and a corresponding
decrease in the energy density. Ordered graphite has a relatively
flat lithium intercalation/deintercalation profile at low negative
redox potential. However, graphite-based cells, suffer from slow
kinetics during initial charging cycles. The pre-lithiation of the
graphite anode is achieved by using an additional internal lithium
metal electrode. Pre-lithiation is needed for the following reasons:
(i) it enables high voltage (about 4 V) without excess charging, (ii)
it suppresses the irreversible capacity of the negative electrode,
(iii) it reduces electrode resistance, (iv) it reduces Li* consumption
from the electrolyte, (v) it extends cycle-life and (vi) it provides
high energy density through the extended potential swing of
positive electrode.

The LTO/acetonitrile/activated carbon (AC) system was one of
the first to achieve an energy density of 10 W h kg~ ! at 3.2 V with
good power capability [28]. Devices with working voltages up to
3.8V have achieved energy densities of 25 W hkg~! [28]. The
volumetric energy densities reach 30 Wh 1! [28].

Further development of this technology is needed before
commercialization to avoid the accumulation of solid electrolyte
interface on negative electrodes, and improve the cycling perfor-
mances and ensure safety [28].

8. Manufacturers

The number of supercapacitor developer and manufacturers is
growing rapidly. Most of the market is taken by organic-based
supercapacitors using acetonitrile or propylene carbonate-based
electrolytes, but nowadays near the 50% of the available manu-
facturers offer devices based on non-flammable and relatively
non-toxic electrolytes, which is an advantage.

There are several applications in which a supercapacitor can be
the best solution, and these applications differ from each other in
terms of requirements for the ESS.

Table 4 summarizes different manufacturers and some of their
products targeted to high power applications. The table includes
typical specifications, and also energy and power densities. In the
case of power densities two values are included, the one for the
highest achievable power density, which is related to the power

Table 4

Different products offered by manufacturers. Data taken from [5].
Manufacturer V  C(F) ESR(mQ) Whkg=! Wkg=! Wkg!

(95%) (Matched)

Maxwell 2.7 2800 0.48 4.45 900 8000
Apowercap 2.7 590 09 5 2618 23,275
Nesscap 2.7 1800 0.55 3.6 975 8674
Nesscap 2.7 5085 0.24 43 958 8532
Asahi Glass (PC) 2.7 1375 2.5 49 390 3471
Panasonic (PC) 2.5 1200 1 2.3 514 4596
LS Cable 2.8 3200 0.25 3.7 1400 12,400
BatScap 2.7 1680 0.2 4.2 2050 18,225
Power Sys (PC) 2.7 1350 1.5 49 650 5785

given with a matched impedance, and the other related to a
working efficiency of 95%.

9. Conclusions

Supercapacitors are a very interesting technology for different
applications requiring high power ratings, long cycle and calendar
life, and reliability. Those requirements are stipulated by renew-
able energy systems such as wind power conversion and solar
systems. The first requires high power burst for blade-pitch
adjusting or enhancing low voltage ride-through capability. The
second requires output power smoothing, which is classically done
with the batteries that do not last more than few years [182].

In this review we gathered different electrode and electrolyte
materials, pointing out their advantages and disadvantages in
supercapacitors. We particularly note that special care must be
taken to provide a good electrode-electrolyte match in order to
achieve good capacitance ratings. Optimizing the electrode-elec-
trolyte interface is crucial for maximizing performance, especially
capacitance and rate capability of supercapacitors.

A proper material selection must be done taking into account
the requirements from final application such as cycle life, specific
energy and powers, energy and power densities and calendar life.
Apart from the materials, the design and optimization of new cell
configurations is a growing field of opportunities for developing
hybrid battery/supercapacitor systems. Such systems will be in
great demand in those applications where a battery or super-
capacitor alone does not meet specific needs such as energy
density, cycle life, and power rating.

Equally important to the material and cell development is the
processing of electrodes and cell assembly, which should be
optimized to maximize the performance.

Finally, we note on the application side that in most of the cases
supercapacitors are used complementarily to batteries, being able
to enhance their operating efficiency as well as the overall per-
formance of an ESS.
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