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a b s t r a c t

Energy storage systems (ESSs) play a very important role in recent years. Flywheel is one of the oldest
storage energy devices and it has several benefits. Flywheel Energy Storage System (FESS) can be applied
from very small micro-satellites to huge power networks. A comprehensive review of FESS for hybrid
vehicle, railway, wind power system, hybrid power generation system, power network, marine, space
and other applications are presented in this paper. There are three main devices in FESS, including
machine, bearing, and Power Electronic Interface (PEI). Furthermore, advantages and disadvantages all of
them have been presented. In addition a brief review of new and conventional power electronic con-
verters used in FESS, have been discussed. Finally, practical ways to develop this technology in the future
are presented.
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1. Introduction

Energy Storage Systems (ESSs) play a very important role in
today's world, for instance next-generation of smart grid without
energy storage is the same as a computer without a hard drive [1].
Several kinds of ESSs are used in electrical system such as Pumped
Hydro Storage (PHS) [2], Compressed-Air Energy Storage (CAES)
[3], Battery Energy Storage (BES) [4], Capacitor Storage (CS) [5],
Super capacitors Energy Storage (SCES) [6], Superconducting
Magnetic Energy Storage (SMES) [7], Thermal Energy Storage (TES)
[8], Hydrogen Storage System (HSS) [9], and Flywheel Energy
Storage System (FESS) technologies. Flywheel (named mechanical
battery [10]) might be used as the most popular energy storage
system and the oldest one [11]. Flywheel (FW) saves the kinetic
energy in a high-speed rotational disk connected to the shaft of an
electric machine and regenerates the stored energy in the network
when it is necessary [12]. First use of FW regurgitates to the pri-
mitives who had applied it to make fire and later, FWs have been
used for mechanical energy storage [13]. Then this technique has
been applied in several applications such as potter wheels [14],
windmills, grindstone, and spinning and etc. One of the first “in-
novative” dissertations on the hypothetical stress limitations of
rotational disks (isotropic only) is the seminal work by Stodola
[15]. Investigations for FESS have been continued rapidly in re-
search centers and academic works after the expansion in energy
cost [13]. The largest rating of a FW applied in electrical applica-
tion has been built by Japan Atomic Energy Research Institute
(JAERI) [16]. In contrast to other energy storage units, the FW has
several benefits, including high energy efficiency, fast response
speed, strong instantaneous power, low maintenance, long life-
time and environment-friendly features [17–19]. Disadvantages of
the FW are considered as follows: instantaneous output is not very
high because it uses devices with permanent magnet in the rotor
to remove the losses based on the magnetic coupling in the device
[20–22]. Moreover, like other superconductor applications, super-
conducting FESS requires costly cryogenic cooling devices and the
cryogenic cooling system not only enhances the total capital cost
of superconducting FESS but also reduces the overall energy sto-
rage efficiency [23,34]. Generally, non-negligible amount of elec-
tricity is consistently essential during the energy storage period to
keep cryogenic environment. A concept of storing cold thermal
energy has been introduced to minimize the cooling load of the
cryogenic cooling system in [23]. In addition, there are no de-
termined standards for operation and protective regulations for
FWs. Another challenge for FW performance analysis is the lack of
historical operational data [24]. A high overall efficiency is one of
the main issues for viable FW construction, also a mitigation of the
total losses [25]. Installed cost is 1–1.4 times more than batteries
[26]. Storage increase is not easy and needs units of comparable
size. The FESSs can be classified as high-speed (10,000–
100,000 rpm) and low-speed (less than 6000 rpm) [27–32]. Low-
speed FWs, nominal value at hundreds of megawatts, have been
implemented in high-energy physics facilities based on their high
reliability and rugged construction [33]. High-speed FESS is a no-
vel technology and produces better response speed, electric effi-
ciency and cycling characteristics than low-speed FESS. High-
speed FESS has high energy density but low power rating that is
usually limited by cost (five times more than low-speed FESS) and
the awkwardness of cooling [34–37]. Not only the rotational speed
impacts on the material, length, and geometry of the FW but also
it affects the kind of bearing and the kind of electrical machine
[38]. In developed power industries, with the advances of light
weight and high strength composite material, power electronics
and control technology, FESS can be represented as a viable choice
to conventional chemical battery systems [39].

Several papers have reviewed ESSs including FESS. Ref. [40]
reviewed FESS in space application, particularly Integrated Power
and Attitude Control Systems (IPACS), and explained work done at
the Air Force Research Laboratory. A review of the suitable storage-
system technology applied for the integration of intermittent re-
newable energy sources has been introduced in [41] and also fu-
ture trends have been proposed. Refs. [42,43] reviewed ESSs in
automotive and vehicle applications. Ref. [18] has presented a re-
view of ESSs for transport and grid applications, and hybrid ESSs
and power electronic interfaces (PEI) have been investigated in
this study. Refs. [44,45] have reviewed ESSs in power network and
investigated future research in this field. In Ref. [46] ESSs in rail-
way application has been reviewed. A review and simulation of
flywheel for an isolated wind power system has been presented in
[47]. A brief overview of FESS for different applications has been
proposed in [25,48].

All above review papers present different applications of FESS
in brief. A comprehensive review of FESS for hybrid vehicle, rail-
way, wind power system, hybrid generation system, power net-
work, marine, space and other applications are represented in this
paper. Thus, advantages and disadvantages of three essential de-
vices including: machine, bearing, and Power Electronic Interface
(PEI) in FESS represented. Although, conventional and new PEI are
concisely reviewed in FESS. Also, future trend is proposed about
this improving technology. This paper is organized as follows:
Section 2 presents FESS structure theoretically. In Section 3 ap-
plications of FESS in industries are reviewed. Finally, future trends
and conclusion are represented in Section 4.
2. Fess structure theory

The typical overview of FESS operation can be described as an
electric supply charges the FW that stores energy in the form of
kinetic energy. The amount of stored energy is based on the form,
mass, and rotational speed of the FW [49]. Moreover in the char-
ging mode, the FW is speeded up in its rotational motion to store
the kinetic energy. Then the kinetic energy is maintained in the
standby mode. When the stored energy is required, the FW begins
to discharge the kinetic energy [13].

2.1. Rotor (Flywheel)

Several years ago, steel has been used but it has not allowed
improvement of high speed, since the material has not withstood
the load. Later, alloys of, e.g., titanium or aluminum alloys were
applied. The newest solution is composite materials in 1970s that
allowed the development of speeds up to 100,000 rpm and high
power density at the same time [10,11]. The kinetic energy stored
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in a FW is corresponding to the moment of inertia and to the
square of its rotational speed as follows:

∫ω= = = ( )E J J r dm m r
1
2

, . . 1
2 2 2

where Eis kinetic energy stored in the FW, J represents moment of
inertia andω represents the angular velocity of the FW, m is the
mass of the cylinder and rrepresents the radius. The maximum
energy density with regarding volume and mass, respectively as
follows:

σ σ
ρ

= =
( )θ

θe K e K
2

v u m
u

.
.

where ev and em are kinetic energy per unit volume or mass, re-
spectively, K is the shape factor, ρ is mass density and σθ u. is
maximum stress in the FW.

2.2. Motor/generator

An electrical machine is the electromechanical interface of the
FESS in which the rotor stores kinetic energy [50]. While the
machine operates as a motor, energy is transferred to the FW and
charge the energy storage device. And when the machine works as
a generator, FESS is discharged. There are various types of ma-
chines that can be used with the FW such as follows:

2.2.1. Permanent magnet synchronous machine (PMSM)
PMSM has become the most common choice for FESSs ac-

cording to its high efficiency [48]. PMSM has low rotor losses
because of its rotor flux generated by permanent magnet; it has
high energy density based on robust rotor structure; and the
machine overall efficiency is high. It is appropriate for high speed
applications [24,39,46,51–62]. PMSM can mitigate hysteresis losses
camper to synchronous machine. But PMSMs are more expensive,
less rugged and more sensitive to temperature in contrast to an
induction machine (IM) [63]. The idle losses based on eddy cur-
rents in the stator, low ruggedness and high cost are the problems
with PMSM.

2.2.2. Induction machine (IM)
IM can be considered as the best alternative in high power

applications. As they have rough construction, low cost, high tor-
que, high robustness, and high reliability [64]. The key problem
with IM is speed limitation [44] and [64]. In order to overcome this
problem, four solid-rotor topologies including: a) smooth solid-
rotor, b) slitted solid-rotor, c) coated solid-rotor, and d) caged so-
lid-rotor, are appropriate options, in the last decade. Doubly fed
induction machine (DFIM) has been arisen as a motor/generator
for FESS applications [65–72]. And also it has been applied since
they allow mitigating power electronics sizing [64].

2.2.3. Brushless direct current machine (BLDCM)
BLDCM has been represented as a synchronous machine that

has a permanent magnet in the rotor and functions in a self-
controlled mode to control the current in the stator windings
using an inverter. High power density, high efficiency, relatively
wide rotational speed rang, mechanical stability, compact design,
no electromagnetic interference, and lowmaintenance cost are the
advantages of BLDCM [73–82].

2.2.4. Switched reluctance machine (SRM)
SRM is a good choice for FESS applications where as it has more

simple structure and has low idle losses, having the ability to work
in the harsh operational environments (ambient temperatures of
around 400 °C) good robustness and a wide speed range (from
zero to several thousand rpm) [83]; but the machine has high
torque, current ripples and flux also the awkwardness of torque
control at low speeds. Its control becomes simpler than IM if it
operates at high speeds [84].

2.2.5. Homopolar machine (HM)
The AC homopolar machine is also well-known as the homo-

polar synchronous machine and the homopolar inductor alter-
nator [85]. The HMs are able to offer encouraging advantages of
robust rotor structure, low idling losses, improved reliability, and
thus, they are noticeably attractive for long-term high-speed op-
eration, which is essential for great importance in FESSs [85–96].

2.2.6. Synchronous machine (SM)
An isolated power system based on FW generators and ex-

amples for the satisfying suppression of torsional resonances in
SMs of power supply have been presented in [97]. To stabilize
oscillating torques, two new thyristor-controlled devices which
are coupled to the stator winding of the SM have been improved,
installed, tested, and continuously worked in the pulsed power
supply of a tokamak experiment. It causes the same effect as an
enhanced natural damping in the rotating shaft assembly for os-
cillation modes.

2.2.7. Bearingless machine (BM)
A BM mixes the functions of both magnetic suspension and

torque generation together in a single machine [98,99]. The BM
possesses the merits of an uncomplicated structure, compactness,
and reduced cost in contrast to the magnetic bearing [100–102].
Various BM have been progressed so far, such as bearingless SRM,
bearingless reluctance machine, bearingless IM, bearingless
BLDCM, bearingless PMSM, Lorentztype slotless BM, and bear-
ingless slice machine [103–109]. The BM can be applied in high-
speed FESSs [110–112].

2.3. Rotor bearing

One of the important points in the FESS is the design of bear-
ings. Appropriate design can reduce losses and maintenance re-
quirements. Mechanical bearings were the first types of bearing,
they have high friction and losses, and low lifetime when they are
used in high-speed. Therefore they need lubrication and require
periodic maintenance due to wearing. When the magnetic bearing
have been appeared in 1980s [10], long lifetime, high fast re-
sponse, high load capacity, low losses, and available high-speed
were possible. Complicated control system is the main defect of
magnetic bearing, even though in case of the magnetic bearings
failure/overload, FESSs still need auxiliary mechanical bearings
[17]. There are three types of magnetic bearings as follows:

2.3.1. Permanent (Passive) magnetic bearing (PMB)
PMBs include permanent magnets and must be mixed with

another type of bearings since they are inherently unstable. The
most attractive features of PMBs are very low losses due to lack of
current and low cost. But they don’t have low damping capability
and active control [113]. And they cannot provide a stable sus-
pension in all dimensions and are able to be used as an auxiliary
bearing [34,113].

2.3.2. Active magnetic bearing (AMB)
AMBs are used as auxiliary bearings to reduce vibrations of the

rotor [114], and contain coils which vary the electromagnetic for-
ces due to the shaft position gaining stability by using a feedback
system [48]. They have low-loss suspension of the rotating mass,
better control ability, a high stiffness characteristic, and long life-
time, but high power loss based on existence of the biased current
[115]. The mixed use of AMBs and mechanical bearings can reduce



Fig. 1. Cycloconverter.

Fig. 2. BTB topology.
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the complication of control and make the system viable, cost-ef-
fective and more stable [39]. They require complex control strat-
egy that should be sensitive to electromagnetic disturbance
[58,116–118].

2.3.3. Superconducting magnetic bearing (SMB)
SMBs are considerably appropriate for high-speed application,

since the low energy losses in high-speed lead to free friction, long
life, and self-stability. SMB works at very low temperature so it
needs a cryogenic cooling system in order to avoid bearing failure.
High temperature superconductors (HTS) can be used to improve
the SMB and the cooling system. But a disadvantage is the re-
quirement of cryogenic refrigeration and high cost even though,
there are recent progress of innovative scheme for the cryogenic
insolation that can decrease the refrigeration costs [119–
139,22,67,76,77,114,117]. In [77] to reduce the cooling and total
cost, SMB and PMB have been used together. A HTS bearing was
designed for a FESS to measure the loss and learn how to reduce
loss [124]. Hull et al. [125] have presented results of experiments
with a small diameter rotor which uses HTS bearings for levitation
and rotates in vacuum at kHz rates. Bearing losses are represented
as a function of rotor speed. Same author et al. [133] have in-
troduced a simple assumption for sub-synchronous whirl in sys-
tems with HTS bearings and indicate that theoretical predictions
of the onset criteria match with experimental data, and It is
showed how it is possible to damp the whirl from a theoretical
context and explain a practical approach to achieve this that has
had success in their laboratory experiments. Dynamics of the FESS
are developed and charge-discharge characteristics are explained
in [139]. Two types of ESSs with a FW rotor supported by SMBs are
reported in [130]. Both systems contained a rotor and SMBs at the
ends of the rotor. The rotor of fist systems is driven by applying an
air turbine and another one is driven by brushless motor. To im-
prove the dynamics of the passive type SMBs, a new method for
both types of FESSs is developed. A PMB and a SMB bearings have
been presented for a FESS in [135]. The PMB presented a con-
siderable stiffness in spite of being an axial bearing. Two topolo-
gies of thrust SMB were investigated: a Halbach array and a flux
shaper. The Halbach array can decrease the stray field and enhance
the magnetic induction that makes it possible to increase the le-
vitation force over 50% for the operational region. The mathema-
tical frame of a dynamic mechanical model for HTS bearings has
illustrated in [126]. Even in the presence of eccentricity and speed
changes, this model was able to calculate the dynamic rotor po-
sition, and it was revealed that loss-models can be incorporated,
so the dynamic model can describe the experimental spin-down
curves very well. The comparison of the numerical analysis and
the experiment in the SMB of the 10 kWh FW has been done in
[127]. It was found that the induced current in the PM rotor, one of
the most important cause of the rotational loss, was proportionate
to the angular velocity, the secondary current did not have to be
included while simulating and modeling for the higher-accuracy
calculation the interaction between relative SMB segments had to
be considered. From these findings, moving to next calculation for
the large SMB system and the system that needed high-accuracy
simulation was possible. Three topologies for the optimal structure
of permanent magnet rotor were represented and their magnetic
field characteristics were investigated in [131]. Ref. [138] has re-
presented magnetic bearing sets to work in a FW system. First, two
PMB topologies were compared and a new magnetic arrangement
was presented and allowed significant increase in levitation and
radial forces. The technology of superconducting bearing has been
reviewed by Hull [134].
2.4. Power electronic interface

This subsection presents a brief overview of PEIs in FESS. As the
development has been introduced in power electronics in the
1960s, the frequency and amplitude of the voltage both have be-
come easier to be controlled [140]. Thus it was found that if a
power converter and electrical machine are connected to a FW, a
novel technique of storing electrical energy can be achieved [11].
PEIs play main role in FESS. Also different topologies can be used
in FESS. (In this subsection, all converters that are connected to FW
operate in bidirectional mode). Cycloconverter is one of the AC-AC
family converters that are usually used in medium voltage and
high power applications (see Fig. 1) [141]. The switches that are
usually used in Cycloconverter are thyristors. This topology has
disadvantages such as high Total Harmonic Distortion (THD),
complex control, low power factor, requiring many switches in
conventional types. AC-DC-AC configuration is used mostly in FESS
[142]. This configuration is also known as back-to-back (BTB) to-
pology. In BTB topology, grid side converter, converts the AC vol-
tage to DC voltage and then DC voltage converts to the arbitrary AC
voltage and frequency by machine side converter (see Fig. 2). In
wind applications, FESS is usually connected to a common dc-link
using a DC-AC converter (see Fig. 3) [143]. This configuration also
can be used in other applications (e.g.: Uninterruptible Power
Supply UPS) [144]. Also another configuration can be used for
wind power (see Fig. 4) [145]. The boost converter can be con-
nected the common dc-link of BTB configuration in FESS to in-
crease the DC voltage (see Fig. 5) [30]. Also DC-DC plus DC-AC
configuration can be used in FESS [78] (see Fig. 6). When con-
ventional two level topologies are used, the high voltage level is
limited, to overcome this problem; the multilevel converters
(Neutral Point Clamped, Cascade H Bridge, and Flying Capacitor)
can be a good choice. Nabae et al. [146] have introduced NPC in
1981. NPC converter can be used in FESS [147] (see Fig. 7), it has
many advantages compare to conventional two level ones such as
the low harmonic distortion of the voltage and current generated,
the limitation of voltage transients dv/dt, the small size of the
required filter elements, the high efficiency of the system, and the
reduced common-mode voltages. Thus NPC can use other config-
uration in FESS including: DC-DC plus NPC (see Fig. 8), two-level
conventional converter plus NPC (Fig. 9), and BTB NPC (see Fig. 10)
[57]. AC-AC Matrix Converter (MC) is another PEI for FESS [55],
which converts directly AC-AC. MC has a significant advantage;
they do not have capacitor in their structures. Therefore, dc-link



Fig. 3. BTB plus DC-AC converter connected in DC-link.

Fig. 4. BTB plus DC-AC connected directly to the grid.

Fig. 5. BTB configuration with boost converter connected to DC-link.

Fig. 6. DC-DC plus DC-AC configuration.

Fig. 7. Three-level NPC converter.

Fig. 8. DC-DC plus NPC.

Fig. 9. AC-DC conventional two level converter plus NPC.

Fig. 10. BTB NPC topology.
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capacitor balancing problem is eliminated, the weight and volume
of the converter are significantly reduced, and it has a compact
structure. This converter firstly has been introduced by Gyugi and
Pelly [148]. There are two classical configurations for MCs, direct
(Fig. 11) and indirect topologies (Fig. 12). MCs have several dis-
advantages: output gain is limited in 86.6%, high THD, need to
more complex control, and need to high protection system.
Z-Source Converter (ZSC) is other option for FESS [50] (Fig. 13).
This topology has been introduced in [149] and it is able to pro-
duce an output voltage lower or higher than the input voltage. ZSC
can be designed with DC-AC, AC-AC, AC-DC, and DC-DC topologies.

3. Fess applications

Currently FESSs are applied in various applications. They are
implemented to support very small micro-satellites to very large
power network applications. This section reviews FESS in modern
and industrial applications as follows:

3.1. Fess in electric vehicle

Automotive industry plays an important role in today's world
since the transportation sector consumes one third of the energy

Fig. 11. Direct MC.



Fig. 12. Indirect MC.

Fig. 13. Z-Source Converter plus DC-AC converter in FESS applications.
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in Europe [150]. Furthermore, one quarter of the world's carbon
dioxide emissions are caused by the transportation sector [151].
Electric vehicles have a better energy-efficiency than classical ga-
soline powered ones and helps to the combination of Renewable
Energy (RE) for more carbon emission mitigation [152]. Applying a
FW for vehicle propulsion is not a new concept. The steam engine
has been developed to give better efficiency and power after the
years of Industrial Revolution. Large FW has been built for huge
engines. Perhaps “Gyrobus” was the most common application for
transportation system. Oerlikon built “Gyrobus” [13]. Various FW –

based hybrid vehicle concepts came out in the literature since
1970s, where the FW has been used to develop the fuel economy
in buses and other passenger vehicles. Furthermore, other appli-
cations for FW also have been proposed, such as for cranes, ex-
cavators, commuter train, and fork lift trucks [153]. A study of the
novel FESS for vehicular applications with magnetic bearings and
materials has been performed at the University of Austin, Texas in
1999 [154,155]. Concepts for boosting performance have been
presented for passenger vehicles and racing cars since 2000s, thus
high-speed compact FW (rotating at 64,000 rpm) has been used in
formula one race cars. This technology called Kinetic Energy Re-
covery System (KERS). The most disadvantage of the FW is adding
a high weight (25 kg) to the system. The FESS can mainly serve
three functions in the vehicle: 1) regenerative braking 2) load-
averaging and 3) prime mover/prime energy source. The third one
only proposes a theoretical probability that has not been reached
yet based on the limitation of energy density of FWs so far [150].
Hybrid vehicles are described as having more than one power
source. The most convenient hybrid configurations contain a pri-
mary power source, like an internal combustion engine (ICE),
coupled to an energy storage device. In hybrid vehicles, FESS might
be connected to mechanical transmissions for braking energy re-
storation and the provision of extra power due to acceleration. The
size of FW and depth-of-discharge must be selected for a specific
application, and it has a direct impact on transmission efficiency.
During acceleration in automotive vehicles, FESS with mechanical
transmissions let power argumentation and regenerative braking,
although new method of analysis and optimization for mechanical
FW systems has been proposed in [156]. Modern FWs manu-
factured from composite materials have been indicated to combine
high specific power and specific energy, making them applicable
for automotive regenerative braking applications and the common
charging period is the order of 10 s [154,157,158]. More flexible
power train operations can be allowed by FW with electrical
transmissions. Direct continuously variable transmissions or
power split continuously variable transmissions for FW application
have been investigated in [159–166]. In these studies, the size of
FW and depth-of-discharge have been assigned fixed values. A
100 kW FESS due to vector control technique for hybrid bus has
been developed in [53]. The peaking vehicle control strategy used
in this study is suitable for the transit bus and this strategy will
keep a high state of charge (SOC) of the FW all the times and high
performance of the bus is guaranteed [167,168]. The design and
optimization of a high-speed FESS for utility vehicles in urban
traffic FW was replaced between a low power (LP) DC/DC con-
verter and a high power (HP) BTB converter in which LP side
converter provided constant power by battery for FW and HP side
converter provided acceleration and breaking energy [58]. For
parallel hybrid electric vehicle, the stability of an idle speed con-
trol (ISC) loop is investigated, and the ISC loop considered in this
paper has been successfully applied on an industrial standard
electronic control units in [169]. Berkel et al. [170] have proposed a
dynamic simulation scheme for a mechanical hybrid powertrain
that supports three hybrid functionalities to mitigate fuel con-
sumption: 1) efficient operation of the engine, 2) recuperation of
brake energy for later use and 3) engine shut off during vehicle
standstill. The results reveal that, with optimal control of the
mechanical hybrid powertrain and in spite of the relatively low
energy storage capacity of the FW, significantly high fuel storing of
between 18% and 35% can be achieved due to the selected driving
cycle. Same author et al. [171] have introduced the scheme of a
real-time executable energy controller for a mechanical hybrid
powertrain with FW which is based on optimal control. Dragicevic
et al. [172] have investigated the design of a fast DC charging
station (FCS) for hybrid electric vehicles (HEVs) which was coupled
to at a remote location. Power rating of this recent technology can
increase to a 100 kW and it showed an important challenge in
distribution systems for its board acceptance. A power balancing
strategy due to a local ESS has been represented in this study. Low
speed FW has been chosen as a means of storing energy because it
presents high power density. Decentralized supervisory control
was done in this paper. For grid and FW interface, this study re-
presents references for inner current loops of active converters.
This paper also represented two control strategies for counter
balancing the adverse effect of HEV FCS on electric utility. Same
author et al. [142] have proposed a power balancing strategy for
the FCS applying a novel Distributed Bus Signaling (DBS) control
method that is based on a low-speed FESS. The proposed strategy
was developed in detail for charging just one HEV, but it can be
simply developed to support a number of HEVs. A new method of
analysis and optimization for mechanical FW systems has been
proposed in [156]. Electric braking operations indicated that the
motor produces electromagnetic torque that works against the
rotor direction. There are basically three types of electric braking
manners: dynamic braking, regenerative braking, and plug brak-
ing. Regenerative braking is widely applied in the energy storage
FWs and electric vehicles [34,173]. For attitude control FW with
small inductance BLDCM, an accurate braking torque control
method has been proposed in [174]. In this paper first, precise
torque estimation has been achieved due to the torque coefficient
estimation whose harmonic information has been fitted by neutral
network and corrected by temperature. Secondly, a hybrid braking
torque control structure which integrated plug braking and dy-
namic braking has been represented to achieve smooth and con-
tinuous torque. Thirdly, the torque fluctuation which is induced by
supplying voltage descent, during dynamic braking has been
suppressed by suggestive predictive braking torque control
scheme. Forth, the large braking torque ripple induced by low
winding impedance, high winding voltage, and three phase in-
verter modulation during plug braking has been mitigated by di-
gitized low-pass filter and the proposed noncommutation phase
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current circulatory sampling. Furthermore, for each braking mode,
various PWM modulation patterns and the most applicable oper-
ating conditions have been investigated. Finally, the superiority
and the validity of the suggestive braking torque control method
have been verified by experimental consequences on the BLDCM
that is applied in attitude control FW.

3.2. Fess in railway

In order to improve the quality of railway [175], as well as reuse
the regenerating energy, FESS is a good choice. FW systems are still
in development for energy saving of light weight railway vehicles
nowadays. Burch noted that a 44 t FW storing 34 kW h was in-
stalled on the Torino-Modane mountain railway [13] in 1911, and
in 1988, FW was located in the Keihin Electric Express Railway at
Zushi post in Japan to store regenerating energy. This system is
currently working [46,176]. In some countries the main part of the
commuter trains applies electrical energy for propulsion and it is
provided by overhead wire. The FESS is suitable for a train energy
management with a diesel generator set for electricity supply in
place of an overhead wire. This system is technically more com-
plicated than overhead wire for braking energy recovery [153]. An
explanation of how the system was installed to London Under-
ground's Piccadilly line for a train application and was represented
some of the information from these tests. Also in New York the
1Mw FW installation at the Far Rockaway line was the first in-
stallation of its kind in the world studied [177]. The first railway
hybrid locomotive applied on rails was “New Energy Train”. The
Japanese company JR-EAST has built this suburb train [178]. “Rail
Power” is the first builder Canadian company which produces
hybrid locomotives assembling diesel in an industrial way and
accumulator batteries is produced in this company [179]. In ad-
dition, FWs were set on the roof of trams for catenary free op-
eration in Rotterdam, the Netherland also for catenary free op-
eration, FWs were installed on the roof of trams [180]. The project
“ACE2″ in 2003 and “SA2VE” in 2006 both were launched with the
joint purpose of power consumption levelling and recovering
braking energy [181]. Adding the energy storage to a high-speed
rail locomotive contain the following advantages [182]: 1) better
acceleration at high-speeds, 2) reduced trip time, 3) reduced
weight based on reduced prime mover power rating, 4) developed
fuel efficiency, 5) reduced rail board cost based on reduced weight.
A power management system for high-speed rail locomotives with
FESS is represented [182]. The reuse of regenerative energy from
vehicle braking is the important benefit of using energy storage in
electrical railways. Furthermore it can increase electrical railway
energy efficiency. In contrast to the common heat by friction
braking system, regenerative brake decelerates the train by
changing its kinetic energy into electricity and it can be fed back to
the power grid in a short time or stored until required [183]. This
can be implemented in different ways by the use of electro-
mechanical, elastic, kinetic, hydraulic, and pneumatic accumula-
tors. Pneumatic ESSs took seldom in consideration for vehicular
application based on their low energy density and efficiency
[13,46]. Moreover when the prime mover is providing more power
than is required to maintain the preferred speed down the track.
While the train is in the station, this additional energy can be
charged in FW [182]. The needed power level of novel commercial
electric railway like the 100 Kw FESS from Urenco installed in Paris
subway could not achieve by FESS with a single FW unit [177].
Therefore suitable designed FW unit into standard module and
coupling these modules in parallel, the FW array energy storage
system (FAESS) can be improved to obtain higher energy and
power whilst keeping the cost at an acceptable level [183]. In
German electric railway system FESs had been used and a large
number of cost saving has been obtained in [184]. A developed
locomotive propulsion system has been reported in [185]. FW can
provide 2 MW energy density during 3 s. An Auxiliary Resonant
Commutated Pole Inverter topology is used to enable high fre-
quency switching with acceptable losses. This technique provides
zero voltage and zero-current switching in the main and auxiliary
power leg and has been indicated to effectively lower switching
losses in higher power bus converters and power motor drive. The
development of efficiency of DC power supplied railway with ap-
plying FESS has been reported in [186], in this paper FESS can save
the regenerated energy during braking in place of heat; then this
saved energy can be applied to compensate system disturbances
and imbalance periods. A 100 kW h superconducting FESS has
been applied to mitigate the peak power of the electric railway
system in [184] furthermore, economic advantages had been es-
timated. Currently Alstom Transport and Williams grope [187]
came to an agreement to improve the FW systems called “William
Hybrid Power FW” to fit on Alstom Citadis trams in [188]. Due to
reported Kinetic Traction System (KTSi) (pentadyne prior to 2010)
specifies 10 million cycles with a Round-Trip Efficiency of 83% and
an expected service life of 20 years. Thus the considered cost of
FESS is about US$1 million 1 MW [189].

3.3. Fess in wind power system

FESS can be respected as the best alternative for wind power
according to its quick response and good dynamics [44]. In 1931
Ufimtsev, made a wind power plant using FW. Davies et al. and
Infild et al. studied kinds of FES in wind-diesel system [190]. An
adaptable speed generator can control not only its reactive power
output but also its active power output quickly and independently,
thus if the FW system is installed in wind farm, the reduction of
the variations of both grid voltage and output of wind farm is
practical [191]. The first FES plant of the Beacon power corporation
has been installed in 2011 in Stephenton, New York with a 20 MW
capacity in [192]. The isolated power system contain of main
power supply, a wind farm and a consumer load. The FESS was
installed near the wind farm. A modeling of power flows into a
power station has been proposed in [147], this one was based on a
variable speed wind generator connected to a FESS. A three level
NPC converter was applied for the grid connection. FESS based on
a squirrel-cage induction machine (SCIM) driven by a two level
PWM AC/DC converter and system with and without FESS has
been studied. The control method and the energetic performances
of a low-speed FESS with a classical SCIM with experimental re-
sults to improve the quality of the electric power delivered by the
wind generator have been investigated in [28]. The electrical part
of the FW drive has been mainly examined in [193]. A FESS has
been used for an isolated power system with a wind farm to im-
prove the network frequency quality in [194]. The dynamic per-
formance of a Distribution Static Synchronous Compensator
(DSTATCOM) controller connected to FESS for improving the in-
tegration of a multilevel control technique and wind generators
(WGs) into a power system has been presented in [195]. In [196]
two kinds of methods were exposed, including flux-oriented
controlled and Direct Torque Control (DTC) for an induction ma-
chine-based FESS coupled to a variable speed wind generator, that
simulation and experimental results showed that DTC is a better
option for this kind of application. A control design using a FESS to
simultaneously achieve dynamic-stability improvement and
power fluctuation reduction of a marine-current farm and offshore
wind farm coupled to a power grid has been studied in [66]. A
development of a multilevel control of DSTATCOM/FESS has been
represented and each part of the control was in detail in [197].
Evaluation of the active power control of a FESS connected to a
DSTATCOM controller has been presented in [59]. From the ob-
tained results, it can be understood that the developed control
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algorithm works properly. The active power fluctuations from a
WG are effectively compensated with DSTATCOM/FESS device. The
improved system (DSTATCOM/FESS þ WG) produces a smoother
power response than a system without DSTATCOM/FESS, and the
smoothing effect of the output power enhances with the number
of FWs. finally it is deduced that the active power control re-
presented for DSTATCOM/FESS obtains a very good management of
the stored energy since the wind-power fluctuation are improved
with the stored device never being overload or discharged. The
electromechanical interactions in a FW system integrated a DFIG
has been analyzed in [72]. This study is the advantage of reducing
the converted size without important enhancing a moment of
inertia of the FW that operates in a more limited speed range.
When the system is applied for power smoothing or frequency
response control for a wind farm with grid connection, it is risky
that in the generating mode, negative damping in the shaft tor-
sional vibration are produced by the machine. By coordinating the
design of the mechanical shaft and the electrical machine con-
troller, resonance should and can be avoided. Thus this study ex-
plained a control strategy, based on which a frequency-domain
model is installed for prediction of the dynamic behavior of the
FW shaft system. This model can be applied to the design of the
electromechanical device. In which the FW system was a 5 MW
150 MJ. The control technique had two control modes for reactive
power, voltage control, and power factor correction and one con-
trol mode for active power. The experimental validation and the
design in scale-lab test benches for an energy management algo-
rithm due to feedback control methods for a FESS device has been
discussed in [54]. The objective of the FW was smoothing the net
power that was injected to the grid by a wind turbine or by a wind
power plant. Experimental results indicate that the quick wind
power fluctuations could be mainly compensated through the FW
support. To charge/discharge FW system with DFIG, a power
control strategy has been proposed in [198]. The suggestive con-
troller prevented over loading both the rotor BTB converter and
stator winding. That is according to conventional vector control in
which an artificial neural network was applied to improve the
required rotor current component due to the FW instantaneous
speed and the required grid power level. This technique has been
represented for frequency support and power leveling to develop
the quality of the electric power delivered by wind generator. For
effective and proper management of the stored energy in a low
capacity FESS that is applied to reduce the output power fluctua-
tion of an aggregated wind farm, a supervisory control unit (SCU)
mixed with short-time a head wind speed prediction has been
proposed [199], in which the wind speed prediction design was
improved by artificial neural network (ANN) that had benefits over
the conventional prediction designs. The represented SCU-based
control would help to mitigate the size of the ESS to minimize
wind power fluctuation. For the energy-fed voltage source con-
verter HVDC transmission systems during various AC side faults
based on FESS, a backup power balancing technique has been
presented in [200]. The represented technique aimed to avoid the
DC link voltage rise during faults which mitigated the voltage and
current stresses on the switching devices. An induction machine
(IM) based FESS was coupled in parallel to the onshore side con-
verter; thus during AC faults, the trapped energy in the DC link
could be stored in the FW. During ordinary conditions, the FESS
was ordinarily used for power leveling.

3.4. Fess in hybrid power generation system

Currently hybrid power generation extended widely [201,202]
and use of the FESS can be improved the system. To realize high
quality natural energy power generation system regarding wind
power, energy capacity of FES availability and equipment factor of
micro gas turbine generator, a method of electric power com-
pensation for wind power generation applying biomass gas tur-
bine generator and FW has been represented in [203]. For energy
storage in the photovoltaic (PV) power system, FESS was applied
and DC bus voltage can be settled by controlling of it. In this
system, PV power source is connected to DC bus by one-way boost
converter, and FW was coupled using bidirectional DC/DC con-
verter. Moreover, there were DC loads on the bus linked by buck
converter. DC bus was connected to the AC system by the bidir-
ectional DC/AC converter. Besides corresponding control strategies
and five different system operating modes have been proposed in
[204]. To develop the integration of wind turbines into grid-in-
teractive AC microgrides, a control aspects of FESS has been pre-
sented in [57]. Where three control modes were applied: fre-
quency control, voltage control, active power stabilization. An in-
tegrated microgrid lab system with a reliable and flexible multi
microgrid structure that is able to operate under fault and tran-
sition events has been reported in [205]. It consisted ESS and
multiple distributed generation system and integrates with a
diesel generator which serves as a backup power source and FES
for quick balancing to supply uninterruptible power supply (UPS)
services in participation with the diesel generator. A new con-
verter and control scheme for FESS, for the preparation of grid
frequency regulation and energy balancing in a smart grid contain
of wind generators, and typical thermal units and PVs has been
proposed in [206]. This scheme developed the system frequency
response to disturbances. In a nonlinear and stochastic model of a
microgrid (including: solar PV, wind turbine generator, FESS, bat-
tery ESS, fuel cells, and diesel energy generator), the use of frac-
tional order controller has been revealed for suppressing the sys-
tem frequency deviation in [207]. Simulation results indicated that
under nominal operating condition, the fractional order propor-
tional integral derivative controller is better than the standard PID
controller and for large parametric uncertainty of the microgrid,
better robustness was given. A universal supervisory strategy for a
microgrid power generation system which contained wind and PV
generation subsystems, an ESS, and domestic loads linked both to
the hybrid power generators and to the grid, is investigated [208].

3.5. Fess in power network

FWs have illustrated potential as an energy storage device for
many applications like power leveling, grid frequency support/
control, and voltage sag mitigation based on their fast recharge
time and high power density in contrast to other technologies
[72]. For about 20 years, it has been a basic technology applied to
limit power interruption in motor/generator [41]. If there is a
significant change in the load on the generator in distributed
generation (DG) network such as when a large motor turn on, the
voltage will sag and it can lead to destroy power quality. Besides,
adding FESS to a DG system can remove this problem. One of the
basic commercial applications of FW in association with active
filtering to develop frequency distortion on a high voltage power
system line has been detailed in [209]. Dynamic voltage com-
pensation on distribution feeders using FES has been investigated
in [210]. A design of FESS for distribution network has been stu-
died in [211]. Two applications of FW systems are as an UPS and
for voltage support. These applications are described to support
critical loads. The voltage compensation can be by series injection
using series transformers, or from the shunt injection of power
[30]. A design of FESS in power network has been represented in
[212]. The strategy and control methods of the FESS for power
quality were described in detail, and a new rapid technique to
calculate the amplitude of sinusoidal current and voltage has been
proposed that could develop the performance of the FESS. To in-
crease transfer capability of power systems and develop transient
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stability, a self-organizing fuzzy neural network controller for FESS
has been clarified in [213]. For the speed sensorless power leveling
system, a fuzzy-logic-base V/F control of the IM has been re-
presented [68]. Just two sensors containing one DC current sensor
and one DC voltage sensor were used. The FW consist of two
modes, specifically, the power control mode and the speed pick-
ing-up control mode. In the speed picking-up control mode, the
rotating speed of the FW was detected based on DC link average of
an inverter by regulating the output voltage and the output fre-
quency according to fuzzy logic control. The power control mode
contain of the inner current loop and the outer voltage loop. A
power conditioning system consisting of an AC/AC matrix con-
verter with FES was applied to cope with grid voltage sag problem.
Suggested solution lead to increased system reliability and higher
power density [55,,214]. The new kinds of storage were applied for
grid support and the methods they were integrated into the grid
have been discussed in [215]. To store energy in rural Africa the
design, modeling, and testing of a low-cost FW has been proposed
in [216]. In which FW system could store 77 W h, which presents
25% of the intended energy requirement. Compare to lead acid
batteries, a cost saving of 35% per kW h with rural system would
be let when integrating the FW system into solar home systems. A
control, modeling and experimental validation of a FESS device
(3000 rpm) for microgrids have been presented in [217]. To dis-
patch regulation service between fast and slow power regulating
resources applying a FESS and a traditional power generator, a
novel coordinating algorithm has been introduced in [218]. The
objective was to let the FW follow the quick changes in the reg-
ulation signals and allow the traditional generator compensate for
the energy imbalance as the FW storage approximately fully
charged or discharged. Therefor the FW compensates for the in-
accuracies induced by the dead zone, response delay, and devia-
tion features of the combined cycle unit (CCU) or hydro power
plant (HPP). The application of the FES could be tuned to con-
siderably mitigate the regulation adjustment of CCU or HPP. Less
than an adjustment per hour was required for the CCU or HPP, that
means the wear and tear on the CCU or HPP was no greater than
arranging energy service. Furthermore, the FW will help to
maintain the HPP output close to the most efficient operating
point. The application of the active disturbance rejection control
technique to develop the performance of FESS when it was de-
signed for the DC microgrid applications has been represented in
[78]. Otherwise, simulation and experimental results indicated
that the new controller was more adaptive and more robust. It has
a higher dynamic performance and a better anti-disturbance
capability than the traditional PI controller. It includes a bidirec-
tional buck-boost converter a three phase full bridge circuit.

3.6. Fess in marine

FW were used in Egypt in the 15th century BCE in ship [13].
Ship network is very different from land-grid, because ship oper-
ates in a variety of operating conditions. The ship network power
quality changes frequently in a wide range [219]. On the electric
propulsion ship, novel high power pulse electrical equipment may
induce voltage fall, this is a critical problem. To solve this problem,
an acceptable solution is to adopt energy storage technology [220].
There are different potential application for a FESS to promote
future shipboard integrated power systems such as electric or dark
start capability, single-generator operation, uninterrupted power
to essential loads, pulse power load/systems, and bulk storage
[221]. For voltage sag correction, a FESS based static series com-
pensator in ship network has been modeled and simulated in [31].
Considering the control the IM connect with low-speed FW, in-
direct field oriented control with space-vector pulse and with
modulation (SVPWM) is used. Sinusoidal PWM is applied to
control the power system side converter. The effect of pulse loads
on electrical system in a ship has been investigated with and
without FESS [222], in which a simplified electric ship model in-
cluding: the maim generator, generic pulse load, propulsion
module, and FESS has expanded. Thus two schemes of the pulse
load operation, with and without FESS have been investigated by
monitoring main parameters like main generator, the angular
speed of the FW and the propulsion motor. The bus voltage and
system current have also been investigated. It was revealed that
the FESS functions as a buffer between pulse load and the other
parts of the power system, Such that the generator and propulsion
motor are almost unaffected by the pulse load firing while the
FESS is online. The FESS model was testified by comparing the
energy used by the FW and to that taken by the pulse load. The
idea of regenerating energy management for pulse load consisting
of DC and AC loads, which need DC and AC power distribution
systems, has been studied in [223], and it is shown that to regulate
the voltage of a DC distribution system in the presence of pulse
loads FW and prime-movers can be used in an electric ship that
improves the stability of the overall system.

3.7. Fess in space

In the past, FW did not actually attract attentions for energy
storage in earth satellites since they were heavy and their bearings
would wear out. Moreover, recent developments are making FW
practical for energy storage in satellites [224]. Perhaps the first
idea of FESS in space applications is the study by Rose [225]. When
Integrated Power and Attitude Control System (IPACS) have been
introduced for satellites in 1970s for the first time [226,227]. In
1974, NASA report illustrated the result of a valuation of the IPACS
concept [226]. NASA represented the IPACS studies [228]. For same
time, spacecraft attitude control applying angular momentum
wheels has been traditionally in existence [229]. An integration of
these two connected concepts into the dual function of providing
both attitude control and electrical power of space application
applying FW has also been examined in [230,231]. A contrast be-
tween NiH2 battery and FW system for the EOS-AMI type space-
craft has illustrated that FW would be much smaller and lighter:
55% in volume reduction, 35% in mass reduction, and 6.7% in solar
array area reduction [232]. For small satellites, an end to end en-
ergy momentum control system concept has been shown based
upon high temperature superconductor (HTS) FW technology
[233]. This integrated architecture represents attitude control and
a voltage regulate spacecraft power bus. Lee et al. [173] have in-
vestigated attitude control system and an energy storage for mi-
cro-electromechanical system in spacecraft applying a high tem-
perature superconductor magnet bearing system. Also same au-
thor et al. [234] have represented the improvement of an attitude
control of three axis stabilized nano satellites, and an integrated
micro high-temperature superconductor system for energy sto-
rage. The micro-HTS system including a FW/rotor, motor electro-
nics, a cooling system, and motor/generator. The FW/rotor has
been manufactured by using sintered NdFeB. A torque based FW
control law for an IPACS applying singular value decomposition
(SVD) has been represented in [235]. Additionally simultaneously
energy storage and attitude control, a scheme for energy storage
power applying kinetic energy feedback is represented in this
paper to keep system energy balance. Adjustment of the optimal
energy system FW power module technology to energy storage for
electromagnetic aircraft launch system applications has been de-
tailed in [236]. A new control algorithm for the discharge and
charge modes of operation of FESS in space applications has been
illustrated in [61]. The motor control portion of the algorithm
applies sensorless field oriented control with position and speed
estimates determined from a signal injection technique at low
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speeds and a back electromotive force technique at higher speed.
The relationship between AMBs and SMBs originally and theore-
tically for the goal of energy storage and attitude control in
spacecraft by FESS is presented [237]. Satellites usually possess
four or motor-FW sets, each oriented along a separate rotational
axis. Taking the smallest angle path usually limits a satellite to use
only a few of its FWs. Therefore in order to perform a turn faster
and avoid over burdening its motors, the satellite should take an
alternate path. The longer path allows spacecraft make optimum
use of all its FWs instantly while it may be less direct, generating
more torque [238]. A sliding mode control of reaction FW-based
BLDCM with buck converter for space applications has been pre-
sented in [73]. Therefore this paper reviewed the control ap-
proaches and modeling of DC/DC converters.

3.8. Other applications

Other applications of the FW can be mentioned as follows: for
example, to store cold thermal energy as much as kinetic energy in
the FESS an innovative concept has been proposed in [23] to mi-
tigate required cooling energy in the time of energy storage per-
iod. Also for mobility loads and pulsed load leveling in a tactical
vehicle, the University of Texas at Austin Center has designed and
organized component test/development for a FESS [239,240].
Furthermore, FW was applied as energy source for the linear in-
duction launcher [241–243]. Two types of pulse power supplies, a
100 MV A/100 MJ FW pulse generator and a capacitor bank were
reported in [244]. To energize the short pulse magnets, the capa-
citor bank was applied and for the long pulse magnet, the pulse
generator was applied to provide a 50 T flat-top pulse for 100 ms.
Moreover a Gyroscopically stabilized robot has represented in
[245]. The spinning FW functions as a gyroscope to stabilize the
robot. And a prototype of miniature FESS has been designed and
the dynamic of the system has been analyzed in [246].
4. Conclusion/future trends

This paper has been represented a comprehensive review of
FESS in different applications which were lately attractive in re-
searches and industries. Also PEIs, bearings, and machines in FESS
have been concisely reviewed. Then their advantages and dis-
advantages have been discussed in brief, and their capabilities and
limitations were mentioned as well.

Recently high speed FESS is required in various applications
such as space applications. The available FESSs have the maximum
speed of 100,000 rpm. To increase the speed of FESS in future,
using the ultra-high speed machines (upper than 100,000 rpm)
such as IM (e.g. 120,000 rpm [51]), and PMSM (e.g. 1,000,000 rpm
[51]) are proposed. The high-speed bearingless machines are an-
other options.

Multiphase machines are another attractive options for future
study in FESS [247], and multilevel PEIs can be appropriate choice
to drive it [248].

Progress in the advanced technology of manufacturing semi-
conductor and using multilevel converters has increased the FESS
power significantly. NPC multilevel converter is a more appro-
priate option for FESS, compare to other multilevel converters. To
date all NPCs that have been applied in FESS are conventional type
[146]. And they have several disadvantages, and to overcome these
disadvantages, new topologies including: Active NPC (ANPC),
Stacked NPC (SNPC), Active Stacked NPC (ASNPC) can be good
choices for future work.

One of the main disadvantages of the conventional MC is out-
put gain that is limited to 86.6%, in order to overcome this pro-
blem, new topologies have been introduced in [249]. These
topologies can increased output gain up to 1, therefore these
topologies can be used in future studies for FESS.

ZSC has two main disadvantages such as more complexity and
more passive components, to overcome these problems, quasi-Z
Source Converter (qZSC) can be used [50]. And this topology is
another choice for future investigations in FESSs. Also, multilevel
ZSC (three and five levels [50]) and qZSC topologies can be studied
in this field.
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