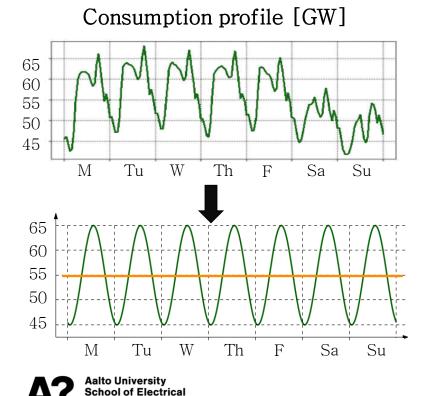
Round trip efficiency in electrical storage system

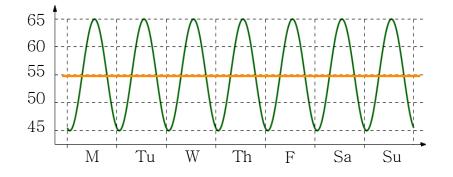

Floran Martin, Mikko Routimo,

Annukka Santasalo-Arnio, Hassan Rouhi, Pekka Peljo

AAE – E3070 – Electrical Energy Storage System L

Spring 2022

Production source Power plant produces constantly 55 GW

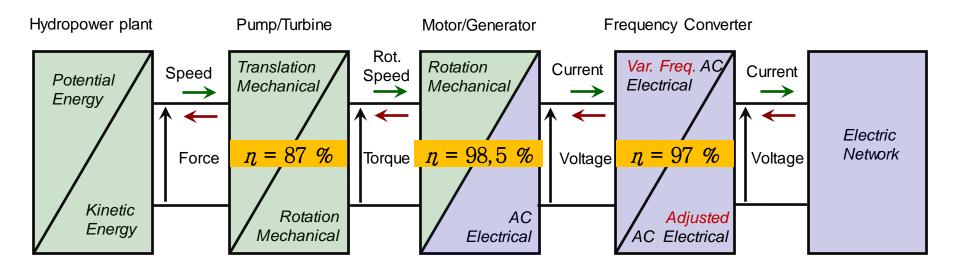

Environmental respect

Geographic Location : h = 250 m

Assumption

- The level of the water is negligible compared with the altitude of the reservoir.
- The consumption profile can be exceptionally considered sinusoidal
- The overall chain efficiency is 65 %

Ideal electrical storage system - without loss

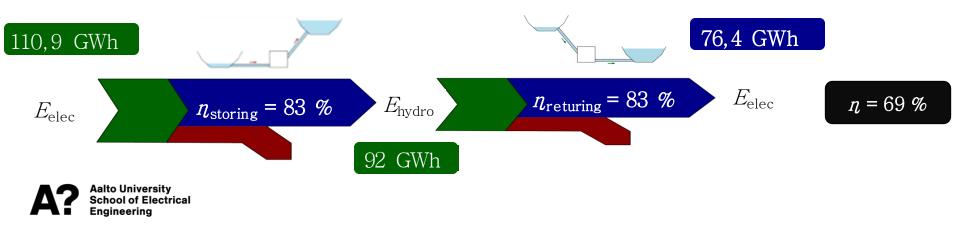


Without losses, the storage system powered 10 GW during the charge and the discharge of the upper reservoir.

The grid should receive 76,4 GWh of electrical energy.

Hydropower Storage System

The chain efficiency accounts for every component in the chain. It is the product of the efficiency of components connected in serie.


 $n_{\text{chain}} = 83 \%$

Aalto University School of Electrical Engineering

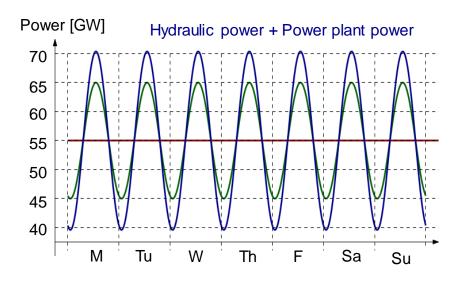
Realistic electrical storage system – with loss

The round trip efficiency considers the conversion chain for storing and for returning the energy.

 $n_{\text{round trip}} = n_{\text{storing}} n_{\text{returning}}$

Power management in the storage – with loss

Discharging rated power


can be calculated based on the consumption need of 10 GW and the discharing efficiency of 83 %.

$P_{\rm elec}$ $n_{\rm returing} = 83 \%$ P_{hydro} 10 GW 12 GW 2 GW $n_{\text{storing}} = 83 \%$ P_{hydro} P_{elec} 14.5 GW 12 GW 2.5 GW

Charging rated power

can be computed from the storage need of 12 GW and a charging efficiency of 83 %.

Energy management in the storage – with loss

Balancing energy

To feed the grid with 76,4 GWh, we need 110,9 GWh of electrical energy.

Available energy

From the excessive energy of 76,4 GWh and the charging efficiency, we can store 63,4 GWh.

An additional production of 47,5 GWh is required.