Techno-Economical analysis of Energy Storage Applications

Floran Martin, Rayane Mourouvin, Pekka Peljo, Annukka Santasalo-Arnio, Arjun Muralidharan, Gabriel Gonzalez

AAE – E3070 – Electrical Energy Storage System L Spring 2021

Today, you can learn :

How to evaluate the cost of an energy storage application over its lifetime ?

How to compare the cost for storing with the cost for producing ?

How to apply the economic analysis in a simplistic example of hydropower storage for seasonal storage ?

Levelized Cost of Storage $LCOS$ [\notin/NWh]

 C_{DR} C_{cap} : investmer $\mathcal{L}_{O\&M}$ Cost terms C_{cap} : investment cost[\in] $C_{O\&M}$: operation and maintenance cost [€] C_{ch} : charging cost [\in] C_{DR} : disposal and recycling cost[\in]

> Financial terms r: discount rate $\lceil \% \rceil$ t : ongoing year T : application lifetime [yr]

Energy terms E_{disch} : Annual discharged energy [MWh]

Accounts for the lifetime application

alto Universitv)

Reflects the internal average price of electricity

Schmidt et al., « Projecting the future levelized cost of electricity storage technologies », Joule 3, pp. 81-100, 2019

Annual Discharged Energy E_{disch} [MWh]

$$
\sum_{t=1}^{T} \frac{E_{\text{disch}}}{(1+r)^t} = N_a \text{ DoD } E_u \eta_{RT} (1-\eta_{\text{self}}) \sum_{t=1}^{T} \frac{(1-N_d)^{(t-1)N_a} (1-T_d)^{t-1}}{(1+r)^{T_c+t}}
$$

Energy discharged to the consumer Department of the program.

Application terms

 N_a : number of cycles per year DoD : depth of discharge $[\%]$ E_{μ} : energy capacity [MWh] η_{RT} : round trip efficiency [%] η_{RT} : self-discharge portion [%] T_c : construction period [yr]

Degradation parameters

 N_d : rate of energetic degradation per cycles [%] T_d : rate of temporal degradation relative to shelf time [%]

Schmidt et al., « Projecting the future levelized cost of electricity storage technologies », Joule 3, pp. 81-100, 2019

Investment costs C_{cap} [\in]

Do not count an element twice

Cost terms C_E : energetic cost[\in / MWh] C_P : power cost[ϵ/MW] C_{PR} : replacement cost[ϵ /MW]

Application terms

- E_{μ} : energy capacity [MWh]
- P_n : installed power [MW]
- T_c : construction period [yr]
- T_r : replacement period [yr]
- R : number of replacements

Operation and maintenance costs $C_{O\&M}$ [\in]

Components

$$
\sum_{t=1}^{T} \frac{C_{O\&M}}{(1+r)} = \sum_{t=1}^{T} C_{P,OM} P_n + C_{E,OM} N_a \quad DoD \quad E_u \quad \frac{(1-N_d)^{(t-1)N_a} (1-T_d)^{t-1}}{(1+r)} \quad (1+r)^{T_c+t}
$$
\n\nElectrical
\n
$$
\text{Simplifying the structure of the structure of the system.}
$$
\n\nSubstituting the following equations:\n
$$
C_{E,OM} : \text{power} = 0 \& \text{M cost } [e/MW]
$$
\n\nA, in the image is the same factor, i.e., $N_a : \text{number of cycles per year} \quad (0.1)$ \n\nA, in the image is the same factor, i.e., $N_a : \text{number of cycles per year} \quad (0.2)$ \n\nA, in the image is the same factor, i.e., $N_a : \text{number of cycles per year} \quad (0.3)$ \n\nA, in the image is the same factor, i.e., $N_a : \text{number of cycles per year} \quad (0.4)$ \n\nB, in the image is the same factor, i.e., $N_a : \text{number of cycles per year} \quad (0.5)$ \n\nB, in the image is the same factor, i.e., $N_a : \text{number of cycles per year} \quad (0.5)$ \n\nC, in the image is the same factor, i.e., $N_a : \text{number of cycles per year} \quad (0.6)$ \n\nD, in the image is the same factor, i.e., $N_a : \text{number of cycles per year} \quad (0.7)$ \n\nA, in the image is the same factor, i.e., $N_a : \text{number of cycles per year} \quad (0.7)$

Cost terms

 C_{POM} : power O&M cost [ϵ /MW] C_{EOM} : energetic O&M cost [ϵ/MWh]

Application terms N_a : number of cycles per year DoD : depth of discharge $[0;1]$

Levelized cost due to Charging $[\in/MWh]$

Disposal and Recycling cost C_{DR} [\in]

$$
C_{DR} = F_{DR} C_{cap}
$$

 C_{el} : electricity price[€/MW] Cost terms C_{ch} : charging cost [\in] C_{cap} : investment cost [ϵ]

> Application terms η_{RT} : round trip efficiency E_{disk} : discharged energy to the consumer [MWh] F_{DR} : factor for recycling and disposal

Hydropower Seasonal Storage System

 $_{t=1}$ (1 + \prime

Annual Discharged Energy

Number of cycle per week : 6,5 $N_a = 338$ cycles/yr Self discharge/ idle ratio : $\eta_{self} = 0\%$ Application lifetime : $T = 50$ yr Construction time : $T_c = 3$ yr Cycle degradation ratio: $N_d = 0,0007$ % Time degradation ratio: $T_d = 0.4$ % Discount rate : $r = 8\%$ 232 TWh $\sum_{t=1}^{T} \frac{E_{\text{disch}}}{(1+r)^t} = 232 \text{ TWh}$ $t - 232$ disch $-$ **222** TW *E*

 r ^{*r*} $\left(1 - \frac{252}{1111} \right)$

Investment costs C_{cap}

Energetic cost (above ground) : $C_E = 66,4$ €/kWh

Power cost : $C_P = 937 \text{ } \in \text{/kW}$

 $C_{cap} = 25 \, 341 \, \text{M} \in$

 $Reservoir cost : C_E E_u = 7 769 ME$

Cost for Pump/turbine & Motor & Frequency Converter: $C_P P_n = 17336 \text{ M} \in$

Replacement cost : $C_R = 95,45 \in \text{/kW}$ Replacement interval: 7300 cycles or 21 years Number of replacement along 50 years lifetime $: R = 3$

$$
\sum_{k=1}^{R} \frac{C_{PR} P_n}{(1+r)^{T_c+k T_r}} = 331 \text{ M} \in
$$

Operation and maintenance costs $C_{O\&M}$

Energy conversion components: $C_{P,OM} = 8 \in /kW$ per year

Turbine & Motor & Power Electronic: $C_{P,OM}P_nT = 6$ 108 M€

Energetic operation cost:
$$
C_{E,OM} = 1 \text{ } \in / \text{MW}
$$

$$
C_{E,OM} N_a \text{ DoD } E_u \sum_{t=1}^{T} \frac{\left(1 - N_a\right)^{(t-1)N_a} \left(1 - T_a\right)^{t-1}}{\left(1 + r\right)^{T_c + t}} = 280,6 \text{ M} \in
$$

Charging and recycling costs

$$
\frac{C_{el}}{\eta_{RT}} = 21 \text{ E/MWh} \qquad \text{E}
$$

 $= 21$ €/MWh Electricity cost : $C_{el} = 17.4$ c/kWh

 $C_{DR} = 1072 \text{ M} \in$

 $=1072$ M ϵ Environmental cost factor: $F_{DR} = 4.23$ %

Levelized cost of storage

 $LCOS = 161, 6 \in /MWh$

Vougioukli et al., « Financial Appraisal of Small Hydro-Power Considering the Cradleto-Grave Environmental Cost: A Case from Greece», Energies, 10, 430, 2017

Some levelized cost of energy production

Towards design improvements

Should we oversize our storage solution in order to fulfil the capacity near the end of the application lifetime ?

Would our cost analysis be more sensitive to the number of replacements or the round-trip efficiency?

Should we oversize our application to anticipate higher consumption in the future?

Would we get a lower levelized cost with Compressed Air Energy Storage system ?

