
 

 

ELEC-E8116 Model-based control systems 
Intermediate exam 2.  8.12.2022 / Solutions                  

• Write the name of the course, your name and student number to each answer sheet.  

• There are three (3) problems and each one must be answered. 

• No literature is allowed.  A calculator can be used as a calculating aid.  However, it must not be 

used for advanced calculations, e.g. matrix calculus, Laplace transformations, connection to the 

Internet etc. 

• Your solutions must be presented so that it becomes clear how you have solved the problem. 

 

 

 

1. Consider a SISO-process with the transfer function 
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Explain, what kind of fundamental limitations on control performance can be stated for 

this system?  (Present also some calculations; the formulas in the end of the problems 

can be of help.)      (5 p) 

 

Solution: 

 

See lecture slides, Chapter 4.  The process has a RHP zero at 1z 1/ T= − .  According to 

the interpolation constraint 1 it holds 

 

( )0 0( ) 1 1 1/   −SW z S z  where ω0 is the 0 dB angular frequency of the 

sensitivity function (under a certain parameterization of the user given frequency 

function 1/WS). In case of maximum sensitivity S0= 2 we get 0
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bandwidth, which means that the non-minimum phase zero gives an upper limit for 

bandwidth, due to the RHP zero.  This bandwidth is an upper limit for achievable 

bandwidth of the closed loop irrespective of the controller used.  

 

The process is unstable because of a RHP pole at 1 2p 1/ T= − .  According to the 

interpolation constraint 2 it holds 
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where ω0 is the 0 dB angular frequency of the complementary sensitivity function (under 

a certain parameterization of the user given frequency function 1/WT).  Again the 



parameter ω0 can be seen as a bandwidth of the closed loop system.  If the maximum of 

T is T0 = 2, we get a lower limit for the bandwidth needed to stabilize the process as 

0 12p  .  Even if T0 approaches infinity it would hold 0 1p  .  So the unstable pole 

gives rise to a minimum bandwidth needed to stabilize the process by negative feedback. 

 

The pole 3p 1/ T= − is on the LHP, so it is stable.  That causes no restrictions. 

 

It is also worth mentioning the “waterbed formula” 
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which gives a fundamental restriction to the achievable sensitivity function.  The pi :s are 

the RHP poles of the loop gain.  If the controller has no RHP poles (usually it does not 

have) then here i 2 2Re p Re p 1/ T= = − . 

  

 

 

2. Consider the  first order process 
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so that the state is directly measurable .  It is desired to find a control that minimizes the 

criterion 
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Determine the optimal control law and the closed loop state equation.  What is the optimal 

state trajectory and optimal cost?            (2+1+1+1 p) 

 

Solution: 

 

Looking at the solution formulas we can determine that here A=0, B=1, C=1, Q=1, R=R.  

The optimization horizon is infinite so that we can use the stationary Riccati equation  

(S 0= ). 

 
T 1 TS(t) A S(t) S(t)A S(t)BR B S(t) Q 0−− = + − + =  

 

21 S
S 1 1 S 1 1 0

R R

S R R (positive solution has to be chosen)

−     + = − + =

 =  =

 

 

The optimal control law becomes 

 



1 T 1 1
u *(t) Kx(t) R B Sx(t) 1 R x(t) x(t)

R R

−= − = − = −    = −  

 

To determine the optimal trajectory note that the solution of the differential equation 
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Then from 
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optimal cost is obtained directly from the solution formulas 2
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obtained by substituting x*(t) and u*(t) in the cost function and integrating. 

  
 

 

 

 

3. Let us assume that you have to develop a controller for a linear multivariable process with n 

inputs and n outputs.  Answer and explain the following: 

- Define Relative Gain Array (RGA) and explain how it is used in control.  (2 p) 

- What is the difference between decoupled and centralized controllers? (1 p) 

 

TURN PAPER 

 

 

- How would you design a Singular Value Decomposition (SVD)-based decoupled 

controller for the process?  The decoupling is here considered necessary only at 

the zero frequency.  Present the idea and also the necessary formulas. (2 p) 

 

Solution: 

 

For a MIMO process G with n inputs and n outputs the Relative Gain Array is defined as  
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where .x means elementwise product of matrices (Schur or Hadamard product).  RGA us used to 

inspect which input has the most effect to which output.  In theory, the value 1 in RGA means a 

perfect match.  RGA is normally used to to develop decoupled controllers, where each SISO 

controller ui – yj is used independent of the interactions between channels. 

 



Earlier the RGA was used only in the stationary case G(0), the zero frequency.  Nowadays it is 

understood that it is valid in other frequencies also, for example up to the gain crossover frequency 

ωc .  (MIMO: c(G( j )) 0dB  = ).   

 

A centralized controller is a true multivariable controller, which controls n inputs based on m (here 

n) outputs.  For example the Linear Quadratic (LQ) controller is such.    

 

To construct a decoupling controller consider the below figure of the process with decoupling pre- 

and post compensators (which are part of the final controller) 
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If the transfer function matrix 2 1W GW is well decoupled, then SISO controllers can be used to 

control each channel pair u,y separately.  

 

r yu F r F y= −  (1) 
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− = −

 = −
 (2) 

Use the Singular Value Decomposition (SVD) of the process transfer function matrix at zero 

frequency 

 

G(0) U V*=   

 

 where U and V  are here real orthogonal (generally unitary) nxn matrices, and  is a nxn real 

diagonal matrix with singular values in the main diagonal. 

 

Take W1 = V and W2 = U*=UT and design a controller (1) for the process  .  Realize the final 

controller by (2).   

 

 

 

 

Some formulas that might be useful: 
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