Optical Tweezers image processing guide

Installing ImageJ

In this work, a free program called ImageJ (available for download at http://rsb.info.nih.gov/ii/) can be used for image processing and analysis. In order to extract the trajectories of the particles, a separate plug-in (MOASIC) has to be installed in ImageJ, which can be found with installation instructions at http://mosaic.mpi-cbg.de/?q=downloads/imageJ. More detailed instructions on the use and the meaning of various parameters of MOASIC can be found on the website.

There is also a pre-packaged version of ImageJ available, called Fiji (http://fiji.sc/Fiji), that I would recommend using instead of the original Image J. Fiji comes with a bunch of plug-ins but the ParticleTracker for extracting particle trajectories is not pre-installed. Here is how to install it:

1. Help -> Update Fiji
2. Manage update sites -> choose "MOSAIC ToolSuite" -> click Close
3. "plugins/Mosaic_ToolSuite/Mosaic_ToolSuite.jar" should be visible on the list of updates,and after clicking the "Apply Changes"-button, Fiji installs the chosen package.
4. Restart Fiji, after which the ParticleTracker-plugin should be found in Plugins -> Mosaic -> Particle Tracker 2D/3D -menu.

Determining the motion of the glass spheres

1. Open a series of images you have saved with File -> Open
2. In the Image -> Properties -menu, change the values of the "slices" and "frames" fields.
3. The contrast of the image can be improved by using the tools found in the Image ->

Adjust ->Brightness/ Contrast menu. The purpose is to make the particles look approximately the same as in Figure 1. Try also the subtract background function (Process -> Subtract Background)
4. To speed up the extraction of the particle trajectories, it is a good idea to crop the area around the trapped particle to approx. 80×80 pixels from the original video by selecting the desired area and selecting Image -> Crop

Finally, the video should look roughly like the one in the lower right corner of Figure 1 and locating the coordinates of the particle can be started.

Figure 2

Figure 1

5. Choose Plugins -> Mosaic -> Particle Tracker

 2D/3D, which opens a window similar to the one shown in Figure 2. The most important parameter to be defined is the radius of the particle, which should be about 7-8 pixels. Set the "Cutoff"-value to zero, "Per/Abs" between 0.1-0.5 and "Link Range" between 50-100. If the contrast in the video is good, then the exact values of these parameters are irrelevant for determining the center of the particle. By clicking the "Preview Detected"-button, you can check if there are one or more particles in the image. 6. By pressing the "OK"-button, the ParticleTracker will go through the entire series of images and displays a summary of the results shown in Figure 3. If the ParticleTracker finds more than one particle trajectory, then the settings should be changed until only one trajectory remains.7. By choosing "All Trajectories to Table" the coordinates of the particle will be displayed.
8. Choose File -> Save as the results can be saved as a text file, which can then be loaded into Matlab (or any other program) for processing the results.

[] Results		[] Results				-					\square	回	$\Sigma 3$	
View Preferences Relink Particles		File Edit Font Results												
			Trajectory	Frame	X	Y	Z	m0	m1	m2	m3	m4	\wedge	
\% Configuration: \% Kernel radius: 7 \% Cutoff radius: 0.0 N navanntila. 11 4		234	1	0	61.670	59.626	0	46.766	4.061	18.844	94.559			
		1	1	61.512	61.417	0	47.278	4.095	19.136	96.625		28		
		1	2	60.665	61.737	0	47.094	4.077	18.975	95.442				
		1	3	57.576	59.799	0	47.686	4.079	18.975	95.338				
Particle Tracker DONE! Found 1 Trajectories			5	1	4	60.040	59.840	0	45.864	4.023	18.541	92.592		
		6	1	5	62.832	60.508	0	47.229	4.068	18.892	94.824			
		7	1	6	60.678	60.806	0	47.177	4.117	19.315	97.854			
		8	1	7	59.986	59.982	0	45.460	4.009	18.448	92.082			
		9	1	8	59.048	60.088	0	45.791	4.007	18.423	91.841			
		1011	1	9	60.476	60.964	0	46.863	4.113	19.297	97.804			
		1	10	59.462	60.216	0	46.722	4.077	19.000	95.744				
		$\begin{aligned} & 11 \\ & 12 \end{aligned}$	1	11	60.022	59.747	0	46.012	4.024	18.557	92.709			
		13	1	12	59.015	60.803	0	46.078	4.068	18.928	95.280			
1			14	1	13	59.831	59.372	0	46.535	4.039	18.659	93.309		
All Trajectories \quad Trajecte		15	1	14	61.556	57.913	0	46.209	4.007	18.405	91.625			
Visualize All Trajectories	Focus	16	1	15	60.769	60.604	0	47.011	4.125	19.381	98.284			
Save Full Report	Sele	17	1	16	60.020	58.350	0	45.794	4.015	18.495	92.355			
Display Full Report		1819	1	17	61.416	58.737	0	46.500	4.031	18.597	92.897			
Segmented Particles to Table			1	18	59.614	61.060	0	47.576	4.166	19.758	101.060			
		19	1	19	59.862	60.514	0	46.748	4.044	18.704	93.634			
All Trajectories to Table	All Trajectories to Table Select	21	1	20	59.731	59.340	0	46.450	3.994	18.273	90.593			
22			1	21	59.965	58.935	0	45.368	4.012	18.488	92.399			
23			1	22	60.060	61.360	0	45.753	3.999	18.342	91.205	479		
			1	23	59.993	61.280	0	46.286	4.017	18.482	92.080		39	

Figure 3

Determination of the angular velocity of a calcite particle

1. Select File -> Open to open the series of images you have saved.
2. In the Image -> Properties -menu change the values of the "slices" and "frames" fields.
3. Crop an area of approx. 160×160 pixels around the trapped particle by choosing the desired area and selecting Image -> Crop
4. Choose Image -> Adjust -> Treshold and "Dark Background", and change the lower limit of the intensity until you get something as in Figure 4. Then press Apply and OK. If this does not work as desired, try the subtract background function first (Process -> Subtract Background)
5. Chose Analyze -> Analyze Particles... and first try the settings shown in Figure 5. In Figure 5 left of the Results window is what the video should look like after step 4. The Results window and the right-hand side image depict what the results could look like after tracking the particle. The idea is that you can find only one particle in every frame of the video, as in this example. The data can then be saved once again as a text file and the rest of the measurement data can be processed in Matlab. The Matft fft function, for example, can be helpful in determining the rotation speed.

Figure 4

[I] Results							- 回	$\Sigma 3$
File Edit Font Results								
	Area	Mean	Min	Max	Major	Minor	Angle	\wedge
486	242	255	255	255	21.597	14.267	61.325	
487	238	255	255	255	22.249	13.620	52.637	
488	236	255	255	255	21.913	13.713	52.699	
489	242	255	255	255	21.983	14.016	51.031	
490	239	255	255	255	21.702	14.022	45.640	
491	237	255	255	255	22.107	13.650	45.768	
492	242	255	255	255	22.247	13.850	45.714	
493	246	255	255	255	22.990	13.624	41.484	
494	241	255	255	255	24.098	12.733	33.850	
495	230	255	255	255	23.157	12.646	33.382	
496	221	255	255	255	23.297	12.078	29.757	
497	228	255	255	255	22.757	12.756	32.151	
498	230	255	255	255	23.133	12.659	27.518	
499	219	255	255	255	21.824	12.777	32.693	
500	221	255	255	255	22.027	12.775	32.492	
501	229	255	255	255	22.213	13.126	31.712	
502	227	255	255	255	23.247	12.433	25.076	
503	228	255	255	255	23.164	12.533	23.142	
504	223	255	255	255	22.789	12.459	20.601	
505	203	255	255	255	24.305	10.634	10.028	
506	202	255	255	255	24.731	10.399	8.579	
507	199	255	255	255	24.419	10.376	6.657	
508	197	255	255	255	24.902	10.073	2.212	
509	205	255	255	255	25.051	10.419	179.510	\checkmark
-								-

Figure 5

