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The spatial organization of DNA

The spatial organization of the DNA in the cell nucleus plays an
important role for gene regulation, DNA replication, and genomic
integrity.

Figure 1: https://commons.wikimedia.org/wiki/File:DNA simple2.svg, Forluvoft, Public domain, via Wikimedia Commons
Figure 2: Belyaeva et al. Identifying 3D Genome Organization in Diploid Organisms via Euclidean Distance Geometry. SIAM Journal on Mathematics of Data Science, 2022.
Copyright SIAM.
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Chromosome conformation capture techniques

▶ Chromosome conformation capture techniques measure the
number of contacts between genomic loci over a population of
cells [Lieberman-Aiden et al 2009].

▶ The results are recorded in a HiC or a contact count matrix.

Figure: Belyaeva et al. Identifying 3D Genome Organization in Diploid Organisms via Euclidean Distance Geometry. SIAM Journal on Mathematics of Data Science, 2022.
Copyright SIAM.
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Problem statement

How to reconstruct from
contact frequencies

the 3D organization of the
genome

?

Figures: Belyaeva et al. Identifying 3D Genome Organization in
Diploid Organisms via Euclidean Distance Geometry. SIAM Journal
on Mathematics of Data Science, 2022. Copyright SIAM.

Haploid organisms

▶ convert contact frequencies
cij into spatial distances dij
by assuming cij = (dij)

α

[Rousseau et al 2011]

▶ get an Euclidean distance
problem: we know distances
between loci and we want to
find positions of the loci

▶ in the last lecture we learned
how to solve this problem
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Diploid organisms

Most eukaryotes including humans are diploid organisms, i.e. they
carry two sets of chromosomes in a cell.

Figure: Belyaeva et al. Identifying 3D Genome Organization in Diploid Organisms via Euclidean Distance Geometry. SIAM Journal on Mathematics of Data Science, 2022.
Copyright SIAM.

The contact frequency data is generally unphased, i.e. one cannot
differentiate between different copies of a chromosome.
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Problem statement

How to reconstruct from contact frequencies

the 3D organization of the genome

for diploid organisms?

Figures: Belyaeva et al. Identifying 3D Genome Organization in Diploid Organisms via Euclidean Distance Geometry. SIAM Journal on Mathematics of
Data Science, 2022. Copyright SIAM.
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Partially phased data

We assume that the data is partially phased, i.e., some of the
contact counts can be associated with a homolog.

This is the case when SNPs can be used to assign a contact to a
maternal or paternal homolog.
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Diploid organisms

The DNA is modeled as a string of beads consisting of two copies
of each bead i , for 1 ≤ i ≤ n. Denote the coordinates of the two
copies of beads by xi and yi .

Figure: Belyaeva et al. Identifying 3D Genome Organization in Diploid Organisms via Euclidean Distance Geometry. SIAM Journal on Mathematics of Data Science, 2022.
Copyright SIAM.
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Diploid organisms

If the contact count data is phased, then we know each of the four
contact counts between two pairs of homologous loci xi , yi and
xj , yj .

Figure: Belyaeva et al. Identifying 3D Genome Organization in Diploid Organisms via Euclidean Distance Geometry. SIAM Journal on Mathematics of Data Science, 2022.
Copyright SIAM.



10/61

Diploid organisms

If the contact count data is unphased, the measured contact
counts between loci i and j correspond to the sum of four contact
counts between two pairs of homologous loci xi , yi and xj , yj .

Figure: Belyaeva et al. Identifying 3D Genome Organization in Diploid Organisms via Euclidean Distance Geometry. SIAM Journal on Mathematics of Data Science, 2022.
Copyright SIAM.
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Partially phased data

We will partition the bead pairs into unambiguous and ambiguous
bead pairs.

A locus is unambiguous if beads in the pair can be distinguished.
The contact counts between two unambiguous loci are as in the
phased case.

A locus is ambiguous if beads in the pair cannot be distinguished.
The contact counts between two ambiguous loci are as in the
unphased case.

What about contact counts between an ambiguous and an
unambiguous locus?



11/61

Partially phased data

We will partition the bead pairs into unambiguous and ambiguous
bead pairs.

A locus is unambiguous if beads in the pair can be distinguished.
The contact counts between two unambiguous loci are as in the
phased case.

A locus is ambiguous if beads in the pair cannot be distinguished.
The contact counts between two ambiguous loci are as in the
unphased case.

What about contact counts between an ambiguous and an
unambiguous locus?



11/61

Partially phased data

We will partition the bead pairs into unambiguous and ambiguous
bead pairs.

A locus is unambiguous if beads in the pair can be distinguished.
The contact counts between two unambiguous loci are as in the
phased case.

A locus is ambiguous if beads in the pair cannot be distinguished.
The contact counts between two ambiguous loci are as in the
unphased case.

What about contact counts between an ambiguous and an
unambiguous locus?



11/61

Partially phased data

We will partition the bead pairs into unambiguous and ambiguous
bead pairs.

A locus is unambiguous if beads in the pair can be distinguished.
The contact counts between two unambiguous loci are as in the
phased case.

A locus is ambiguous if beads in the pair cannot be distinguished.
The contact counts between two ambiguous loci are as in the
unphased case.

What about contact counts between an ambiguous and an
unambiguous locus?



12/61

Partially phased data

If the locus i is unambiguous and j is ambiguous, then we know
the sum of two contact counts between xi and xj , yj , and similarly
between yi and xj , yj .

Figure: Belyaeva et al. Identifying 3D Genome Organization in Diploid Organisms via Euclidean Distance Geometry. SIAM Journal on Mathematics of Data Science, 2022.
Copyright SIAM.
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Contact counts

The unambiguous count matrix CU is a 2n × 2n matrix with the
first n indices corresponding to x1, . . . , xn and the last n indices
corresponding to y1, . . . , yn.

The ambiguous count matrix CA is an n× n matrix and we assume
that each ambiguous count is the sum of four unambiguous counts:

cAi ,j = cUi ,j + cUi ,j+n + cUi+n,j + cUi+n,j+n.

The partially ambiguous count matrix CP is a 2n × n matrix and
each partially ambiguous count is the sum of two unambiguous
counts:

cPi ,j = cUi ,j + cUi ,j+n.
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From contacts to distances

When convenient, we use the notation
z1 := x1, . . . , zn := xn, zn+1 := y1, . . . , z2n := yn. In this notation,

Z = [z1, . . . , zn, zn+1, . . . , z2n]
T ∈ R2n×3.

Denoting the distance ∥zi − zj∥ between zi and zj by di ,j , the
power law dependency observed by Lieberman-Aiden et al.1can be
written as

cUi ,j = γdα
i ,j ,

where α < 0 is a conversion factor and γ > 0 is a scaling factor.

We set γ = 1 and sometimes α = −2. In general, the conversion
factor α depends on a dataset.

1Lieberman-Aiden, Erez, et al. Science, 2009.
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From contacts to distances

We convert the empirical contact counts to Euclidean distances
and then aim to reconstruct the positions of beads from the
distances. This leads us to the following system of equations:
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Identifiability
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Unambiguous setting and Euclidean distance geometry

▶ If all pairs are unambiguous, i.e., U = [n], then constructing
the original points translates to a classical problem in
Euclidean distance geometry.

▶ First we convert contacts to distances and then use tools from
the first lecture to find the positions of beads from pairwise
distances.
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Partially ambiguous setting

We denote the true but unknown coordinates by x∗ and the
symbol x stands for a variable that we want to solve for. We write
∥ · ∥ for the standard inner product on R3.

Theorem (Ciefuentes, Draisma, Henriksson, Korchmaros, K.)

Let α be a negative rational number. Then for
a∗, b∗, . . . , f ∗, x∗, y∗ ∈ R3 sufficiently general, the system of six
equations

∥x−t∗∥α+∥y−t∗∥α = ∥x∗−t∗∥α+∥y∗−t∗∥α for t∗ = a∗, b∗, . . . , f ∗

in the six unknowns x1, x2, x3, y1, y2, y3 ∈ R has only finitely many
solutions.
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Partially ambiguous setting

Conjecture (Ciefuentes, Draisma, Henriksson, Korchmaros, K.)

Let a∗, b∗, c∗, d∗, e∗, f ∗, g∗, x∗, y∗ ∈ R3 be sufficiently general.
The system of rational equations

1

∥t∗ − x∗∥2
+

1

∥t∗ − y∗∥2
=

1

∥t∗ − x∥2
+

1

∥t∗ − y∥2
for t∗ = a∗, . . . , g∗

has precisely two solutions (x∗, y∗) and (y∗, x∗).
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Partially ambiguous setting

Corollary (Ciefuentes, Draisma, Henriksson, Korchmaros, K.)

Let α be a negative rational number. Then for
a∗, b∗, . . . , f ∗, x∗, y∗ ∈ R3 and ϵa, ϵb, . . . , ϵf ∈ R sufficiently
general, the system of six equations

∥x−t∗∥α+∥y−t∗∥α = ∥x∗−t∗∥α+∥y∗−t∗∥α+ϵt∗ for t∗ = a∗, b∗, . . . , f ∗

in the six unknowns x1, x2, x3, y1, y2, y3 ∈ R has only finitely many
solutions.
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Numerical algebraic geometry
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Overview

▶ Main goal: To solve a system of equations A.

▶ Take a similar system of equations B for which solutions are
known.

▶ Deform the solutions of B to the solutions of A.

▶ This approach is called homotopy continuation.
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Definitions

▶ A system of polynomial equations is called square if the
number of equations is equal to the number of variables, i.e.,
the system has the form

f (z) :=

 f1(z1, . . . , zN)
...

fN(z1, . . . , zN)

 = 0.

▶ We will first consider square systems and later explain how the
results can be extended to general systems.

▶ A solution z∗ ∈ CN is called isolated if it is the only solution
in an open ball centered at z∗.
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Homotopy

Definition

Given two continuous functions f , g : CN → CN , a homotopy is a
continuous function

H(z , t) : CN × [0, 1] → CN

satisfying H(z , 0) = f (z) and H(z , 1) = g(z).

Example

The easiest homotopy to consider is

H(z , t) = tg(z) + (1− t)f (z).
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Intuition

Consider a square system

f (z) :=

 f1(z1, . . . , zN)
...

fN(z1, . . . , zN)

 = 0.

We want to find a finite set S of solutions of this system
containing every isolated solution of f (z) = 0.

1. Build and solve a start system g(z).
▶ g(z) is related to f (z): it usually has the same degrees
▶ It should be easy to solve g(z)
▶ The solutions of g(z) are called the startpoints

2. Construct a homotopy between f (z) and g(z).
▶ The homotopy H(z , t) gives a parametrized family of equations

that specializes to f (z) and g(z) for different parameter values
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Intuition

3 Follow the solution paths from t = 1 to t = 0.
▶ Predictor-corrector methods are used most of the way
▶ Close to t = 0 more powerful endgames are used
▶ Some paths could approach infinity as t → 0; these paths are

called divergent
▶ Other paths can merge at t = 0
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Example

We want to solve f (z) = 0 for the polynomial

f (z) = −2z3 − 5z2 + 4z + 1.

This particular example can be solved by the cubic formula. We
consider it to illustrate the steps of the homotopy continuation.

1. Start system
▶ Any cubic polynomial with three distinct roots that can be

solved easily.
▶ We take g(z) = z3 + 1.
▶ The roots of g(z) are z = −e2kπi/3, where k = 0, 1, 2, 3.

2. Homotopy
▶ We choose linear homotopy h(z , s) = sg(z) + (1− s)f (z).
▶ h(z , 1) = g(z) and h(z , 0) = f (z)
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Example

3 Follow the solution paths
▶ The variable s is complex, so there are infinitely many paths

from 1 to 0.
▶ Although the real line segment [0, 1] seems like a natural

choice, it can be problematic.
▶ Instead consider the following family of circular arcs: Let

γ ∈ C\R. Then

q(t) =
γt

γt + (1− t)
, t ∈ [0, 1]

connects s = 1 to s = 0.

Figure: Plots are for six different values of γ.
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Circular arcs

Figure: Plots are for six different values of γ.

▶ Following one of the arcs gives the homotopy h(z , q(t)) = 0.

▶ Substituting and clearing the denominators gives

H(z , t) = γtg(z) + (1− t)f (z).

▶ Choosing γ = 0.40 + 0.77i gives three solution paths that
never intersect.

▶ From the roots of g we get that the roots of f are
−3.0942,−0.2028, 0.7969.
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Example
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Choice of γ

▶ If γ is chosen uniformly randomly in C, then with probability
one the homotopy defines three smooth paths.

▶ To see this, we consider the behavior of h(z , s) = 0 as s varies.

▶ For most s∗ ∈ C, h(z , s∗) = 0 is a cubic equation with three
distinct roots.

▶ For a few s∗ there are only two distinct solutions.

▶ The use of circular arcs to obtain a path between s = 1 and
s = 0 and choosing γ randomly is known as the “gamma
trick”.
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NumericalAlgebraicGeometry in Macaulay2
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Path tracking

Definition

Path tracking is the numerical process of approximating the paths
from startpoints to endpoints.

Path tracking gives approximations of the solutions of H(z , 0) = 0
from the known solutions of H(z , 1) = 0.
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Definition of good homotopy

A good homotopy for a system f (z) = 0 and a set of D distinct
solutions S1 of g(z) = 0 is a system of infinitely differentiable
functions H(z , t) = (H1(z , t), . . . ,HN(z , t)) = 0 such that

1. for any t ∈ [0, 1], H(z , t) is a system of polynomials;

2. for any w ∈ S1, there is a smooth map pj(t) : (0, 1] → CN

satisfying pj(1) = w ;

3. the associated paths do not cross;

4. for each t∗ ∈ (0, 1] the points pj(t
∗) are smooth isolated

solutions of H(z , t∗).

5. The set

S0 =
{
z ∈ CN | ∥z∥2 <∞ and z = lim

t→0
pj(t)

}
contains every isolated solution of f (z) = 0.
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Bezout’s theorem

Theorem (Bezout’s theorem)

Assume that the system of polynomial equations

f (z) :=

 f1(z1, . . . , zN)
...

fN(z1, . . . , zN)

 = 0.

has finitely many solutions in CN . Let di = deg fi . Then the
system f has at most d1 · · · dN solutions.

▶ For general systems of polynomial equations the number of
solutions equals this bound.

▶ The Bernstein–Kushnirenko Theorem gives better upper
bounds for special systems, but it is more complicated.
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Bezout’s theorem
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Total-degree homotopies

We construct a good homotopy

H(z , t) = (1− t)

 f1(z1, . . . , zN)
...

fN(z1, . . . , zN)

+ γt

g1(z1, . . . , zN)
...

gN(z1, . . . , zN)

 = 0

as follows:

▶ Let di = deg fi .

▶ Choose polynomials g1, . . . , gN such that they have degrees
d1, . . . , dN , the system g(z) = 0 is easy to solve and it has
exactly D := d1d2 · · · dN solutions.

▶ For example, one can take gi (z) = zdii − 1.

▶ In this case, the solution set of g(z) = 0 is given by{(
e(j1/d1)2πi , . . . , e(jN/dN)2πi

)
: 0 ≤ ji ≤ di for i = 1, . . . ,N

}
.
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Total-degree homotopies

▶ Choose a random complex number γ ̸= 0.

▶ In practice γ is chosen in a small band around the unit circle.

▶ If γ is chosen uniformly randomly, then with probability one
we get a good homotopy.

▶ Total-degree homotopies are the simplest of all homotopies.
Alternatively, one can use more special degree bounds.
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Path tracking

Assume that we have:

▶ a family of functions on CN

H(z ; q) =

H1(z1, . . . , zN ; q1 . . . , qM)
...

HN(z1, . . . , zN ; q1 . . . , qM)

 = 0

such that Hi is a polynomial in z ∈ CN and analytic in
q ∈ CM ;

▶ differentiable maps ϕ : t ∈ [0, 1] → q ∈ CM and
ψ : t ∈ [0, 1] → z ∈ CN satisfying

1. H(ψ(t), ϕ(t)) = 0 for t ∈ (0, 1] and
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Path tracking

▶ Assume that M = 1 and q1 = t. Denote ψ(t) by z(t).

▶ Differentiating H(z(t), t) = 0 with respect to t gives

∂H(z(t), t)

∂t
+

N∑
i=1

∂H(z(t), t)

∂zi

dzi (t)

dt
= 0 with z(1) = p0.

▶ Let JH(z , t) denote the Jacobian matrix of H with respect to
the variables z

JH :=
∂H

∂z
=


∂H1
∂z1

· · · ∂H1
∂zN

...
. . .

...
∂HN
∂z1

· · · ∂HN
∂zN


evaluated at (z , t) and let z(t) = [z1(t), . . . , zN(t)]

T denote
the solution of the above differential equation.
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Path tracking

▶ Using this notation, the above differential equation becomes

∂H(z(t), t)

∂t
+ JH(z(t), t) · dz(t)

dt
= 0.

▶ Since JH(z(t), t) is invertible on the path, this is equivalent to

dz(t)

dt
= −[JH(z(t), t)]−1∂H(z(t), t)

∂t
.

▶ This is an initial value problem that can be solved using
numerical methods.
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First-order tracking

▶ We solve the initial value problem using Euler’s method
starting at t0 = 1 with p0 as the initial value and successively
computing the approximations p1, p2, . . . at values
t0 > t1 > t2 > · · · > 0.

▶ The approximations are computed as

pi+1 = pi − JH(pi , ti )
−1∂H(pi , ti )

∂t
∆ti ,

where ∆ti = ti+1 − ti .
▶ Geometrically this means predicting along the tangent line to

the solution path at the current point of the path.
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Correction

▶ The prediction is often followed by the correction using the
Newton’s method.

▶ This means Newton’s method is used for H(z , ti+1) starting
with z0 = pi+1.

▶ Newton’s method uses the iterative formula

zi+1 = zi − [JH(zi , ti+1)]
−1H(zi , t).

▶ One or two iterations of Newton’s method usually improves
the prediction of z(ti+1).

▶ pi+1 is replaced with the corrected value before starting the
next predictor-corrector cycle.
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Numerical methods

▶ In practice ∆ti is chosen adaptively.

▶ If the error after the correction is larger than the desired
tracking accuracy, then ∆ti is halved.

▶ Often higher-order methods (e.g. Runge-Kutta methods) are
used in practice.

▶ They have the advantage that they often allow larger step
sizes.
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From square systems to general systems

▶ Consider a general system

f (z) :=

f1(z1, . . . , zN)...
fn(z1, . . . , zN)

 = 0.

▶ If n < N, then the system is underdetermined and the solution
set has positive-dimensional solution components.

▶ If n > N, let A ∈ CN×n be a random matrix. Instead of the
system

f =


f1
f2
...
fn

 ,
we consider the system

A · f .
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From square systems to general systems

▶ Every polynomial in the system A · f has the form

ai1f1 + ai2f2 + . . .+ ainfn,

where aij are random complex numbers.

▶ With probability one, all the isolated solutions of f are
isolated solutions of A · f .

▶ The system A · f could have more solutions than f .

▶ The extra solutions can be detected because they do not
satisfy f .
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From square systems to general systems

Example

▶ Let p(z) = (z + 1)(z − 1) and q(z) = z(z − 1).

▶ The system p(z) = q(z) = 0 has one solution z = 1.

▶ Consider

2p(z)− 3q(z) = 2(z +1)(z − 1)− 3z(z − 1) = (2− z)(z − 1).

▶ This system has two solutions z = 1 and z = 2.

▶ For z = 2, we have p(2) = 3 and q(2) = 2, so it is not a
solution of the original system.

▶ Since for most choices of constants we get a degree two
polynomial, there are necessarily two solutions.

▶ This second solution changes when different coefficients are
used.
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Numerical algebraic geometry packages

▶ Bertini

▶ Julia Homotopy Continuation

▶ NumericalAlgebraicGeometry package in Macaulay2

▶ PHCpack
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Julia Homotopy Continuation
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Reconstruction algorithm
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Reconstruction algorithm when α = −2

The method consists of the following main steps:

1. Estimation of the unambiguous beads {xi , yi}i∈U through
semidefinite programming (Euclidean distance problem).

2. A preliminary estimation of the ambiguous beads using
numerical algebraic geometry.

3. A refinement of this estimation using local optimization.

4. A final clustering step, where we make a choice between the
estimations (xi , yi ) and (yi , xi ) for each i ∈ A based on the
assumption that homolog chromosomes are separated in
space.
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Preliminary estimation using numerical algebraic geometry

▶ Let x , y be the unknown coordinates in R3 of a pair of
ambiguous beads.

▶ We pick six unambiguous beads with already estimated
coordinates a, b, c , d , e, f ∈ R3.

▶ For each t ∈ {a, . . . , f }, let ct ∈ R be the corresponding
partially ambiguous counts between t and the ambiguous
bead pair (x , y).

▶ Clearing the denominators, we obtain a system of polynomial
equations

∥x−t∥2+∥y−t∥2 = ct∥x−t∥2∥y−t∥2 for t = a, b, c , d , e, f .

▶ This system has finitely many complex solutions both in the
noiseless and noisy setting, which can be found using
homotopy continuation.
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Preliminary estimation using numerical algebraic geometry

▶ We make a number N ≥ 2, choices of sets of six unambiguous
beads, and solve the corresponding N square systems.

▶ For each system, we pick out the approximately real solutions,
and obtain N sets S1, . . . ,SN ⊆ R6 consisting of the real
parts of the approximately real solutions.

▶ Up to the symmetry (x , y) 7→ (y , x), we expect these sets to
have a unique “approximately common” element.
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Local optimization

▶ A disadvantage of the numerical algebraic geometry based
estimation discussed in the previous subsection is that it only
takes into account “local” information about the interactions
for one ambiguous locus at a time, which might make it more
sensitive to noise.

▶ We refine this preliminary estimation of {xi , yi}i∈A further in a
local optimization step that takes into account the “global”
information of all available data.
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Local optimization

▶ The idea is to estimate {xi , yi}i∈A by solving the optimization
problem

min
{xi ,yi}i∈A

∑
i∈U,j∈A

((
cPi,j −

1
∥xi−xj∥2

− 1
∥xi−yj∥2

)2
+

(
cPi+n,j −

1
∥yi−xj∥2

− 1
∥yi−yj∥2

)2
)

while keeping the estimates of {xi , yi}i∈U fixed.

▶ We use Matlab Optimization Toolbox for this step.

▶ The already estimated coordinates of {xi , yi}i∈A from the
numerical algebraic geometry step are used for the
initialization.
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Breaking symmetry

▶ Our objective function remains invariant if we exchange xi and
yi for any i ∈ A.

▶ We can break symmetry by relying on the empirical
observation that homologous chromosomes typically are
spatially separated in different so-called compartments of the
nucleus.
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Reconstruction examples

Figure: Cifuentes et al. 3D genome reconstruction from partially phased Hi-C data. Preprint.
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Real data reconstruction

Reconstructions based on the real data set, which is obtained from
Hi-C experiments on the X chromosomes in the Patski
(BL6xSpretus) cell line. The data has been recorded at a resolution
of 500 kb, which corresponds to 343 bead pairs in the model.

Figure: Cifuentes et al. 3D genome reconstruction from partially phased Hi-C data. Preprint.
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Real data reconstruction

It was discovered in [Deng et al, 2015] that the inactive homolog
in the Patski X chromosome pair has a bipartite structure,
consisting of two superdomains with frequent intra-chromosome
contacts within the superdomains and a boundary region between
the two superdomains. The active homolog does not exhibit the
same behaviour.

Figure: Cifuentes et al. 3D genome reconstruction from partially phased Hi-C data. Preprint.
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Summary

Summary:

▶ We discussed how to find the 3D structure of genome from
contact count matrices with focus on partially phased data.

▶ Theoretical results to have finitely many reconstructions.

▶ Algorithm to find a reconstruction using semidefinite
programming and numerical algebraic geometry.
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