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4.1. Introduction

Seakeeping of ships is investigated with respect to the following issues:

• Maximum speed in a seaway: ‘involuntary’ speed reduction due to added resistance in

waves and ‘voluntary’ speed reduction to avoid excessive motions, loads, etc.

• Route optimization (routing) to minimize, e.g., transport time, fuel consumption, or total

cost.

• Structural design of the ship with respect to loads in seaways.

• Habitation comfort and safety of people on board: motion sickness, danger of accidental

falls, man overboard.
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• Ship safety: capsizing, large roll motions and accelerations, slamming, wave impact on

superstructures or deck cargo, propeller racing resulting in excessive rpm for the engine.

• Operational limits for ships (e.g. for offshore supply vessels or helicopters landing on

ships).

Tools to predict ship seakeeping are:

• Model tests.

• Full-scale measurements on ships at sea.

• Computations in the frequency domain: determination of the ship reactions to harmonic

waves of different wave lengths and wave directions.

• Computations in the time domain (simulation in time): computation of the forces on the

ship for given motions at one point in time; based on that information the computation

of the motions at a following point in time, etc.

• Computations in the statistical domain: computation of statistically significant seakeeping

values in natural (irregular) seaways, e.g. average frequency (occurrence per time) of

events, such as exceeding certain limits for motions or loads in a given seaway or ocean

region.

For many seakeeping issues, seakeeping is determined as follows:

1. Representation of the natural seaway as superposition of many regular (harmonic) waves

(Fourier decomposition).

2. Computation (or sometimes measurement in model tests) of the ship reactions of interest in

these harmonic waves.

3. Addition of the reactions in all these harmonic waves to a total reaction (superposition).

This procedure assumes (respectively requires) that the reaction of one wave on the ship is not

changed by the simultaneous occurrence of another wave. This assumption is valid for small

wave heights for almost all ship reactions with the exception of the added resistance.

This procedure is often applied also for seaways with large waves. However, in these cases it

can only give rough estimates requiring proper corrections. One consequence of the assumed

independence of the individual wave reactions is that all reactions of the ship are proportional

to wave height. This is called linearization with respect to wave height.

The computations become considerably more expensive if this simplification is not made. Non-

linear computations are usually necessary for the treatment of extreme motions (e.g. for

capsizing investigations); here simulation in the time domain is the proper tool. However, for

the determination of maximum loads it often suffices to apply corrections to initially linearly

computed loads. The time-averaged added resistance is in good approximation proportional to

the square of the wave height. Here the effect of harmonic waves of different lengths and

direction can be superimposed as for the linear ship reactions.
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To determine global properties (e.g. ship motions and accelerations) with sufficient accuracy,

simpler methods suffice than for the determination of local properties (pressures, relative

motions between water and ship).

Further recommended reading includes Faltinsen (1993, 2005) and Lewis (1990).
4.2. Experimental Approaches (Model and Full Scale)

Seakeeping model tests usually employ self-propelled models in narrow towing tanks or broad,

rectangular seakeeping basins. The models are sometimes completely free, being kept on

course by a rudder operated in remote control or by an autopilot. In other cases, some degrees

of freedom are suppressed (e.g. by wires). If internal forces and moments are to be determined,

the model is divided into a number of sections. The individual watertight sections are coupled

to each other by gauges. These gauges consist of two rigid frames connected by rather stiff flat

springs with strain gauges. Model motions are determined either directly or by measuring the

accelerations and integrating them twice in time. Waves and relative motions of ships and

waves are measured using two parallel wires penetrating the water surface. The change in the

voltage between the wires is then correlated to the depth of submergence in water. The

accuracy of ultrasonic devices is slightly worse. The model position in the tank can be

determined from the angles between the ship and two or more cameras at the tank side. Either

lights or reflectors on the ship give the necessary clear signal.

The waves are usually created by flaps driven by hydraulic cylinders. The flaps are inclined

around a horizontal axis lying at the height of the tank bottom or even lower. Traditionally,

these flaps were controlled mechanically by shaft mechanisms which created a (nearly)

sinusoidal motion. Modern wave-makers are computer controlled following a prescribed time

function. Sinusoidal flap motion creates harmonic waves. The superposition of many

sinusoidal waves of different frequency creates irregular waves similar to natural wind seas.

Some wave-makers use heightwise segmented flaps to simulate better the exponential decay of

waves with water depth. Sometimes, but much less frequently, vertically moved bodies or air

cushions are used to generate waves. These facilities create not only the desired wave, but also

a near-field disturbance which decays with distance from the body or the air cushion. More

harmful is the generation of higher harmonics (waves with an integer multiple of the basic

wave frequency), but these higher harmonics can be easily filtered from the measured reactions

if the reactions are linear. In computer-controlled wave-makers they can be largely eliminated

by proper adjustment of the flap motions.

In towing tanks, waves are usually generated by one flap at one tank end spanning the complete

tank width. The other tank end has a ‘beach’ to absorb the waves (ideally completely) so that no

reflected waves influence the measurements and the water comes to rest as soon as possible

after a test. If several, independently controlled flaps are used over the tank width, waves with
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propagation direction oblique to the tank longitudinal axis can be generated. These waves will

then be reflected at the side walls of the tank. This is unproblematic if a superposition of many

waves of different direction (‘short-crested sea’) is created as long as the distribution of the

wave energy over the propagation direction is symmetrical to the tank longitudinal axis. In

natural wind seas the energy distribution is similarly distributed around the average wind

direction.

Rectangular wide seakeeping basins typically have a large number of wave-making flaps at two

adjacent sides. An appropriate phase shift in the flap motions can then create oblique wave

propagation. The other two sides of such a basin are then equipped with ‘beaches’ to absorb

waves.

Seakeeping model tests are usually only performed for strongly non-linear seakeeping

problems which are difficult to compute. Examples are roll motion and capsizing, slamming

and water on deck. Linear seakeeping problems are only measured for research purposes to

supply validation data for computational methods. In these cases many different frequencies

can be measured at the same time. The measured data can then be decomposed (filtered) to

obtain the reactions to the individual wave frequencies.

Seakeeping tests are expensive due to the long waiting periods between tests until the water has

come to rest again. The waiting periods are especially long in conventional towing tanks. Also,

the scope of the experiments is usually large as many parameters need to be varied, e.g. wave

length, wave height, angle of encounter, ship speed, draught and trim, metacentric height, etc.

Tests keep Froude similarity just as in resistance and propulsion tests. Gravity and inertia

forces then correspond directly between model and full-scale ship. However, scale effects

(errors due to the model scale) occur for forces which are due to viscosity, surface tension,

compressibility of the water, or model elasticity. These effects are important, for example, for

slamming pressure, water on deck, or sway, roll and yaw motions. However, in total, scale

effects play a lesser role for seakeeping tests than for resistance and propulsion tests or

maneuvering tests.

Seakeeping can also be measured on ships in normal operation or during special trial tests. Ship

motions (with accelerometers and gyros) and sometimes also global and local loads (strain

gauges), loss of speed, propeller rpm and torque are all measured. Recording the seaway is

difficult in full-scale measurements. The options are:

1. No recording of actual seaway during trial; instead measurements of seaway over many

years such that, for example, the expected maximum values during the lifetime of the

ship can be extrapolated from the recorded distribution of long-term measured values

(long-term measurement). The random variation of the actual seastate encountered by the

ship introduces considerable inaccuracies for the predicted extreme values even if several

years of measurements are available.
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2. Computation of the seaway from the ship motions based on computed or model-test

measured response amplitude operators for the motions. This allows only a rather rough

estimate of the seaway. In following seas this method is hardly applicable. Nevertheless,

averaging over, say, 10e100 half-hour measurements usually yields good estimates for the

correlation of loads and seaway (medium-term measurement).

3. Parallel measurement of the seaway. Options are:

• Using seastate measuring buoys (brought by the ship).

• Performing the sea trials near a stationary seaway measuring installation.

• Measuring the ship motions (by accelerometers) and the relative motion between water

and ship (by pressure measurements at the hull or water level measurements using

a special radar device); based on these data indirect determination of the absolute

motion of the water surface is possible.

• Measuring the wave spectrum (energy distribution over frequency and propagation

direction) by evaluating radar signals reflected by the waves.

• Computation or estimation of the seaway from the wind field before and during the

experiments.

• Estimation of significant wave height and period from ‘experienced’ seamen. This

common practice is far too inaccurate: the correlation coefficient between measured

(actual) and estimated wave period is typically <50%! This holds also if the estimates

are used to derive statistical distributions. For most extreme values of interest the errors

in the estimates do not cancel, but are rather concentrated around the extreme values.
4.3. Waves and Seaway

4.3.1. Airy Waves (Harmonic Waves of Small Amplitude)

Wind-induced seaways can be approximated by the superposition of regular waves of small

wave height (elementary waves, Airy waves). Each elementary wave has a sinusoidal profile

with an infinite number of wave troughs and wave crests (Fig. 4.1). Thewave troughs and crests

are perpendicular to the direction of wave propagation. Such elementary waves are an important

building block for all computational methods for linear seakeeping problems. Steep regular

waves can be computed by, for example, Stokes’ theory or panel methods. However, the

superposition principle no longer applies to these waves. Therefore they play virtually no role

at all in the prediction of ship seakeeping and are of rather academic interest for naval architects.

Unfortunately, in using the superposition principle for elementary waves, all properties of the

seaway which are non-linear with wave steepness (¼ wave height/wave length) are lost.

These are, for example, the broader wave troughs and steeper wave crests, the higher celerity of

steeper waves which results in a tendency to form wave groups in natural wind seas: groups of

waves with low wave height are followed by groups of waves with larger wave heights.
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For ship seakeeping, the relevant waves are dominated by gravity effects. Surface tension,

water compressibility and (for deep and moderately shallow water) viscosity can be neglected.

Computations can then assume an ideal fluid (incompressible, inviscid) without surface

tension. Consequently potential theory can be applied to describe the waves.

Generally, regular waves are described by a length parameter (wave length l or wave number

k) and a time parameter (wave period T or (circular) frequency u). k and u are defined as

follows:
k ¼ 2p

l
; u ¼ 2p

T
(4.1)

The celerity c denotes the speed of wave propagation, i.e. the speed of an individual wave crest
or wave trough:

c ¼ l

T
¼ u

k
(4.2)

For elementary waves, the following (dispersion) relation holds:
k ¼ u2

g
on deep water (4.3)

k tanhðkHÞ ¼ u2

g
on finite depth (4.4)

g ¼ 9.81 m/s2 and H is the water depth (Fig. 4.1).
The above equations can then be combined to give the following relations (for deep

water):

c ¼
ffiffiffi
g

k

r
¼ g

u
¼

ffiffiffiffiffiffi
gl

2p

r
¼ gT

2p
(4.5)
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The potential f of a wave traveling in the þx direction is:
f ¼ Reð�icbhe�kzeiðut�kxÞÞ for deep water (4.6)

f ¼ Re

 
�icbh

sinhðkHÞcoshðkðz� HÞÞeiðut�kxÞ
!

for finite depth (4.7)

Re denotes the real part of a complex quantity; i ¼ ffiffiffiffiffiffiffi�1
p

; z as in Fig. 4.1; ^ denotes as usual
a complex amplitude; bh ¼ the complex amplitude of the wave. h ¼ jbhj is the (real-valued)
wave amplitude, i.e. half the wave height (from wave trough to wave crest). The real part of bh
gives the distance of the wave trough from the calm-water level at time t ¼ 0 at x ¼ 0; the

imaginary part gives the same value at ¼ period earlier. The deep-water formulae are

applicable with errors of < 0.5% if the water depth is larger than half a wave length.

The velocity is obtained by differentiation of the potential, e.g. for deep water:

vx ¼ vf

vx
¼ fx ¼ Reð�ubhe�kzeiðut�kxÞÞ (4.8)

vz ¼ vf

vz
¼ fz ¼ Reðiubhe�kzeiðut�kxÞÞ (4.9)

The complex amplitudes of the velocities have the same absolute value and a phase shift of 90�. A

water particle thus follows a circular track or orbitalmotion (fromLatinorbis¼ circle). Inwater of

finite depth, the motion of a water particle follows an ellipse. The vertical axis of each ellipse

decreases with depth until at thewater bottom z¼H themotion is only in the horizontal direction.

If we excite a group of waves (not elementary waves, but, say, ten wave crests and troughs) in

initially calm water we will notice that the front of the wave crests decay while at the end of the

wave packet new wave crests are formed (Fig. 4.2). The wave packet thus moves slower than

the wave crests, i.e. with a speed slower than celerity c, namely with group velocity cgr:
cgr ¼ 1

2
c for deep water (4.10)

cgr ¼ c

�
1

2
þ kH

sinhð2kHÞ
�

for finite depth (4.11)

The linearized Bernoulli equation
pþ r
vf

vt
� rgz ¼ p0 (4.12)

and the wave potential give the difference pressure to atmospheric pressure at a point below the
water surface (for deep water):

p� p0 ¼ rgz� rg Re
�bhe�kzeiðut�kxÞ

�
(4.13)
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p0 is the atmospheric pressure, r the water density, and z the depth of the point below the

calm-water surface. The first term represents the hydrostatic pressure in calm water. The

second term represents the pressure change due to the wave. As with all wave effects, it

decays exponentially with depth. The pressure gradient vp/vz for the hydrostatic case is

equal to the specific weight of the fluid and causes a buoyant lifting force on the immersed

body that equals the weight of the displaced water. This lifting force changes in a wave!

The lifting force is lower in a wave crest, higher in a wave trough. This is called the Smith

effect.

The mechanical energy E per area of the water surface is composed of potential and kinetic

energy. Let z be the momentary elevation of the free surface. Then the potential energy (per

area) is:

Epot ¼ �z

2
rgð�zÞ ¼ 1

2
rgz2 (4.14)

The potential energy is positive both in wave troughs and wave crests and oscillates in time and

space between 0 and
1

2
rgjbhj2. The time average is

Epot ¼ 1

4
rgjbhj2 (4.15)
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The kinetic energy per area is:
Ekin ¼
ZN
z

1

2
r
�
v2x þ v2z

�
dz ¼

ZN
z

1

2
ru2jbhj2e�2kz dzz

ZN
0

. dz ¼ 1

4
rgjbhj2 (4.16)

Here Eqs. (4.8) and (4.9) have been used and in a linearization the wave elevation z was
substituted by 0. The kinetic energy is constant in time and space. The time-averaged total

energy per area for a deep-water wave is then:
E ¼ 1

2
rgjbhj2 (4.17)

The average energy travels with cgr in the same direction as the wave. For finite-depth water the
average energy remains the same but the kinetic energy also oscillates in time and space.

The elementary wave was so far described in an earth-fixed coordinate system. In a reference

system moving with ship speed V in the direction of the ship axis xs under an angle of encounter

m (Fig. 4.3), the wave seems to change its frequency. The (circular) frequency experienced by

the ship is denoted encounter frequency:
ue ¼ ju� kV cos mj ¼
				u� u2V

g
cos m

				 (4.18)

Figure 4.4 illustrates this phenomenon. For course against the sea (m > 90�) the encounter

frequency is higher than the incident wave frequency u. For course with the sea (m < 90�) the
encounter frequency is usually lower than the incident wave frequency u. An exception is short

following seas which are passed by the ship. The condition for the ship passing the waves is:

Fn >
0:4

cos m

ffiffiffi
l

L

r
(4.19)
y

y
s

μ
c

v

xs

x

Figure 4.3:
Definition of angle of encounter
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An important parameter in this context is:
s ¼ ueV

g
¼ uV

g
�
�
uV

g

�2

cos m (4.20)

For following sea for cases with s cos m < 0.25, for given speed V, encounter angle m, and
encounter frequency ue three possible u values exist:

u1 ¼ g

2V cos m
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4s cos m

p
Þ (4.21)

u2 ¼ g

2V cos m
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s cos m

p
Þ (4.22)

u3 ¼ g

2V cos m
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s cos m

p
Þ (4.23)

The potential of a deep-water wave in a coordinate system moving with ship speed is:
f ¼ Reð�icbhe�kze�ikðxs cos m�ys sin mÞeiuetÞ (4.24)

The above formulae for velocities and pressures can correspondingly be derived in the
coordinate system moving with ship speed.
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4.3.2. Natural Seaway

Wind-excited seaway can be approximated with good accuracy as the superposition of many

elementary waves of different wave lengths and propagation directions. The phase shifts

between these elementary waves change with time and location and are taken as random

quantities for the origin and time t ¼ 0. The randomness of the phases e which corresponds

to the randomness (irregularity) of the natural seaway e means that only statistical

statements can be made, e.g. what the probability is that the wave height exceeds a given

limit.

The initial assumptions are:

1. The seaway is stationary, i.e. its statistical properties (e.g. average wave height, average

wave period, etc.) do not change within the considered time frame.

2. The seaway is not too steep so that linearized equations are still accurate enough. Then any

linear superposition of two or more waves with the same or differing frequency or prop-

agation direction will again be a possible form of the water surface.

Only those seaway properties which do not change for small variations of the registration

location or the registration time are of interest for ship seakeeping. The procedure to obtain

these properties is as follows. Assume we have a record of the wave elevation z(t) at a given

point for the time interval t ¼ 0 to T. Then z is decomposed in a Fourier analysis, i.e. the

complex constants bAj are determined in a finite series:

zðtÞ ¼ A0 þ
PJ
j¼1

Reð bAj e
iujtÞ with uj ¼ jDu; Du ¼ 2p=T (4.25)

The average wave elevation A0 is of no interest here. The phase angle 3j of the complex
amplitudes bAj ¼ j bAjjei3j would be different at a different (nearby) location and is therefore also
of no interest here. The absolute value of bAj depends on the registration time T. Only the sea

spectrum remains as constant and of interest in the above sense:

SzðujÞ ¼ Average value of j bAjj
2

2Duj
(4.26)

The averaging can be done:
• over many records of statistically equivalent seaways (e.g. at various locations spaced by

a few kilometers at the same time), or

• over many records of time intervals of the total registration time T, or

• over several (10 to 30) ‘neighboring’ j bAjj2 (preferred choice in practice); e.g. for j ¼ 1 to

10, 11 to 20, 21 to 30 etc., an average j bAjj2 can be found as the arithmetic average of ten

j bAjj2 in each case.
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The uj in the argument of the sea spectrum Sz is the (circular) frequency (in the last case the

average frequency) on which the average is based.

The wave energy per horizontal area in an elementary wave is:

E ¼ 1

2
rgj bAj2 (4.27)

rgSz is thus the average seaway energy per frequency interval and area. Therefore Sz is also
called the energy spectrum of a seaway. It describes the distribution of wave energy over the

frequency u. Its dimension is, e.g., m2$s.

The spectrum can be used to reconstruct the time function z(t) given in Eq. (4.25):

zðtÞ ¼
XJ
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SzðujÞDuj

q
$cosðujt þ 3jÞ (4.28)

(Instead of Re eia we simply write here cos a.) We substituted here j bAjj2 by its average value;

this usually has no significant effect. As the phase angle information is no longer contained in

the spectrum (and we usually only have the spectrum information to reconstruct a seaway) the

phase angles 3j are chosen as random quantities equally distributed in the interval [0, 2p].

This creates various functions z(t) depending on the actual choice of 3j, but all these functions

have the same spectrum, i.e. the same characteristic (non-random) properties as the original

seaway.

If all phase angles are chosen as zero the extremely unlikely (but not impossible) case

results that all elementary waves have a wave trough at the considered location at time

t ¼ 0. The number of terms in the sum for z(t) in the above equation is taken as infinite in

theoretical derivations. In practical simulations, usually 30 to 100 terms are taken.

Each elementary wave in a Fourier decomposition of natural seaway depends on time and

space. The superposition of many elementary waves all propagating in the x direction, but
c

y y
x x

z, ξ z, ξ

Figure 4.5:
Long-crested (left) and short-crested (right) seaways
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having different frequencies, yields long-crested seaways as depicted in Fig. 4.5 (left).

Long-crested seaway is described by:

zðtÞ ¼
XJ
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SzðujÞDuj

q
$cosðujt þ kjxþ 3jÞ (4.29)

kj ¼ uj /g is the wave number corresponding to frequency uj.

Short-crested seaway (Fig. 4.5 (right)) is a better approximation to wind-excited seaway. Short-

crested seaway is described if the wave energy is distributed not only over frequency, but also

over wave propagation direction m. The corresponding description is:

zðtÞ ¼
XJ
j¼1

XL
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Szðuj;mlÞDujDml

q
$cos½ujt � kjðx cos ml � sin mlÞ þ 3jl� (4.30)

Sz(uj,ml) is the directional or two-dimensional spectrum as opposed to the one-dimensional
spectrum Sz(uj).

At a ship, the wave elevation oscillates in a regular wave with encounter frequency ue. The

encounter spectrum Se(ue) describes the distribution of the wave energy in a seaway over ue

instead of u. The energy must be independent of the reference system:

SzðuÞ$jDuj ¼ SzeðueÞ$jDuej (4.31)

This yields:
SzeðueÞ ¼ SzðuÞ
due=du

¼ SzðuÞ			1� 2u

g
V cos m

			 (4.32)

If several u result in the same ue the contributions of all three frequencies are added on the r.h.s.
of this equation (Fig. 4.6). Correspondingly an encounter directional spectrum can also be

determined. Because of the several possible contributions on the r.h.s. and the singularity at See

where the denominator on the r.h.s. in the above equation becomes zero e the encounter

spectrum is not used in seakeeping computations. However, it is needed for the analysis of data if

these were measured from a ship with forward speed.
0 0 0.25 g /v
ω ω

ω

ω ω

e

0

s(   ) s(   e)

Figure 4.6:
Sea spectrum and corresponding encounter spectrum
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4.3.3. Wind and Seaway

We distinguish between swell and wind sea. Swell waves have a celerity higher than the

present wind speed (e.g. measured in 10 m height above mean sea level; only the

component in the wave propagation direction is considered). Swell has been excited

originally by some stronger winds at some other location and propagates without significant

damping or excitation until it is damped in shallow-water regions or excited again to wind

sea in stronger winds. By definition, wind sea has celerity less or equal to the wind speed.

Due to the gustiness of wind and other factors, the distinction between swell and wind sea is

not sharp.

Swell, sometimes also wind sea (for winds changing rapidly in time or space), can change the

form of the spectrum considerably. On the other hand, a rather uniform form of a wind sea

spectrum is achieved within ½ to 1 hour if the wind is constant in time and space. The relevant

area in this context extends over a distance of (½ to 1 hour)/group velocity of waves in

a downwind direction. In the following, we will consider only spectra developed in constant

wind. The spectrum parameters, especially wave height and period, converge only after many

hours or several days to constant values. The form of the spectrum is determined by the

physical processes of:

• wave generation (e.g. the wind resistance of wave crests);

• dissipation (wave-breaking; in shallow water also friction at the ocean bottom);

• convection (transport of wave energy with group velocity);

• non-linear interaction between waves of different frequencies and direction.

The directional spectrum is described as the product of a one-dimensional spectrum Sz(u) with

a function f. f describes the distribution of the wave energy over the propagation direction m

assumed to be symmetrical to a main propagation direction m0:

Szðu;mÞ ¼ SzðuÞ$f ðm� m0Þ (4.33)

Söding and Bertram (1998) give a more modern form than the often cited PiersoneMoskowitz
and JONSWAP spectra. The older spectra assume a stronger decay of the wave energy at higher

frequencies (proportional to ue5, while more recent measurements indicate decay proportional

to ue4).

The one-dimensional spectrum Sz(u) must be zero for small frequencies (where the wave

celerity is much higher than the wind speed) and converge to zero for high frequencies, because

high frequency means short waves, which in turn can only have small height as the wave

steepness before breaking is limited. In between, there must be a maximum. The (circular)

frequency where the spectrum assumes its maximum is called modal frequency or peak

frequency up. The function Sz(u) contains as an important parameter Uc/cp. Uc is the

component of the wind velocity in the main direction of wave propagation, measured in 10 m
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height. cp is the celerity of elementary waves of frequencyup. cp is computed using the formula

cp ¼ g/up which is valid for elementary waves. In reality, waves of frequency up travel some

5e10% faster due to their larger steepness. The ratio Uc/cp usually lies between 1 (fully

developed seaway) and 5 (strongly increasing seaway).

Sz(u) is written as the product of three factors:

• an initial factor ag2/up
5

• a ‘base form’ containing the u dependency (corresponding to the PiersoneMoskowitz

spectrum widely used previously)

• a peak enhancement factor gG independent of Uc/cp:

SzðuÞ ¼ ag2

u5
p

$
�up

u

�4
exp



�
�up

u

�4�
$gG (4.34)

with a ¼ 0.006(Uc/cp)
0.55.

Figure 4.7 illustrates a, Fig. 4.8 the base form, and Fig. 4.9 the peak enhancement

for three representative values of Uc/cp. The peak enhancement makes the maximum

of the spectrum very pointed for a not fully developed seaway (Uc/cp > 1), while fully

developed seaways feature broader and less-pronounced maxima. g describes the maximum

of the peak enhancement over u. It occurs at up and increases the ‘base form’ by a

factor of:

g ¼ 1:7þmax½0:6 log10ðUc=cpÞ� (4.35)
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G describes how the enhancement factor decays left and right of the model frequency up; for
this purpose a formula corresponding to a normal (Gaussian) distribution is chosen (but

without a forefactor; thus the maximum of G is 1):

G ¼ exp

 
� ðu=up � 1Þ2

2s2

!
with s ¼ 0:08

"
1þ 4

ðUc=cpÞ3
#

(4.36)
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The distribution of the wave energy over the propagation direction f(m e m0) is independent of
Uc/cp. Instead, it depends on the non-dimensional frequency u/up:

f ðm� m0Þ ¼
0:5b

cosh2½bðm� m0�
with (4.37)

b ¼ max
�
1:24; 2:61ðu=upÞ1:3

�
for u=up < 0:95 (4.38)

b ¼ max
�
1:24; 2:28ðu=upÞ�1:3

�
for u=up � 0:95 (4.39)

Figure 4.10 illustrates f(m e m0). Figure 4.11 illustrates b(u/up).
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Since short waves adapt more quickly to the wind than long waves, a changing wind direction

results in a frequency-dependent main propagation direction m0. Frequency-dependent m0 are

also observed for oblique offshore wind near the coast. The wave propagation direction here is

more parallel to the coast than the wind direction, because this corresponds to a longer fetch.

The (only statistically defined) wave steepness ¼ wave height/wave length does not depend

strongly on the wind velocity, Uc/cp, or u/up. The wave steepness is so large that the celerity

deviates noticeably from the theoretical values for elementary waves (of small amplitude) as

described above. Also, the average shape of the wave profiles deviates noticeably from the

assumed sinusoidal wave forms of elementary waves. However, non-linear effects in the waves

are usually much weaker than the non-linear effects of ship seakeeping in the seaway.

The significant wave height H1/3 of a seaway is defined as the mean of the top third of all

waves, measured from wave crest to wave trough. H1/3 is related to the area m0 under the sea

spectrum:

H1=3 ¼ 4
ffiffiffiffiffiffi
m0

p
with m0 ¼

ZN
0

Z2p
0

Szðu;mÞ dm du (4.40)

For the above given wind sea spectrum, H1/3 can be approximated by:
H1=3 ¼ 0:21
U2
c

g

�
Uc

cp

��1:65

(4.41)

The modal period is:
Tp ¼ 2p=up (4.42)

The periods T1 and T2, which were traditionally popular to describe the seaway, are much
shorter than the modal period. T1 corresponds to the frequency u where the area under the

spectrum has its center. T2 is the average period of upward zero crossings.

If we assume that water is initially calm and then a constant wind blows for a duration t and

over a distance x, the seaway parameter Uc/cp becomes approximately:

Uc

cp
¼ maxð1; 18x�3=10; 110q�3=7Þ (4.43)

x is the non-dimensional fetch x, q the non-dimensional wind duration t:
x ¼ gx=U2
c ; q ¼ gt=Uc (4.44)

The fetch is to be taken upwind from the point where the seaway is considered, but of course at
most to the shore. In reality, there is no sudden and then constant wind. But the seakeeping



Table 4.1: Sea spectra for various wind duration times for Uc [ 20m/s

Quantity Case 1 Case 2 Case 3

Assumed wind duration time t 5 h 20 h 50 h
Non-dimensional duration time q 8830 35000 88000
Maturity parameter Uc/cp 2.24 1.24 1
Significant wave height H1/3 2.26 m 6.00 m 8.56 m
up ¼ g/cp ¼ g/Uc $ Uc/cp 1.10 Hz 0.61 Hz 0.49 Hz
Modal period 2p/up 5.7 s 10.3 s 12.8 s
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parameters are not very sensitive towards x and t. Therefore it is possible to estimate the

seaway with practical accuracy in most cases when the wind field is given.

Table 4.1 shows how the above formulae estimate the seaway parameters H1/3 and Tp for

various assumed wind durations t for an exemplary wind velocityUc¼ 20 m/s. The fetch xwas

assumed to be so large that the center term in the ‘max’-bracket in the above formula for Uc /cp
is always smaller than one of the other two terms. That is, the seaway is not fetch-limited, but

either time-limited (for 110qe3/7 > 1) or fully developed.

Figure 4.12 shows wind sea spectra forUc¼ 20 m/s for various fetch values. Figure 4.13 shows

the relation between wave period Tp and significant wave height H1/3 for various values of

Uc/cp. cp (lower scale) and Uc/cp together yield the wind velocity Uc that has excited the wind
12
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Wind sea spectra for Uc ¼ 20 m/s for various fetch values
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sea characterized by H1/3 and Tp. For swell, we can assume Uc z cp. Figure 4.14 shows the

relation between various seaway parameters, the ‘wind force’ and the wind velocity Uc.

Programs to compute the given wind sea spectrum from either Uc, t, and x or H1/3 and Tp are

given by Söding (1997).
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Table 4.2: Relative occurrence $ 106 of combinations of H1/3 and T1 in the North Atlantic

Ship Seakeeping 163
4.3.4. Wave Climate

Predictions of maximum loads, load spectra for fatigue strength analyses, etc. require

distributions of the significant seaway properties in individual ocean areas. The best sources

for such statistics are computations of the seaway based on measured wind fields. ANEP-II

(1983) gives such statistical data extensively for North Atlantic, North Sea, Baltic Sea,

Mediterranean Sea, and Black Sea. Based on these data, Germanischer Lloyd derived

distributions for H1/3 and T1 for all of the Atlantic between 50 and 60 longitudinal and the

western Atlantic between 40 and 50 longitudinal (Table 4.2). The table is based on data for

a period of 10 years. T1 is the period corresponding to the center of gravity of the area under

the sea spectrum. The modal period for this table is:
Tp ¼ T1=0:77

The values in the table give 106 the time share when T1 was in the given time interval and H1/3
in the interval denoted by its mean value, at an arbitrary point in the sea area. FCUM denotes

the cumulated share in per cent. Similar tables can be derived from ANEP-II and other

publications for special seaway directions, seasons, and other ocean areas.

Table 4.2 can also be used to approximate other ocean areas by comparing the wind field in the

North Atlantic with the wind field in another ocean area, using data of Blendermann (1998),

and employing the relation between wind and sea as given in the previous chapter.

4.4. Numerical Prediction of Ship Seakeeping

4.4.1. Overview of Computational Methods

If the effect of the wave amplitude on the ship seakeeping is significantly non-linear, there is

little sense in investigating the ship in elementary waves, since these waves do not appear in
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nature and the non-linear reaction of the ship in natural seaways cannot be deduced from the

reaction in elementary waves. In these non-linear cases, simulation in the time domain is the

appropriate tool.

If the non-linearity is weak or moderate the seakeeping properties of a ship in natural seaways

can be approximated by superposition of the reactions in elementary waves of different

frequency and direction. In these cases, the accuracy can be enhanced by introducing some

relatively simple corrections of the purely linear computations to account for force

contributions depending quadratically on the water velocity or considering the time-dependent

change of position and wetted surface of the ship, for example. Even if iterative corrections are

applied the basic computations of the ship seakeeping is still based on its reaction in

elementary waves, expressed by complex amplitudes of the ship reactions. The time

dependency is then always assumed to be harmonic, i.e. sinusoidal.

For flows involving strong non-linearities, particularly breaking waves or green water on deck,

free-surface RANSE simulations are the most appropriate tool. Such simulations have entered

industry practice to an increasing extent since the year 2000.

In practice, potential flow solvers still dominate in seakeeping predictions. The most frequent

application is the computation of the linear seakeeping properties of a ship in elementary

waves. In addition to the assumption for Euler solvers potential flow assumes that the flow is

irrotational. This is no major loss in the physical model, because rotation is created by the

water adhering to the hull and this information is already lost in the Euler flow model. Relevant

for practical applications is that potential flow solvers are much faster than Euler and RANSE

solvers, because potential flows have to solve only one linear differential equation instead of

four non-linear coupled differential equations. Also, potential flow solvers are usually based on

boundary element methods and need only to discretize the boundaries of the domain, not the

whole fluid space. This reduces the effort in grid generation considerably. On the other hand,

potential flow methods require a simple, continuous free surface. Flows involving breaking

waves and splashes cannot be analyzed properly by potential flow methods.

In reality, viscosity is significant in seakeeping, especially if the boundary layer separates

periodically from the hull. This is definitely the case for roll and yaw motions. In practice,

empirical corrections are introduced. Also, for flow separation at sharp edges in the aftbody

(e.g. vertical sterns, rudder, or transoms) a Kutta condition is usually employed to enforce

a smooth detachment of the flow from the relevant edge.

The theoretical basics and boundary conditions of linear potential methods for ship seakeeping

are treated extensively in the literature, e.g. by Newman (1978). Therefore, we can limit

ourselves here to a description of the fundamental results important to the naval architect.

The ship flow in elementary waves is described in a coordinate systemmoving with ship speed in

the x direction, but not following its periodic motions. The derivatives of the potential give the
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velocity of water relative to such a coordinate system. The total velocity potential is

decomposed:

ft ¼ ð�Vxþ fsÞ þ ðfw þ fIÞ (4.45)
with

ft potential of total flow

eVx potential of (downstream) uniform flow with ship speed V

fs potential of the steady flow disturbance

fw potential of the undisturbed wave as given at the end of Section 4.3.1

fI remaining unsteady potential.
The first parenthesis describes the steady (time-independent) flow, the second parenthesis the

periodic flow due to sea waves. The potentials can be superimposed, since the fundamental

field equation (Laplace equation, describing continuity of mass) is linear with respect to ft:

Dft ¼
�
v2

vx2
þ v2

vy2
þ v2

vz2

�
ft (4.46)

Various approximations can be used for fs and fI which affect computational effort and
accuracy of results. The most important linear methods can be classified as follows:

• Strip method. Strip methods are the standard tool for ship seakeeping computations. They

omit fs completely and approximate fI in each strip x ¼ constant, independently of the

other strips. Thus in essence the three-dimensional problem is reduced to a set (e.g. typi-

cally 10e30) of two-dimensional boundary value problems. This also requires a simplifi-

cation of the actual free surface condition. The method originated in the late 1950s with the

work of Korvin-Kroukovsky and Jacobs. Most of today’s strip methods are variations of the

strip method proposed by Salvesen, Tuck, and Faltinsen (1970). These are sometimes also

called STF strip methods where the first letter of each author is taken to form the abbre-

viation. The two-dimensional problem for each strip can be solved analytically or by panel

methods, which are the two-dimensional equivalents of the three-dimensional methods

described below. The analytical approaches use conform mapping to transform semicircles

to cross-sections resembling ship sections (Lewis sections). Although this transformation is

limited and, for example, submerged bulbous bow sections cannot be represented in

satisfactory approximation, this approach still yields for many ships results of similar

quality as strip methods based on panel methods (close-fit approach). A close-fit approach

(panel method) to solve the two-dimensional problem is described on the website. Strip

methods are e despite inherent theoretical shortcomings e fast, cheap, and for most

problems sufficiently accurate. However, this depends on many details. Insufficient accu-

racy of strip methods often cited in the literature is often due to the particular implemen-

tation of a code and not due to the strip method in principle. But, at least in their

conventional form, strip methods fail (as do most other computational methods) for waves
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shorter than perhaps one-third of the ship length. Therefore, the added resistance in short

waves (being considerable for ships with a blunt waterline) can also only be estimated by

strip methods if empirical corrections are introduced. Section 4.4.2 describes a linear strip

method in more detail.

• Unified theory. Newman (1978) and Sclavounos developed at the MIT the ‘unified theory’

for slender bodies. Kashiwagi (1997) describes more recent developments of this theory. In

essence, the theory uses the slenderness of the ship hull to justify a two-dimensional

approach in the near field which is coupled to a three-dimensional flow in the far field. The

far-field flow is generated by distributing singularities along the centerline of the ship. This

approach is theoretically applicable to all frequencies, hence ‘unified’. Despite its better

theoretical foundation, unified theories failed to give significantly and consistently better

results than strip theories for real ship geometries. The method therefore failed to be

accepted in practice.
• ‘High-speed strip theory’ (HSST). Several authors have contributed to the high-speed strip

theory after the initial work of Chapman (1975). A review of work since then can be found

in Kashiwagi (1997). HSST usually computes the ship motions in an elementary wave

using linear potential theory. The method is often called the 2.5d or 2dþt method, since it

considers the effect of upstream sections on the flow at a point x, but not the effect of

downstream sections. Starting at the bow, the flow problem is solved for individual strips

(sections) x ¼ constant. The boundary conditions at the free surface and the hull (strip

contour) are used to determine the wave elevation and the velocity potential at the free

surface and the hull. Derivatives in the longitudinal direction are computed as numerical

differences to the upstream strip which has been computed in the previous step. The

computation marches downstream from strip to strip and ends at the stern resp. just before

the transom. HSST is the appropriate tool for fast ships with Froude numbers Fn > 0.4. For

lower Froude numbers, it is inappropriate.

• Green function method (GFM). ISSC (1994) gives a literature review of these methods.

GFM distributes panels on the average wetted surface (usually for calm-water floating

position neglecting dynamical trim and sinkage and the steady wave profile) or on

a slightly submerged surface inside the hull. The velocity potential of each panel (Green

function) fulfills automatically the Laplace equation, the radiation condition (waves

propagate in the right direction) and a simplified free-surface condition (omitting the fs

completely). The unknown (either source strength or potential) is determined for each

element by solving a linear system of equations such that for each panel at one point the

no-penetration condition on the hull (zero normal velocity) is fulfilled. The various

methods differ primarily in the way the Green function is computed. This involves the

numerical evaluation of complicated integrals from 0 to N with highly oscillating

integrands. Some GFM approaches formulate the boundary conditions on the ship under

consideration of the forward speed, but evaluate the Green function only at zero speed.

This saves a lot of computational effort, but cannot be justified physically and it is not
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recommended. As an alternative to the solution in the frequency domain (for excitation

by elementary waves), GFM may also be formulated in the time domain (for impulsive

excitation). This avoids the evaluation of highly oscillating integrands, but introduces

other difficulties related to the proper treatment of time history of the flow in so-called

convolution integrals. Both frequency and time domain solutions can be superimposed to

give the response to arbitrary excitation, e.g. by natural seaway, assuming that the

problem is linear. All GFMs are fundamentally restricted to simplifications in the

treatment of fs. Usually fs is completely omitted, which is questionable for usual ship

hulls. It will introduce, especially in the bow region, larger errors in predicting local

pressures.

• Rankine singularity method (RSM). Bertram and Yasukawa (1996) give an extensive over-

view of these methods covering both frequency and time domains. RSMs, in principle,

capture fs completely and also more complicated boundary conditions on the free surface

and the hull. In summary, they offer the option for the best approximation of the

seakeeping problem within potential theory. This comes at a price. Both ship hull and the

free surface in the near field around the ship have to be discretized by panels. Capturing all

waves while avoiding unphysical reflections of the waves at the outer (artificial) boundary

of the computational domain poses the main problem for RSMs. Since the early 1990s,

various RSMs for ship seakeeping have been developed. By the end of the 1990s, the time-

domain SWAN code (SWAN ¼ Ship Wave ANalysis) of MITwas the first such code to be

used commercially.

• Combined RSMeGFM approach. GFMs are fundamentally limited in capturing the

physics when the steady flow differs considerably from uniform flow, i.e. in the near

field. RSMs have fundamental problems in capturing the radiation condition for low s
values. Both methods can be combined to overcome the individual shortcomings and to

combine their strengths. This is the idea behind combined approaches. These are described

as ‘Combined Boundary Integral Equation Methods’ by the Japanese, and as ‘hybrid

methods’ by Americans. Initially only hybrid methods were used which matched near-field

RSM solutions directly to far-field GFM solutions by introducing vertical control surfaces

at the outer boundary of the near field. The solutions are matched by requiring that the

potential and its normal derivative are continuous at the control surface between near field

and far field. In principle methods with overlapping regions also appear possible.
4.4.2. Strip Method

This section presents the most important formulae for a linear frequency-domain strip

method for slender ships in elementary waves. The formulae will be given without derivation.

For a more extensive coverage of the theoretical background, the reader is referred to

Newman (1978).
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Two coordinate systems are used:

• The ship-fixed system x, y, z, with axes pointing from amidships forward, to starboard

and downwards. In this system, the ship’s center of gravity is time-independent xg,

yg, zg.

• The inertial system x, h, z. This system follows the steady forward motion of the ship with

speed V and coincides in the time average with the ship-fixed system.

The main purpose of the strip method is to compute the ship’s rigid-body motions, i.e. the three

translations of the origin of ship-fixed system in the x, h, z direction and the three rotations

around these axes. We denote (Fig. 4.15):

u1 surge u4 roll
u2
 sway
 u5
 pitch
u3
 heave
 u6
 yaw
The motions are combined in a six-component vector u!. The forces and moments acting on the

ship are similarly combined in a six-component vector F
!
. u! and F

!
are harmonic functions of

time t oscillating with encounter frequency ue:

F
!¼ ReðcF!eiuetÞ and u!¼ Reðcu!eiuetÞ (4.47)

The fundamental equation of motion is derived from F
!¼ M$ €u! :
½�u2
eðM þ AÞ þ iueN þ S�cu! ¼ cF!e (4.48)

Here M, A, N, and S are real-valued 6 � 6 matrices. For mass distribution symmetrical to
y ¼ 0 the mass matrix M is:
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M ¼

26666664
m 0 0 0 mzg 0
0 m 0 �mzg 0 mxg
0 0 m 0 �mxg 0
0 �mzg 0 qxx 0 �qxz

mzg 0 �mxg 0 qyy 0
0 mxg 0 �qxz 0 qzz

37777775 (4.49)

The mass moments of inertia q are related to the origin of the ship-fixed coordinate system:
qxx ¼
Z

ðy2 þ z2Þ dm ; qxz ¼
Z

xz dm ; etc: (4.50)

If we neglect contributions from a dry transom stern and other hydrodynamic forces due to the
forward speed of the ship, the restoring forces matrix S is:

S ¼

26666664
0 0 0 0 0 0
0 0 0 0 0 0
0 0 rgAw 0 �rgAwxw 0
0 0 0 gmGM 0 0
0 0 �rgAwxw 0 gmGML 0
0 0 0 0 0 qzzu

2
g

37777775 (4.51)

Here Aw is the waterline area, xw the x coordinate of the center of the waterline, GM the
metacentric height, GML the longitudinal metacentric height, and ug the circular natural

frequency of yaw motions. ug is determined by the control characteristics of the autopilot and

usually has little influence on the yaw motions in seaways. In computing GML, the moment of

inertia is taken with respect to the origin of the coordinate system (usually amidships) and not,

as usual, with respect to the center of the waterline. For corrections for dry transoms and

unsymmetrical bodies reference is made to Söding (1987).

N is the damping matrix; it contains mainly the effect of the radiated waves. A is the added

mass matrix. The decomposition of the force into hydrostatic (S) and hydrodynamic (A)

components is somewhat arbitrary, especially for the ship with forward speed. Therefore,

comparisons between computations and experiments are often based on the term �u2
eA + S.

F
!

e is the vector of exciting forces which a wave would exert on a ship fixed on its average

position (diffraction problem). The exciting forces can be decomposed into a contribution due to

the pressure distribution in the undisturbed incident wave (FroudeeKrilov force) and the

contribution due to the disturbance by the ship (diffraction force). Both contributions are of

similar order of magnitude. To determine A and N, the flow due to the harmonic ship motions u!
must be computed (radiation problem). For small frequency of the motion (i.e. large wave

length of the radiated waves), the hydrostatic forces dominate and the hydrodynamic forces are

almost negligible. Therefore large relative errors in computing A and N are acceptable. For high
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frequencies, the crests of the waves radiated by the ship motions are near the ship almost parallel

to the ship hull, i.e. predominantly in the longitudinal direction. Therefore the longitudinal

velocity component of the radiated waves can be neglected. Then only the two-dimensional

flow around the ship sections (strips) must be determined. This simplifies the computations

a great deal.

For the diffraction problem (disturbance of the wave due to the ship hull), which determines the

exciting forces, a similar reasoning does not hold: unlike radiation waves (due to ship motions),

diffraction waves (due to partial reflection at the hull and distortion beyond the hull) form

a similar angle (except for sign) with the hull as the incident wave. Therefore, for most incident

waves, the diffraction flow will also feature considerable velocities in the longitudinal

direction. These cannot be considered in a regular strip method, i.e. if we want to consider all

strips as hydrodynamically independent. This error is partially compensated by computing the

diffraction flow for wave frequency u instead of encounter frequency ue, but a residual error

remains. To avoid these residual errors, sometimes F
!

e is determined indirectly from the

radiation potential following formulae of Newman (1965). However, these formulae are only

valid if the waterline is also streamline. This is especially not true for ships with submerged

transom sterns.

For the determination of the radiation and (usually also) diffraction (¼ exciting) forces, the

two-dimensional flow around an infinite cylinder of the same cross-section as the ship at the

considered position is solved (Fig. 4.16). The flow is generated by harmonic motions of the

cylinder (radiation) or an incident wave (diffraction). Classical methods used analytical

solutions based on multipole methods. Today, usually two-dimensional panel methods are

preferred due to their (slightly) higher accuracy for realistic ship geometries. These two-

dimensional panel methods can be based on GFM or RSM (see Chapter 3).

The flow and thus the pressure distribution depend on:

• for the radiation problem: hull shape, frequency ue, and direction of the motion (vertical,

horizontal, rotational)

• for the diffraction problem: hull shape, wave frequency u, and encounter angle m.

For the radiation problem, we compute the pressure distributions for unit amplitude motions in

one degree of freedom and set all other motions to zero and omit the incident wave. For the

diffraction problem, we set all motions to zero and consider only the incident wave and its

diffraction. We denote the resulting pressures by:
bp2 for horizontal unit motion of the cylinder;bp3 for vertical unit motion of the cylinder;bp4 for rotational unit motion of the cylinder around the x axis;bp0 for the fixed cylinder in waves (only the pressure in the undisturbed wave);bp7 for the fixed cylinder in waves (only the disturbance of the pressure due to the body).
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Principle of strip method
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Let the actual motions of the cylinder in a wave of amplitude bhx be described by the complex

amplitudes bu2;0x, bu3;0x, bu4;0x. Then the complex amplitude of the harmonic pressure is:

bpi ¼ bp2bu2;0x þ bp3bu3;0x þ bp4bu4;0x þ ðbp0 þ bp7Þbhx (4.52)

The amplitudes of the forces per length on the cylinder are obtained by integrating the pressure
over the wetted surface of a cross-section (wetted circumference):

8><>:
bf 2bf 3bf 4
9>=>; ¼

Z l
0

8<: n2
n3

yn3 � zn2

9=;$bpi d[ ¼ Z l
0

8<: n2
n3

yn3 � zn2

9=;$

8>>><>>>:
bp2bp3bp4bp0 þ bp7

9>>>=>>>;
T

d[$

8>>><>>>:
bu2;0xbu3;0xbu4;0xbhx

9>>>=>>>; (4.53)

{0, n2, n3} is here in the inward unit normal on the cylinder surface. The index x in the last

vector indicates that all quantities are taken at the longitudinal coordinate x at the ship, i.e. the

position of the strip under consideration. [ is the circumferential length coordinate of the

wetted contour. We can write the above equation in the form:

c
f
! ¼ bH$

nbu2;0x; bu3;0x; bu4;0x; bhxoT (4.54)
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The elements of the matrix bH , obtained by the integrals over the wetted surface in the above
original equation, can be interpreted as added masses aij, damping nij and exciting forces per

wave amplitude bf ei:
bH ¼

264u2
ea22 � iuen22 0 u2

ea24 � iuen24 bf e2
0 u2

ea33 � iuen33 0 bf e3
u2
ea42 � iuen42 0 u2

ea44 � iuen44 bf e4
375 (4.55)

For example, a22 is the added mass per cylinder length for horizontal motion.

The added mass tends towards infinity as the frequency goes to zero. However, the effect of the

added mass also goes to zero for small frequencies, as the added mass is multiplied by the

square of the frequency.

The forces on the total ship are obtained by integrating the forces per length (obtained for the

strips) over the ship length. For forward speed, the harmonic pressure according to the

linearized Bernoulli equation also contains a product of the constant ship speed eV and the

harmonic velocity component in the x direction. Also, the strip motions denoted by index x

have to be converted to global ship motions in six degrees of freedom. This results in the global

equation of motion: h
S� u2

eðM þ bBÞi bu ¼ bEh (4.56)

bB is a complex matrix. Its real part is the added mass matrix A. Its imaginary part is the
damping matrix N:

u2
e
bB ¼ u2

eA� iueN ¼
Z
L

VðxÞ$
�
1þ iV

ue

v

vx

�� bHB$WðxÞ� dx (4.57)

This equation can be used directly to compute bB, e.g. using the trapezoidal rule for the integrals

and numerical difference schemes for the differentiation in x. Alternatively, partial integration

can remove the x derivatives. The new quantities in the above equations are defined as:

c
E
! ¼

c
F
!

E

h
¼
Z
L

VðxÞ$
 bHE þ iV

u

v bHE7

vx

!
eikxcos m dx (4.58)

WðxÞ ¼
24 0 1 0 tx 0 x� V=ðiueÞ
0 0 1 0 �xþ V=ðiueÞ 0
0 0 0 1 0 0

35 (4.59)
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tx is the z coordinate (in the global ship system) of the origin of the reference system for a strip.
(Often a strip reference system is chosen with origin in the waterline, while the global ship

coordinate system may have its origin on the keel.)

VðxÞ ¼

26666664
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 tx 0 1 0
�tx 0 �x 0 1
0 x 0 0 0

37777775 (4.60)

bHB ¼

266664
0 0 0

u2
ea22 � iuen22 0 u2

ea24 � iuen24
0 u2

ea33 � iuen33 0
u2
ea42 � iuen42 0 u2

ea44 � iuen44
0 0 0

377775 (4.61)

bHE ¼

8>>>><>>>>:
�irgkAx cosmbf e2bf e3bf e4
�irgkAxsx cosm

9>>>>=>>>>; (4.62)

Ax is the submerged section area at x; sx is the vertical coordinate of the center of the submerged
section area in the global system. bHE contains both the FroudeeKrilov part from the

undisturbed wave (Index 0) and the diffraction part (Index 7), while bHE7 contains only the

diffraction part.

The formulae for bB and
c
E
!

contain x derivatives. At locations x, where the ship cross-section

changes suddenly (propeller aperture, vertical stem, submerged transom stern), this would

result in extremely high forces per length. To a large extent, this is actually true at the bow, but

not at the stern. If the cross-sections decrease rapidly there, the streamlines separate from the

ship hull. The momentum (which equals added mass of the cross-section times velocity of the

cross-section) then remains in the ship’s wake while the above formulae would yield in strict

application zero momentum behind the ship as the added mass is zero there. Therefore, the

integration of the x derivatives over the ship length in the above formulae has to end at such

locations of flow separation in the aftbody.
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The global equation of motion above yields the vector of the response amplitude operators

(RAOs) (¼ complex amplitude of reaction/wave amplitude) for the ship motions:

bu
h
¼
�
S� u2

e ½M þ bB���1
$
c
E
!

(4.63)

The effect of rudder actions due to course deviations (yaw oscillations) was already
considered in the matrix S. In addition, there are forces on the rudder (and thus the ship)

due to ship motions (for centrally located rudders only due to sway, yaw, and roll) and due

to the incident wave. Here it is customary to incorporate the rudder in the model of the

rigid ship filling the gaps between rudder and ship. (While this is sufficient for the

computation of the ship motions, it is far too crude if the forces on the rudder in a seaway

are to be computed.)

Accurate computation of the motions, pressures, internal forces, etc. requires further additions

and corrections, e.g. to capture the influence of non-linear effects especially for roll motion,

treatment of low encounter frequencies, influence of bilge keels, stabilizing fins, etc. The

special and often empirical treatment of these effects differs in various strip methods. Details

can be found in the relevant specialized literature.
4.4.3. Rankine Singularity Methods

Bertram and Yasukawa (1996) give an extensive survey of these methods. A linear frequency-

domain method is described briefly here to exemplify the general approach.

In principle, RSM can consider the steady potential completely. If fs is completely captured

the methods are called ‘fully three-dimensional’ to indicate that they capture both the

steady and the harmonic flow three-dimensionally. In this case, first the ‘fully non-linear’

wave resistance problem is solved to determine fs and its derivatives, including second

derivatives of fs on the hull. The solution also yields all other steady flow effects, namely

dynamic trim and sinkage, steady wave profile on the hull, and the steady wave pattern on

the free surface. Then the actual seakeeping computations can be performed considering the

interaction between steady and harmonic flow components. The boundary conditions for fI

are linearized with regard to wave amplitude h and quantities proportional to h, e.g. ship

motions. The Laplace equation (mass conservation) is solved subject to the boundary

conditions:

1. Water does not penetrate the hull.

2. Water does not penetrate the free surface.

3. At the free surface there is atmospheric pressure.

4. Far away from the ship, the flow is undisturbed.

5. Waves generated by the ship radiate away from the ship.



Ship Seakeeping 175
6. Waves generated by the ship are not reflected at the artificial boundary of the computa-

tional domain.

7. For antisymmetric motions (sway, roll, yaw), a Kutta condition is enforced on the stern.

8. Forces (and moments) not in equilibrium result in ship motions.

For s ¼ ueV/g > 0.25 waves generated by the ship travel only downstream, similar to the

steady wave pattern. Thus also the same numerical techniques as for the steady wave resistance

problem can be used to enforce proper radiation, e.g. shifting source elements relative to

collocation points downstream. Values s < 0.25 appear especially in following waves. Various

techniques have been proposed for this case, as discussed in Bertram and Yasukawa (1996).

However, there is no easy and accurate way in the frequency domain. In the time domain,

proper radiation follows automatically and numerical beaches have to be introduced to avoid

reflection at the outer boundary of the computational domain.

We split here the six-component motion vector of the section on the strip method approach

into two three-component vectors. u!¼ fu1; u2; u3gT describes the translations, a!¼
fa1;a2;a3gT the rotations. The velocity potential is again decomposed as in Section 4.4.1:

ft ¼ ð�Vxþ fsÞ þ ðfw þ fIÞ (4.64)

The steady potential fs is determined first. Typically, a ‘fully non-linear’ wave resistance code
employing higher-order panels is also used to determine second derivatives of the potential on

the hull. Such higher-order panels are described in the section on boundary elements. fw is the

incident wave as in Section 4.3:

fw ¼ Reð�icbhe�kze�ikðx cos m�y sin mÞeiuetÞ (4.65)

The wave amplitude is chosen to bh ¼ 1. The remaining unknown potential fI is decomposed
into diffraction and radiation components:

fI ¼ fd þ
X6
i¼1

fiui (4.66)

The boundary conditions 1e3 and 7 are numerically enforced in a collocation scheme, i.e. at
selected individual points. The remaining boundary conditions are automatically fulfilled in

a Rankine singularity method. Combining 2 and 3 yields the boundary condition on the free

surface, to be fulfilled by the unsteady potential fw þ fI:�
�u2

eþBiue

�bfð1Þ þ
��

2iueþB


Vfð0Þ þ a!ð0Þ þ a!g

�
Vbfð1Þ þVfð0ÞðVfð0ÞVÞVbfð1Þ ¼ 0

(4.67)

with:
fð0Þ ¼ �Vxþ fs steady potential (4.68)
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g T
a!ð0Þ ¼ ðVfð0ÞVÞVfð0Þ steady particle acceleration (4.69)

a! ¼ a!� f0; 0; gg (4.70)

B ¼ � 1

ag3

vðVfð0Þ a!gÞ
vz

(4.71)

V ¼ fv=vx; v=vy; v=vzgT (4.72)

The boundary condition 1 yields on the ship hull:
n!Vbfð1Þ þcu!ðm!� iue n
!Þ þca!½ x!� ðm!� iue n

!Þ þ n!� Vfð0Þ� ¼ 0 (4.73)

Here the m-terms have been introduced:
m!¼ ð n!VÞVfð0Þ (4.74)

Vectors n! and x! are to be taken in the ship-fixed system.
The diffraction potential fd and the six radiation potentials fi are determined in a panel method

that can employ regular first-order panels. The panels are distributed on the hull and on (or

above) the free surface around the ship. The Kutta condition requires the introduction of

additional dipole (or alternatively vortex) elements.

Test computations for a container ship (standard ITTC test case S-175) have shown

a significant influence of the Kutta condition for sway, yaw, and roll motions for small

encounter frequencies.

To determine fd, all motions (ui, i ¼ 1 to 6) are set to zero. To determine the fi, the

corresponding ui is set to 1, all other motion amplitudes, fd and fw to zero. Then the boundary

conditions form a system of linear equations for the unknown element strengths which is

solved, for example, by Gauss elimination. Once the element strengths are known, all

potentials and derivatives can be computed.

For the computation of the total potential ft, the motion amplitudes ui remain to be

determined. The necessary equations are supplied by the momentum equations:

mð €u!þ €a!� x!gÞ ¼ � a!� G
!þ

Z
ðpð1Þ � r½ u! a!g þ a!ð x!� a!gÞ� n! dS (4.75)

mð x!g � €u!Þ þ I €a!¼ � x!g � ð a!� G
!Þ þ

Z
ðpð1Þ � r½ u! a!g þ a!ð x!� a!gÞ�

�ð x!� n!Þ dS
(4.76)
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G¼ gm is the ship’s weight, x!g its center of gravity and I the matrix of the moments of inertia
of the ship (without added masses) with respect to the coordinate system. I is the lower-right

3 � 3 sub-matrix of the 6 � 6 matrix M given in the section for the strip method.

The integrals extend over the average wetted surface of the ship. The harmonic pressure p(1)

can be decomposed into parts due to the incident wave, due to diffraction, and due to radiation:

pð1Þ ¼ pw þ pd þ
X6
i¼1

piui (4.77)

The pressures pw, pd and pi, collectively denoted by pj, are determined from the linearized
Bernoulli equation as:

p j ¼ �rðfj
t þ Vfð0ÞVfjÞ (4.78)

The two momentum vector equations above form a linear system of equations for the six
motions, ui, which is easily solved.

The explicit consideration of the steady potential s changes the results for computed heave and

pitch motions for wavelengths of similar magnitude as the ship length e these are the

wavelengths of predominant interest e by as much as 20e30% compared to total neglect. The

results for standard test cases such as the Series-60 and the S-175 agree much better with

experimental data for the ‘fully three-dimensional’ method. For the standard ITTC test case of

the S-175 container ship, in most cases good agreement with experiments could be obtained

(Fig. 4.17). Only for low encounter frequencies are the antisymmetric motions over-predicted,

probably because viscous effects and autopilot were not modeled at all in the computations.

If the steady flow is approximated by double-body flow, similar results are obtained as long

as the dynamic trim and sinkage are small. However, the computational effort is nearly the same.

Japanese experiments on a tanker model indicate that for full hulls the diffraction pressures in

the forebody for short head waves (l/L ¼ 0.3 and 0.5) are predicted with errors of up to 50% if

fs is neglected (as typically in GFM or strip methods). Computations with and without

consideration of fs yield large differences in the pressures in the bow region for radiation in

short waves and for diffraction in long waves.
4.4.4. Problems for Fast and Unconventional Ships

Seakeeping computations are problematic for fast and unconventional ships. Seakeeping

plays a special role here, as fast ships are often passenger ferries, which need good

seakeeping characteristics to attract passengers. This is the reason why, for instance, planing

boats with their bad seakeeping are hardly ever used for commercial passenger transport. For

fast cargo ships, the reduced speed in seaways can considerably influence transport
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efficiency. A hull form, which is superior in calm water, may well become inferior in

moderate seaways. Warships also often require good seakeeping to supply stable platforms

for weapon systems, helicopters, or planes.
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Unfortunately, computational methods for conventional ships are usually not at all or

only with special modifications suitable for fast and unconventional ships. The special

‘high-speed strip theory’ (see Section 4.4.1) has been successfully applied in various

forms to both fast monohulls and multihulls. Japanese validation studies showed that for

a fast monohull with transom stern the HSST fared much better than both conventional

strip methods and three-dimensional GFM and RSM. However, the conventional strip

methods and the three-dimensional methods did not use any special treatment of the large

transom stern of the test case. This impairs the validity of the conclusions. Researchers at

the MIT have shown that at least for time-domain RSM the treatment of transom sterns

is possible and also yields good results for fast ships, albeit at a much higher

computational effort than the HSST. In most cases, HSST should yield the best

costebenefit ratio for fast ships.

It is often claimed in the literature that conventional strip methods are only suitable for

low ship speeds. However, benchmark tests show that strip methods can yield good

predictions of motion RAOs up to Froude numbers Fn z 0.6, provided that proper care is

taken and the dynamic trim and sinkage and the steady wave profile at the hull are

included to define the average submergence of the strips. The prediction of dynamic trim

and sinkage is relatively easy for fast displacement ships, but difficult for planing

boats. Neglecting these effects, i.e. computing for the calm-water wetted surface, may

be a significant reason why often a lower Froude number limit of Fn z 0.4 is cited in the

literature.

For catamarans, the interaction between the hulls plays an important role especially for low

speeds. For design speed, the interaction is usually negligible in head seas. Three-dimensional

methods (RSM, GFM) capture automatically the interaction as both hulls are simultaneously

modeled. The very slender form of the demihulls introduces smaller errors for GFM catamaran

computations than for monohulls. Both RSM and GFM applications to catamarans can be

found in the literature, usually for simplified research geometries. Strip methods require special

modifications to capture, at least in good approximation, the hull interaction, namely multiple

reflection of radiation and diffraction waves. Simply using the hydrodynamic coefficients for

the two-dimensional flow between the two cross-sections leads to strong overestimation of the

interaction for V > 0.

Seakeeping computations for air-cushioned vehicles and surface effect ships are particularly

difficult due to additional problems:

• The flexible skirts deform under the changing air cushion pressure and the contact with the

free surface. Thus the effective cushion area and its center of gravity change.

• The flow and the pressure in the cushion contain unsteady parts which depend strongly on

the average gap between free surface and skirts.

• The dynamics of fans (and their motors) influences the ship motions.
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In particular the narrow gaps between skirts and free surface result in a strongly non-linear

behavior that so far excludes accurate predictions.
4.4.5. Further Quantities in Regular Waves

Within a linear theory, the velocity and acceleration RAOs can be directly derived, once the

motion RAOs are determined. The relative motion between a point on the ship and the water

surface is important to evaluate the danger of slamming or water on deck. The RAOs for

relative motion should incorporate the effect of diffraction and radiation, which is again quite

simple once the RAOs for the ship motions are determined. However, effects of flared hull

shape with outward forming spray for heave motion cannot be modeled properly within a linear

theory, because these depend non-linearly on the relative motion. In practice, the section flare

is important for estimating the amount of water on deck.

Internal forces on the ship hull (longitudinal, transverse, and vertical forces, torsional,

transverse, and longitudinal bending moments) can also be determined relatively easily for

known motions. The pressures are then only integrated up to a given cross-section instead of

over the whole ship length. (Within a strip method approach, this also includes the matrix of

restoring forces S, which contains implicitly many hydrostatic pressure terms.) Also, the mass

forces (in matrix M) should only be considered up to the given location x of the cross-section.

Stresses in the hull can then be derived from the internal forces. However, care must be taken

that the moments are transformed to the neutral axis of the ‘beam’ ship hull. Also, stresses in the

hull are often of interest for extreme loads where linear theory should no longer be applied.

The longitudinal force on the ship in a seaway is to first order within a linear theory also

a harmonically oscillating quantity. The time average of this quantity is zero. However, in

practice the ship experiences a significantly non-zero added resistance in seaways. This added

resistance (and similarly the transverse drift force) can be estimated using linear theory. Two

main contributions appear:

• Second-order pressure contributions are integrated over the average wetted surface.

• First-order pressure contributions are integrated over the difference between average

and instantaneous wetted surface; this yields an integral over the contour of the water-

plane.

If the steady flow contribution is completely retained (as in some three-dimensional BEM), the

resulting expression for the added resistance is rather complicated and also involves second

derivatives of the potential on the hull. Usually this formula is simplified assuming:

• uniform flow as the steady base flow;

• dropping a term involving x-derivatives of the flow;

• considering only heave and pitch as main contributions to added resistance.
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4.4.6. Ship Responses in Stationary Seaway

Here the issue is how to get statistically significant properties in natural seaways from

a response amplitude operator Yr (u,m) in elementary waves for an arbitrary response r

depending linearly on wave amplitude. The seaway is assumed to be stationary with known

spectrum Sz(u,m).

Since the spectrum is a representation of the distribution of the amplitude squared over u and

m, and the RAO bY r is the complex ratio of rA/zA, the spectrum of r is given by:

Srðu;mÞ ¼ jYrðu;mÞj2Szðu;mÞ (4.79)

Values of r, chosen at a random point in time, follow a Gaussian distribution. The average of r
is zero if we assume r ~ zA , i.e. in calm water r ¼ 0. The probability density of randomly

chosen r values is:

f ðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2psr

p exp

�
� r2

2s2r

�
(4.80)

The variance s2r is obtained by adding the variances due to the elementary waves in which the
natural seaway is decomposed:

s2r ¼
ZN
0

Z2p
0

Srðu;mÞ dm du (4.81)

The sum distribution corresponding to the frequency density f(r) above is:
FðrÞ ¼
Zr

�N

f ðrÞ dr ¼ 1

2
½1þ fðr=srÞ� (4.82)

The probability integral f is defined as:
f ¼ 2ffiffiffiffiffiffi
2p

p
Zx

�N

e�t2=2 dt (4.83)

F(r) gives the percentage of time when a response (in the long-term average) is less or equal to
a given limit r. 1 e F(r) is then the corresponding percentage of time when the limit r is

exceeded.

More often the distribution of the amplitudes of r is of interest. We define here the amplitude of

r (differing from some authors) as the maximum of r between two following upward zero
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crossings (where r ¼ 0 and _r > 0). The amplitudes of r are denoted by rA. They have

approximately (except for extremely ‘broad’ spectra) the following probability density:

f ðrAÞ ¼ rA
s2r

exp

�
� r2A
2s2r

�
(4.84)

The corresponding sum distribution is:
FðrAÞ ¼ 1� exp

�
� r2A
2s2r

�
(4.85)

sr follows again from Eq. (4.81). The formula for F(rA) describes a so-called Rayleigh
distribution. The probability that a randomly chosen amplitude of the response r exceeds rA is:

1� FðrAÞ ¼ exp

�
� r2A
2s2r

�
(4.86)

The average frequency (occurrences/time) of upward zero crossings is derived from the r
spectrum to:

f0 ¼ 1

2psr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZN
0

Z2p
0

u2
eSrðu;mÞ dm du

vuuut (4.87)

Together with Eq. (4.86) this yields the average occurrence of r amplitudes which exceed
a limit rA during a period T:

zðrAÞ ¼ Tf0 exp

�
� r2A
2s2r

�
(4.88)

Often we are interested in questions such as, ‘What is the probability that during a period T
a certain stress is exceeded in a structure or an opening is flooded?’ Generally, the issue is then

the probability P0(rA) that during a period T the limit rA is never exceeded. In other words,

P0(rA) is the probability that the maximum amplitude during the period T is less than rA. This is

given by the sum function of the distribution of the maximum of r during T. We make two

assumptions:

• zðrAÞ << Tf0; this is sufficiently well fulfilled for rA � 2sr.

• An amplitude rA is statistically nearly independent of its predecessors. This is true for most

seakeeping responses, but not for the weakly damped amplitudes of elastic ship vibration

excited by seaway, for example.

Under these assumptions we have:

P0ðrAÞ ¼ e�zðrAÞ (4.89)
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If we insert here the above expression for z(rA) we obtain the ‘double’ exponential distribution
typical for the distribution of extreme values:

P0ðrAÞ ¼ e�Tf0 expð�r2A=ð2s2
r ÞÞ (4.90)

The probability of exceedence is then 1e P0(rA). Under the (far more limiting) assumption that
z(rA) << 1 we obtain the approximation:

1� P0ðrAÞzzðrAÞ (4.91)

The equations for P0(rA) assume neither a linear correlation of the response r from the wave
amplitude nor a stationary seaway. They can therefore also be applied to results of non-linear

simulations or long-term distributions.
4.4.7. Time-Domain Simulation Methods

The appropriate tools to investigate strongly non-linear ship reactions are simulations in the

time domain. The seaway itself is usually linearized, i.e. computed as superposition of

elementary waves. The frequencies of the individual elementary waves uj may not be integer

multiples of a minimum frequency umin. In this case, the seaway would repeat itself after

2p/umin unlike a real natural seaway. Appropriate methods to choose the uj are:

• The uj are chosen such that the area under the sea spectrum between uj and ujþ1 is the

same for all j. This results in constant amplitudes for all elementary waves regardless of

frequency.

• The frequency interval of interest for the simulation is divided into intervals. These

intervals are larger where Sz or the important RAOs are small and vice versa. In each

interval a frequency uj is chosen randomly (based on constant probability distribution).

One should not choose the same uj for all the L encounter angles under consideration.

Rather each combination of frequency uj and encounter angle ml should be chosen anew

and randomly.

The frequencies, encounter angles, and phase angles chosen before the simulation must be kept

during the whole simulation.

Starting from a realistically chosen start position and velocity of the ship, the simulation

computes in each time step the forces and moments acting from the moving water on the ship.

The momentum equations for translations and rotations give the translational and rotational

accelerations. Both are three-component vectors and are suitably expressed in a ship-fixed

coordinate system. The momentum equations form a system of six scalar, coupled ordinary

second-order differential equations. These can be transformed into a system of 12 first-order

differential equations which can be solved by standard methods, e.g. fourth-order

RungeeKutta integration. This means that the ship position and velocity at the end of a small
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time interval, e.g. 1 second, are determined from the corresponding data at the beginning of this

interval using the computed accelerations.

The forces and moments can be obtained by integrating the pressure distribution over the

momentary wetted ship surface. Three-dimensional methods are usually too expensive for this

purpose. Therefore modified strip methods are most frequently used. A problem is that the

pressure distribution depends not only on the momentary position, velocity, and acceleration,

but also on the history of the motion which is reflected in the wave pattern. This effect is

especially strong for heave and pitch motions. In computations for the frequency domain, the

historical effect is expressed in the frequency dependency of the added mass and damping. In

time-domain simulations, we cannot consider a frequency dependency because there are many

frequencies at the same time and the superposition principle does not hold. Therefore, the

historical effect on the hydrodynamic forces and moments F
!

is either expressed in convolution

integrals ( u! contains here not only the ship motions, but also the incident waves):

F
!ðtÞ ¼

Z t
�N

KðsÞ u!ðsÞ ds (4.92)

Or one considers 0 to n time derivatives of the forces F
!

and 1 to (nþ 1) time derivatives of the
motions u! :

B0 F
!ðtÞ þ B1

_
F
!ðtÞ þ B2

€
F
!ðtÞ þ. ¼ A0

_u!ðtÞ þ A1
€u!ðtÞ þ A0 u

!.ðtÞ þ. (4.93)

The matrix K(s) in the first alternative and the scalars Ai, Bi in the second alternative are
determined in potential flow computations for various sinkage and heel of the individual strips.

The second alternative is called the state model and appears to be far superior to the first

alternative. Typical values for n are 2e4; for larger n, problems occur in the determination of the

constants Ai and Bi resulting, for example, in numerically triggered oscillations. Pereira (1988)

gives details of such a simulation method, namely SIMBEL. The simulation method has been

extended considerably in the meantime and can also consider simultaneously the flow of water

through a damaged hull, sloshing of water in the hull, or water on deck.

A far simpler and far faster approach is described, e.g., in Söding (1987). Here only the

strongly non-linear surge and roll motions are determined by a direct solution of the equations

of motion in the time-domain simulation (code ROLLS). The other four degrees of freedom are

linearized and then treated similarly as the incident waves, i.e. they are computed from RAOs

in the time domain. This is necessary to couple the four linear motions to the two non-linear

motions. (Roll motions are often simulated as independent from the other motions, but this

yields totally unrealistic results.) The restriction to surge and roll much simplifies the

computation, because the history effect for these degrees of freedom is negligible. Extensive

validation studies for this approach with model tests gave excellent agreement for capsizing of
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damaged ro-ro vessels drifting without forward speed in transverse waves (Chang and Blume

1998).

Simulations often aim to predict the average occurrence z(rA) of incidents where in a given

period T a seakeeping response r(t) exceeds a limit rA. A new incident is then counted when

after a previous incident another zero crossing of r occurred. The average occurrence is

computed by multiple simulations with the characteristic data, but other random phases 3jl for

the superposition of the seaway. Alternatively, the simulation time can be chosen as nT and the

number of occurrences can be divided by n. Both alternatives yield the same results except for

random fluctuations.

Often seldom (extremely unlikely) incidents are of interest which would require simulation

times of weeks to years to determine z(rA) directly if the occurrences are determined as

described above. However, these incidents are expected predominantly in the presence of one

or several particularly high waves. One can then reduce the required simulation time drastically

by substituting the real seaway of significant wave height Hreal by a seaway with larger

significant wave height Hsim. The periods of both seaways shall be the same. The following

relation between the incidents in the real seaway and in the simulated seaway exists

(Söding 1987):

H2
sim

H2
real

¼ ln½zrealðrAÞ=zð0Þ� þ 1:25

ln½zsimðrAÞ=zð0Þ� þ 1:25
(4.94)

This equation is sufficiently accurate for zsim /z(0) < 0.03. In practice, one determines in
simulated seaway, e.g. with 1.5e2 times larger significant wave height, the occurrences

zsim(rA) and z(0) by direct counting; then Eq. (4.94) is solved for the unknown zreal(rA):

zrealðrAÞ ¼ zð0Þexp
 
H2
sim

H2
real

fln½zsimðrAÞ=zð0Þ� þ 1:25g � 1:25

!
(4.95)

4.4.8. Long-Term Distributions

Section 4.4.6 treated ship reactions in stationary seaway. This section will cover probability

distributions of ship reactions r during periods T with changing sea spectra. A typical

example for T is the total operational time of a ship. A quantity of interest is the average

occurrence zL(rA) of cases when the reaction r(t) exceeds the limit rA. The average can be

thought of as the average over many hypothetical realizations, e.g. many equivalently

operated sister ships.

First, one determines the occurrence z(rA;H1/3,Tp,m0) of exceeding the limit in a stationary

seaway with characteristics H1/3, Tp, and m0 during total time T. (See Section 4.4.6 for linear
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ship reactions and Section 4.4.7 for non-linear ship reactions.) The weighted average of the

occurrences in various seaways is formed. The weighing factor is the probability p(H1/3,Tp,m0)

that the ship encounters the specific seaway:

zLðrAÞ ¼
X

all H1=3

X
all Tp

X
all m0

zðrA;H1=3;Tp;m0Þ$pðH1=3;Tp;m0Þ (4.96)

Usually, for simplification, it is assumed that the ship encounters seaways with the same
probability under nm encounter angles m0:

zLðrAÞ ¼ 1

nm

X
all H1=3

X
all Tp

Xnm
i¼1

zðrA;H1=3; Tp;m0iÞ$pðH1=3;TpÞ (4.97)

The probability p(H1/3,Tp) for encountering a specific seaway can be estimated using
data as given in Table 4.2. If the ship were to operate exclusively in the ocean area for

Table 4.2, the table values (divided by 106) could be taken directly. This is not the

case in practice and requires corrections. A customary correction then is to base the

calculation only on 1/50 or 1/100 of the actual operating time of the ship. This correction

considers, e.g.:

• The ship usually operates in areas with not quite so strong seaways as given in Table 4.2.

• The ship tries to avoid particularly strong seaways.

• The ship reduces speed or changes course relative to the dominant wave direction, if it

cannot avoid a particularly strong seaway.

• Some exceedence of rA is not important, e.g. for bending moments if they occur in load

conditions when the ship has only a small calm-water bending moment.

The sum distribution of the amplitudes rA, i.e. the probability that an amplitude r is less than

a limit rA, follows from zL:

PLðrAÞ ¼ 1� zLðrAÞ
zLð0Þ (4.98)

zL(0) is the number of amplitudes during the considered period T. This distribution is used
for seakeeping loads in fatigue strength analyses of the ship structure. It is often only

slightly different from an exponential distribution, i.e. it has approximately the sum

distribution:

PLðrAÞ ¼ 1� e�rA=r0 (4.99)

r0 is a constant describing the load intensity. (In fatigue strength analyses, often the
logarithm of the exceedence probability log(1 e PL) is plotted over rA; since for an

exponential distribution the logarithm results in a straight line, this is called a log-linear

distribution.)
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The probability distribution of the largest loads during the period T can be determined from

(see Section 4.4.6 for the underlying assumptions):

P0ðrAÞ ¼ e�zðrAÞ (4.100)

The long-term occurrence zL(rA) of exceeding the limit rA is inserted here for z(rA).
4.5. Slamming

In rough seas with large relative ship motion, slamming may occur with large water impact

loads. Usually, slamming loads are much larger than other wave loads. Sometimes ships suffer

local damage from the impact load or large-scale buckling on the deck. For high-speed

ships, even if each impact load is small, frequent impact loads accelerate fatigue failures of

hulls. Thus, slamming loads may threaten the safety of ships. The expansion of ship size and

new concepts in fast ships have decreased relative rigidity, causing in some cases serious

wrecks.

A rational and practical estimation method of wave impact loads is one of the most important

prerequisites for safety design of ships and ocean structures. Wave impact has challenged many

researchers since von Karman’s work in 1929. Today, mechanisms of wave impacts are

correctly understood for the two-dimensional case, and accurate impact load estimation is

possible for the deterministic case. The long-term prediction of wave impact loads can also be

given in the framework of linear stochastic theories. However, our knowledge on wave impact

is still insufficient. A fully satisfactory theoretical treatment has been prevented so far by the

complexity of the problem:

• Slamming is a strongly non-linear phenomenon, which is very sensitive to relative motion

and contact angle between body and free surface.

• Predictions in natural seaways are inherently stochastic; slamming is a random process in

reality.

• Since the duration of wave impact loads is very short, hydro-elastic effects are large.

• Air trapping may lead to compressible, partially supersonic flows where the flow in the

water interacts with the flow in the air.

Most theories and numerical applications are for two-dimensional rigid bodies (infinite

cylinders or bodies of rotational symmetry), but slamming in reality is a strongly three-

dimensional phenomenon. We will here briefly review the most relevant theories. Further

recommended literature includes:

• Tanizawa and Bertram (1998) for practical recommendations translated from the Kansai

Society of Naval Architects, Japan.

• Mizoguchi and Tanizawa (1996) for stochastic slamming theories.
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Figure 4.18:
Types of slamming impact of a ship
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• Korobkin (1996) for theories with strong mathematical focus.

• SSC (1995) for a comprehensive compilation (more than 1000 references) of older slam-

ming literature.

The wave impact caused by slamming can be roughly classified into four types (Fig. 4.18):

1. Bottom slamming occurs when emerged bottoms re-enter the water surface.

2. Bow-flare slamming occurs for high relative speed of bow-flare to the water surface.

3. Breaking wave impacts are generated by the superposition of incident wave and bow wave

hitting the bow of a blunt ship even for small ship motion.

4. Wet-deck slamming occurs when the relative heaving amplitude is larger than the height of

a catamaran’s wet-deck.

Both bottom and bow-flare slamming occur typically in head seas with large pitching and

heaving motions. All four water impacts are three-dimensional phenomena, but have been

treated as two-dimensional for simplicity. For example, types 1 and 2 were idealized as two-

dimensional wedge entry to the calm-water surface. Type 3 was also studied as a two-

dimensional phenomenon similar to wave impact on breakwaters. We will therefore review

two-dimensional theories first.

• Linear slamming theories based on expanding thin-plate approximation

Classical theories approximate the fluid as inviscid, irrotational, incompressible, and free

of surface tension. In addition, it is assumed that gravity effects are negligible. This allows

a (predominantly) analytical treatment of the problem in the framework of potential theory.

For bodies with small deadrise angle, the problem can be linearized. Von Karman (1929)

was the first to study theoretically water impact (slamming). He idealized the impact as

a two-dimensional wedge entry problem on the calm-water surface to estimate the water

impact load on a seaplane during landing (Fig. 4.19). Mass, deadrise angle, and initial

penetrating velocity of the wedge are denoted as m, b and V0. Since the impact is so rapid,

von Karman assumed very small water surface elevation during impact and negligible

gravity effects. Then the added mass is approximately mv ¼ 1=2prc2. r is the water
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Figure 4.19:
Water impact models of von Karman (left) and Wagner (right)
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density and c the half width of the wet area implicitly computed from dc=dt ¼ cot b. The

momentum before the impact mV0 must be equal to the sum of the wedge momentum mV

and added mass momentum mvV, yielding the impact load as:

P ¼ V2
0=tan b�

1þ rpc2

2m

�3
$rpc (4.101)

Since von Karman’s impact model is based on momentum conservation, it is usually
referred to as momentum impact, and because it neglects the water surface elevation, the

added mass and impact load are underestimated, particularly for small deadrise angle.

Wagner derived a more realistic water impact theory in 1932. Although he assumed still

small deadrise angles in his derivation, the theory was found to be unsuitable for b < 3�,
since then air trapping and compressibility of water play an increasingly important role. If

b is assumed small and gravity neglected, the flow under the wedge can be approximated

by the flow around an expanding flat plate in uniform flow with velocity V (Fig. 4.19).

Using this model, the velocity potential and its derivative with respect to y on the plate

y ¼ 0þ is analytically given as:

f ¼
�
V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � x2

p
for x < c

0 for x > c
(4.102)

vf

vy
¼
�

0 for x < c
V=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2=x2

p
for x > c

(4.103)

The time integral of the last equation gives the water surface elevation and the half width of
the wetted area c. The impact pressure on the wedge is determined from Bernoulli’s

equation as:

pðxÞ
r

¼ vf

vt
� 1

2
ðVfÞ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � x2

p dV

dt
þ V

cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � x2

p dc

dt
� 1

2

V2x2

c2 � x2
(4.104)
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Wagner’s theory can be applied to arbitrarily shaped bodies as long as the deadrise angle is
small, but not so small that air trapping plays a significant role. Wagner’s theory is simple

and useful, even if the linearization is sometimes criticized for its inconsistency as it retains

a quadratic term in the pressure equation. This term is indispensable for the prediction of

the peak impact pressure, but it introduces a singularity at the edge of the expanding plate

(x ¼ �c) giving negative infinite pressure there. Many experimental studies have checked

the accuracy of Wagner’s theory. Measured peak impact pressures are typically a little

lower than estimated. This suggested that Wagner’s theory gives conservative estimates for

practical use. However, a correction is needed on the peak pressure measured by pressure

gauges with finite gauge area. Special numerical FEM analyses of the local pressure in

a pressure gauge can be used to correct measured data. The corrected peak pressures agree

well with estimated values by Wagner’s theory. Today, Wagner’s theory is believed to give

accurate peak impact pressure for practical use, albeit only for suitable hull forms with

small deadrise angles.

The singularity of Wagner’s theory can be removed taking spray into account. An ‘inner’

solution for the plate is asymptotically matched to an ‘outer’ solution of the spray region,

as, for example, proposed byWatanabe in Japan in the mid-1980s (Fig. 4.20). The resulting

equation for constant falling velocity is consistent and free from singularities. Despite

this theoretical improvement, Watanabe’s andWagner’s theories predict basically the same

peak impact pressure (Fig. 4.21).
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Water impact model of Watanabe
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Spatial impact pressure distribution
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• Simple non-linear slamming theories based on self-similar flow

We consider the flow near the vertex of a two-dimensional body immediately after water

penetration. We can assume:

• Near the vertex, the shape of the two-dimensional body can be approximated by

a simple wedge.

• Gravity accelerations are negligible compared to fluid accelerations due to the impact.

• The velocity of the body V0 is constant in the initial stage of the impact.
Then the flow can be considered as self-similar depending only on x/V0t and y/V0t, where

x, y are Cartesian coordinates and t is time. Russian scientists have converted the problem

to a one-dimensional integral equation for f(t). The resulting integral equation is so

complicated that it cannot be solved analytically. However, numerically it has been solved

by Faltinsen in Norway up to deadrise angles b � 4�. The peak impact pressure for b ¼ 4�

was almost identical (0.31% difference) to the value given by Wagner’s theory.
• Slamming theories including air trapping

So far slamming theories have neglected the density of air, i.e. if a deformation of the free

surface was considered at all it occurred only after the body penetrated the water surface.

The reality is different. The body is preceded by an air cushion that displaces water already

before the actual body entry. Air plays an even bigger role if air trapping occurs. This is

especially the case for breaking wave impacts. In the 1930s, Bagnold performed

pioneering work in the development of theories that consider this effect. Bagnold’s impact

model is simply constructed from added mass, a rigid wall, and a non-linear air cushion

between them (Fig. 4.22). This model allows qualitative predictions of the relation

between impact velocity V0, air cushion thickness H, and peak impact pressure. For

example, the peak impact pressure is proportional to Vand
ffiffiffiffi
H

p
for slight impact and weak

non-linearity of the air cushion; but for severe impact, the peak impact pressure is

proportional to V2 and H. These scaling laws were validated by subsequent experiments.

Trapped air bottom slamming is another typical impact with air cushion effect. For two-

dimensional bodies, air trapping occurs for deadrise angles b � 3�. Chuang’s (1967)
experiment for two-dimensional wedges gave peak impact pressures as in Table 4.3. The
V

B m mk

k

Trapped air
Added mass DK

Figure 4.22:
Bagnold’s model



Table 4.3: Chuang’s (1967) relation for peak impact pressures

b 0� 1� 3� 6� 10� 15� ‡18�

Ppeak (kPa) 102V 115V1.4 189V1.6 64.5V2 31V2 17.8V2 Wagner’s theory
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impact velocity V is given in m/s. For b¼ 0� air trapping is significant and the peak impact

pressure is proportional to V. Increasing the deadrise angle reduces the amount of air

trapping and thus the non-linearity. For practical use, the peak impact pressure is usually

assumed to be proportional to V2 for all b. This results in a conservative estimate.

Johnson and Verhagen developed two-dimensional theories for bottom impact with air

trapping considering one-dimensional air flow between water surface and bottom to

estimate the water surface distortion and the trapped air volume (Fig. 4.23).

The peak impact pressure thus estimated was much higher than measured. This

disagreement results from the boundary condition at the edge of the flat bottom, where a jet

emits to the open air. The theory assumes that the pressure at the edge is atmospheric

pressure. This lets the air between water surface and bottom escape too easily, causing an

underestimated trapped air volume. Experiments showed that the pressure is higher than

atmospheric. Yamamoto has therefore proposed a modified model using a different

boundary condition.

Experiments at the Japanese Ship Research Institute observed the trapped air impact with

high-speed cameras and measured the initial thickness of air trapping. It was much thicker

than the estimates of both Verhagen and Yamamoto. The reason is that a mixed area of air

and water is formed by the high-speed air flow near the edge. Since the density of this

mixed area is much higher than that of air, this area effectively chokes the air flow

increasing air trapping.

The mechanism of wave impact with air trapping is in reality much more complicated.

Viscosity of air, the effect of air leakage during compression, shock waves inside the air

flow, and the complicated deformation of the free surface are all effects that may play an

important role. Computational fluid dynamics may be the key to significant success here,

but has not yet progressed sufficiently.
y
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Figure 4.23:
One-dimensional air flow model of Verhagen
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• Effect of water compressibility

When a blunt body drops on calm water or a flat bottom drops on a smooth wave crest,

usually no air trapping occurs. Nevertheless, one cannot simply use Wagner’s theory,

because at the top of such a blunt body or wave crest the relative angle between body and

free surface becomes zero. Then both Wagner’s and Watanabe’s theories give infinite

impact pressure. In reality, compressibility of liquid is important for a very short time at the

initial stage of impact, when the expansion velocity of the wet surface dc/dt exceeds the

speed of sound for water (cw z 1500 m/s) producing a finite impact pressure. Korobkin

(1996) developed two-dimensional theories which consider compressibility and free-

surface deformation. For parabolic bodies dropping on the calm-water surface, he derived

the impact pressure simply as P ¼ rcwV. Korobkin’s theory is far more sophisticated,

also yielding the time history of the pressure decay, but will not be treated here.

• Three-dimensional slamming theories

All slamming theories treated so far were two-dimensional, i.e. they were limited to cross-

sections (of infinite cylinders). Slamming for real ships is a strongly three-dimensional

phenomenon due to, for example, pitch motion and cross-sections in the foreship changing

rapidly in the longitudinal direction. Traditionally, approaches were used that obtain quasi

three-dimensional solutions based on strip methods or high-speed strip methods. At the

University of Michigan, Troesch developed a three-dimensional boundary element method

for slamming. However, the method needs to simplify the physics of the process and the

geometry of body and free surface and failed to show significant improvement over simpler

strip-method approaches when compared to experiments.

Limiting oneself to axisymmetric bodies dropping vertically into the water makes the

problem de facto two-dimensional. The study of three-dimensional water impact started

from the simple extension of Wagner’s theory to such cases. The water impact of a cone

with small deadrise angle can then be treated in analogy to Wagner’s theory as an

expanding circular disk. A straightforward extension of Wagner’s theory by Chuang over-

predicts the peak impact pressure. Subsequent refinements of the theory resulted in a better

estimate of the peak impact pressure:

pðrÞ ¼ 1

2
rV2

�
2

p

�2
"

4 cotbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2=c2

p � r2=c2

1� r2=c2

#
(4.105)

r and c correspond to x and c in Fig. 4.19. This equation gives about 14% lower peak
impact pressures than a straightforward extension of Wagner’s theory. Experiments

confirmed that the impact pressure on a cone is lower than that on a two-dimensional

wedge of the same deadrise angle. So the three-dimensional effect reduces the impact

pressure at least for convex bodies. This indicates that Wagner’s theory gives conservative

estimates for practical purposes. Since the impact on a ship hull is usually a very local

phenomenon, Wagner’s equation has also been used for three-dimensional surfaces using

local relative velocity and angle between ship hull and water surface.
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Watanabe (1986) extended his two-dimensional slamming theory to three-dimensional

oblique impact of flat-bottomed ships. This theory was validated in experiments observing

three-dimensional bottom slamming with a high-speed video camera and transparent

models. Watanabe classified the slamming of flat-bottomed ships into three types:

1. Slamming due to inclined re-entry of the bottom. The impact pressure runs from stern

to bow. No air trapping occurs.

2. Slamming due to vertical (orthogonal) re-entry of the bottom to a wave trough with

large-scale air trapping.

3. Slamming due to vertical (orthogonal) re-entry of the bottom to a wave crest with only

small-scale, local air trapping.

Type 1 (typical bottom impact observed for low ship speed) can be treated by Watanabe’s

three-dimensional theory. Type 3 (typical for short waves and high ship speed) corresponds

to Chuang’s theory for very small deadrise angle. Type 2 (also typical for short waves and

high ship speed) corresponds to Bagnold’s approach, but the air trapping and escaping

mechanisms are different to simple two-dimensional models.

• Hydro-elastic approaches in slamming

It is important to evaluate not only peak impact pressures but also structural responses to

the impact, to consider the impact pressure in the design of marine structures. Whipping

(large-scale, weakly dampened oscillations of the longitudinal bending moment) is

a typical elastic response to impact. In the late 1960s and 1970s, slamming and whipping

resulted in some spectacular shipwrecks, e.g. bulkers and container ships breaking

amidships. The disasters triggered several research initiatives, especially in Japan, which

eventually contributed considerably to the development of experimental and numerical

techniques for the investigation of slamming and whipping.

Let us denote the slamming impact load as Z(t) and the elastic response of a ship as S(t).

Assuming a linear relation between them, we can write:

SðtÞ ¼
ZN
0

hðt � sÞZðsÞ ds (4.106)
h(s) is the impulse response function of the structure. An appropriate modeling of the

structure is indispensable to compute h(s). For example, the large-scale (whipping)

response can be modeled by a simple beam, whereas small-scale (local) effects can be

modeled as panel responses. For complicated structures, FEM analyses determine h(s).
When the duration of the impact load is of the same order as the natural period of

the structure, the hydro-elastic interaction is strong. The impact load on the flexible bottom

can be about twice that on the rigid bottom. Various theories have been developed, some

including the effect of air trapping, but these theories are not powerful enough to

explain experimental data quantitatively. Coupling free-surface RANSE solvers and
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FEM to analyze both fluid and structure simultaneously should improve considerably our

capability to analyze hydro-elastic slamming problems within the next decade.

• CFD for slamming

For most practical impact problems, the body shape is complex, the effect of gravity is

considerable, or the body is elastic. In such cases, analytical solutions are very difficult or

even impossible. This leaves CFD as a tool. Due to the required computer resources, CFD

applications to slamming appeared only since the 1980s. While the results of boundary

element methods for water entry problems agree well with analytical results, it is doubtful

whether they are really suited to this problem. Real progress is only likely with field

methods. Various researchers have approached slamming problems, usually employing

surface-capturing methods. The three-dimensional treatment of slamming has benefited

greatly from the rapid increase in computing power. State-of-the-art analyses by 2010 used

three-dimensional, free-surface RANSE simulations for rigid-body motions. These capture

impact forces well enough for whipping analyses (hull girder vibration triggered by

slamming impacts). Local pressure peaks are still not captured well, as local hydro-

elasticity is not considered.
4.6. Roll Motion

4.6.1. Linear, Undamped Free Roll

A heeled ship in smooth water will return to its original upright position due to the restoring (or

righting) moment m$g$h(4). However, due to its kinetic energy, the ship will roll beyond the

upright position to a heel angle on the other side and from there back, etc. In the absence of

damping, this oscillatory motion would continue forever. For small roll angles, the roll motion

of such an undamped free roll motion in calm water is characterized by:

ðm44 þ a44Þ$€4þ m$g$GM$4 ¼ 0 (4.107)

m44¼ qxx is the mass moment of inertia for roll, a44 the added (hydrodynamic) mass moment of
inertia, typically 10% of m44. The natural roll frequency is thus:

un ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m$g$GM

m44 þ a44

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g$GM

k02xx

s
(4.108)

The formula is valid up to roll angles 4 < 5�. k0xx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm44 þ a44Þ=m

p
is the radius of inertia
(with respect to the roll axis). The corresponding natural roll period (¼ period between two

maximum positive roll angles) is Tn ¼ 2p=un. Section 3.6 gives empirical formulae to

estimate Tn. The relation for Tn is used to determine GM experimentally. The seaway changes

the average metacentric height GM. In addition, larger roll angles introduce non-linear effects,
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changing the roll period considerably; e.g. the roll period tends towards infinity if the roll angle

is close to angles where the righting lever is again zero.

For symmetric ships, within linear ship seakeeping theories, the roll motion is coupled only to

yaw and sway motions. The roll axis (i.e. the axis where the sway and yaw motions disappear,

leaving pure roll) is typically approximately halfway between waterline and center of gravity,

with slightly higher values aft and lower values forward.
4.6.2. Capsizing in Waves

Few cases of capsizing are attributed directly to wave-excited roll motions, but capsizing has

quite often been attributed to cargo shifts triggered by strong roll. While only numerical

methods like non-linear strip methods can give detailed quantitative information, simplified

considerations help in giving some quick estimates and general guidelines.

In regular waves from abeam, for wave length much longer than the ship width, the ship

response is quasi-static. Within linear theory, the roll angle is given by:

j4j ¼ jbu4j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1�



ue

un

�2�2

þ
�
2D

ue

un

�2
s $k$h with 2D ¼ n44

ðm44 þ a44Þ$un
(4.109)

The response amplitude operator j4j/(kh) features a maximum for D � ffiffiffi
2

p
=2 (at resonance)
(Fig. 4.24). For D > 1 (very small GM), the damping prevents any oscillation. GM can then no

longer be measured in a roll experiment as a roll period. Model tests show that the roll damping

n44 is nearly constant up to roll angles of 10� and then increases.
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Figure 4.24:
Response amplitude operator for roll motion in waves from abeam
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Non-linear effects often cannot be neglected in roll motion. For example, the

restoring moment is only approximated by m$g$GM for small angles, but for larger

angles the real restoring moment curve has to be considered (Biran 2003). The

solution of the resulting non-linear problem should be solved numerically. Different

roll responses (roll angles) may then be obtained at a given exciting frequency,

depending on whether the exciting frequency is approached from higher or from lower

frequencies.

Following seas (and sometimes also head waves) may cause severe roll and even capsize for

ships. In fact, following seas by themselves are more dangerous than beam seas. The resulting

‘parametric excitation’ can lead to severe rolling within a few roll periods, if the exciting

frequency is near twice the natural roll frequency and metacentric heights vary greatly between

hogging condition (ship in wave crest) and sagging condition (ship in wave trough). The

righting lever in waves changes (for most ship hulls) with time, depending on the current

waterline shape (Fig. 4.25). The slope of the curve at the origin is the metacentric height. Thus,

for a ship in a seaway, there is no unique ‘metacentric height’ as for the ship in calm water. If

people still use the word they implicitly mean the calm-water metacentric height.

Assuming a linear restoring moment, we write the fundamental differential equation for a free,

undamped roll motion as:

ðm44 þ a44Þ$€4þ m$g$GM$4 ¼ 0 (4.110)
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Figure 4.25:
Fluctuation of righting lever for ship in waves
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The restoring moment now depends on a parameter, namely time t. The metacentric height is
approximated to oscillate harmonically with exciting frequency ue:

GMðtÞ ¼ GM0 þ DGM$sin uet (4.111)

This yields a so-called Mathieu equation:
€4þ u2
n$

�
1þ DGM

GM0
$sinuet

�
$4 ¼ 0 (4.112)

The solution of this differential equation features unstable areas where infinite amplitudes can
be reached. For a ship, ‘unstable response’ means the ship capsizes. If un/ue is close to

a multiple of 1/2, the roll amplitudes can get infinitely large (resonance). The instability region

increases as the fluctuation DGM/GM0 increases. Unstable areas can be plotted in a stability

map (StrutteInce diagram, Fig. 4.26).

In reality, roll damping and non-linear restoring moments (righting moment curve) decrease

the instability regions and roll amplitudes are no longer ‘infinite’. With increasing frequency

ratio, the amplitude decreases, making un/ue ¼ 0.5 (i.e. ue ¼ 2 un) most critical.

The irregularity of real seaway makes parametric excitation less critical compared to regular

waves in laboratory conditions, but still accidents due to parametric rolling have been reported

at a rate showing that the phenomenon is not considered enough. A modern approach consists

of selecting assorted time histories of representative seaways and using time-domain

simulation tools to predict rolling of ships. Typically, rather than using long simulation times

for ‘normal’ seaways, one then selects extreme seaways (e.g. with ten times the significant

wave height for a given region) and simulates rather short times, comparing hull forms with

respect to how often they capsize.
Unresisted rolling (K=0)

1.0

GM

1.51.0

0.5

0.50
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GM

Figure 4.26:
InceeStrutt diagram (stability map of Mathieu equation) plotting stable regions as shaded areas,

linear restoring moment, without damping (solid lines) and with damping (dotted lines)
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Parametric roll can be in practice a concrete danger if all the following conditions

coincide:

1. The hull features large fluctuations of GM (between sagging and hogging conditions)

(Fig. 4.4). Critical with respect to parametric roll excitation are hull forms with low

block coefficient and large sectional flare at the ship ends like many modern hulls

including container ships, ro-ro ferries, combatants, etc. The large change in waterline area

between sagging and hogging then results in large changes of GM. The fluctuations are

largest for wave lengths near ship length.

2. The ship speed U is such that the maximum of the encounter spectrum is near twice

the natural roll frequency. For most ships, following and quartering seas are most

critical. For large container ships, head waves can be critical. These ships are then

excited to large pitch motions which increase the fluctuations of the metacentric

height.

Large roll motions and accelerations, harmful to ship, cargo and humans (crew and

passengers), may be avoided by:

(a) avoiding hull shapes with large difference in GM between ship in wave crest and ship in

wave trough;

(b) shifting natural roll frequency to prevent resonance (changing GM);

(c) shifting exciting frequency (changing course or speed);

(d) increasing damping by active systems (foils, tanks).

Advance warning systems combining information on sea state and ship data with some simple

rules are commercially available.

4.6.3. Roll Damping

Roll damping is usually weak. As a consequence, response amplitude operators for roll

have a pronounced maximum near natural roll frequency. This is different for pitch and

heave response amplitude operators which feature typically only weak and sometimes no

local maxima. All computational methods, even simple strip methods, consider wave

radiation and the associated damping. However, wave radiation is only for multi-hulls, an

effective damping mechanism. For rotational bodies rolling around their axis of rotation,

the wave radiation and associated damping is zero. For usual ship geometries, it is

negligibly small.

The shear stress (tangential friction) on the hull is also negligible at zero speed. At forward

speed, the damping moment can be estimated as:

Mroll; f ¼ Rf
uru4
V

R2 (4.113)
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Rf is the frictional resistance of the ship following ITTC’57, ur the actual roll frequency, V the
ship speed, u4 the roll amplitude, and R is the average distance of the hull surface to the roll

axis.

The roll motion induces an oblique flow at the rudder (at center position). This in turn creates

a rudder force which dampens the roll motion. The angle of attack is approximately

a ¼ ur$z

V
$u4 (4.114)

where z is the distance of a point on the rudder from the roll axis. We assume that the effects of

wake (reducing the inflow speed) and propeller slipstream (increasing the inflow speed)

cancel each other approximately. In addition, we neglect the oblique flow induced by

the rolling ship and the propeller in oblique flow. We employ the usual estimate for the

lift coefficient at the rudder (in rough approximation as this formula is valid for uniform flow

with constant angle of attack over the height). Then we get for the roll damping moment due

to the rudder:

Mroll;rudder ¼ ur$u4$
LðLþ 0:7Þ
ðLþ 1:7Þ2 $p$r$V$IR (4.115)

IR is the areal moment of inertia of the rudder area with respect to the roll axis.
For a rectangular rudder, IR ¼ cðz32 � z31Þ=3; c is the chord length of the rudder. z1 indicates the
upper edge of the rudder, z2 its lower edge. L is the rudder aspect ratio, c the chord length.

Controlled rudder action can be used to actively dampen roll motions. Some course

interference and added resistance must then be accepted. Similarly, VoitheSchneider

propellers can be used to dampen roll motions. Unlike rudders, the VSP is also effective at zero

forward speed.

Similar to the rudder, an immersed transom stern creates a roll damping moment for the ship at

forward speed. We can use an equivalent formula as for the rudder, but employ the immersed

beam instead of the rudder height. However, as the hull has water only on the underside,

a factor 0.5 has to be applied:

Mroll;transom ¼ 1

2
ur$u4$

LtðLt þ 0:7Þ
ðLt þ 1:7Þ2 $p$r$V$IR;t (4.116)

Lt ¼ Bt/(2Lpp) (where Bt is the transom beam in the waterline) and IR;t ¼ B3
t Lpp=12.
Because the damping mechanisms discussed so far are rather weak (particularly at low speed),

ships typically employ additional means to increase roll damping. These are discussed in the

following.
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Figure 4.27:
Definition of R. D indicates the roll axis
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Bilge keels are fitted on most ships. Bilge keels are narrow strips extending along the

central part of the ship in the bilge region. They project no further than the width and depth

of the ship to prevent contact damage. The effect of the bilge keels depends hardly on the

ship speed. The damping moment can be estimated following:

Mroll;bilge ¼ 2$
r

2
$w2$CD$lbk$hbk$R (4.117)

lbk is the length of the bilge keel, hbk its height, CD a resistance coefficient. Figure 4.27 shows
the definition of R. The factor 2 considers that we have bilge keels on port and on starboard.

w is the transverse relative flow speed found approximately at half keel height if there

were no bilge keel:

wzur$u4$R$k (4.118)

The factor k considers the local flow changes in the bilge region (Fig. 4.28). Bilge keels are not
very effective in comparison to even the passive roll damping of the rudder at design speed, but

are still necessary for zero or low speed. Bilge keels also increase exciting forces (and

resistance). For ships with effective alternative damping mechanisms (fins, tanks), one should

then rather omit bilge keels. If the roll motion is largely suppressed, only the negative effect of

increased exciting forces remains. The only argument left is then having a back-up in case of

failure of the other more complex systems.

Blume (1979) gives the following values for CD, depending on the amplitude of relative motion

between bilge keel and water, x0 z u4$R$k:
x0/hbk 0.4 0.8 1.2 1.6 2 3 4 6 8
CD
 11.7
 9.6
 7.8
 7.0
 6.5
 5.0
 4.3
 3.6
 3.2
Fin stabilizers are usually arranged symmetrically near the bilge, approximately amidships.

The fins are tilted around an axis perpendicular to the ship to create a roll damping moment.
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Figure 4.28:
Factor k for local flow speed in bilge region with dimensions as appearing in the diagram
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The fins are usually retractable (to avoid damage in port). The damping moment furnished by

a pair of fins can be estimated as

Mroll;fin ¼ 2$
r

2
$V2$CL$Afin$R (4.119)

R is the leverage as shown in Fig. 4.27, Afin the fin area. The lift coefficient as function of angle
of attack a can be estimated by:

CL ¼ 1:6

 
2p

Leff$ðLeff þ 0:7Þ
ðLeff þ 1:7Þ2 $sin aþ sin a$

		sin a
		$cos a! (4.120)

Leff is the effective side ratio of the fin. If there is (almost) no flow around the edge of the fin at
the hull (due to small gap), we haveLeffz 2L. The factor 1.6 considers that stabilizing fins are

usually flapped rudders where the aft flap turns by approximately 2d if the main forward foil

turns by d. For single-foil fins the factor is 1. The maximum lift coefficient CL,max lies typically

between 3 and 3.5, provided that sufficiently high angles of attack are obtained.

The fin angle d differs from the angle of attack a. Considering just the roll motion of the ship

and assuming d in phase with the roll velocity, we have:
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a ¼ dþ arctan
ur$u4$R$k

V
(4.121)

The fins are rather ineffective at low speed. At high speeds, a theoretical maximum CL,max
cannot be obtained due to structural overloading of the shaft and its supports. Therefore d has to

be limited to smaller values at higher speeds.

Roll stabilizing tanks are cheaper than fins and also effective at low speeds. This comes at the

expense of larger weight (including the necessary water in the tanks), larger volume and

a reduction of the metacentric height due to the free-surface effects. Unless special measures are

taken, roll stabilizing tanks can also cause noise, which is particularly disturbing if the ship is

transporting passengers. There are in principle two types of tanks: U-shaped tanks consist of two

narrow tanks located at port and starboard, connected via the double bottom. Flume tanks are

tanks with a free surface over the complete ship’s width. In either case the tanks are partially

filled, allowing thewater to slosh from one side to the other. If the lowest natural frequency of the

water sloshing coincides with the roll natural frequency of the ship and the ship is excited at this

frequency by the waves the ship is excited to roll motion with a phase shift of 90� to the exciting
waves and the sloshing water with another phase shift of 90� to the roll motion, yielding

a total phase shift of 180� between exciting wave moment and damping tank moment. Ideally,

the ship rests almost calm and the seaway excites only an oscillation of the water in the tank.

U-shaped tanks create a roll damping moment:

Mroll;tank ¼ r$g$A0$hcol$B1 (4.122)

A0 is the horizontal cross-section area of one side of the symmetric tank. The water level rises
and falls by �hcol, without touching the top or the connecting pipe at the bottom. B1 < B is the

horizontal distance of the tank centers on both sides. The natural frequency of such a tank can

be estimated within the framework of a simple flow tube theory:

un;tank ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g

A0

ZS
0

1

A
ds

vuuuuut
(4.123)

A(s) is the local cross-section area at the local one-dimensional flow coordinate s, S the total
length of the flow tube. The formula shows that the dimensions of the connecting pipe

influence the natural frequency. Once installed, different filling heights allow only small

changes in natural frequency and come at the possible expense of reducing the maximum

sloshing height h. A better strategy is therefore to design the tank such that the natural

frequency is above the highest natural roll frequency and then retard the tank water motion in

operation. The retard can be realized either by direct valves in the connecting pipe or (better)

by controlling the air in the tanks above the water.
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Flume tanks are typically rectangular tanks which extend over the whole ship width and are

partially filled. They require more space and weight than U-shaped tanks, but can dampen

wider ranges of frequencies without active control due to the effective damping in wave

breaking. The natural frequency of a flume tank is approximately (for small water depth

H compared to tank width b):

un ¼ p
ffiffiffiffiffiffiffi
gH

p
b

(4.124)
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