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ABSTRACT: When formulating a general, non-linear mathematical model of ship dynamics in waves the hydrostatic forces and 
moments along with the Froude-Krylov part of wave load are usually concerned. Normally radiation and the diffraction forces 
are regarded as linear ones. The paper discusses briefly few approaches, which can be used in this respect. The concerned 
models attempt to model the non-linearities of the surface waves; both regular and the irregular ones, and the non-linearities of 
the restoring forces and moments. The approach selected in the Laidyn method, which is meant for the evaluation of large 
amplitude motions in the 6 degrees-of-freedom, is presented in a bigger detail. The workability of the method is illustrated with 
the simulation of ship motions in irregular stern quartering waves.  
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INTRODUCTION 

The method called Laidyn (Matusiak, 2000b&2001) is meant 
for the evaluation of ship motions in waves. Ship is regarded 
as a rigid intact body. The mathematical model behind the 
method comprises the elements of maneuvering and makes 
allowance for the non-linear large amplitudes motions in 
waves. The original version, meant for the regular waves 
only, was based on the so-called two-stage approach. At the 
first stage of this approach, linear approximation to the rigid 
body motion in waves is evaluated. A number of non-
linearities involved in ship dynamics in waves are taken into 
account and the total response of ship in the six degrees-of-
freedom is solved at the second stage. In particular the non-
linearities of the rigid body dynamics, non-linear terms of the 
restoring and the Froude-Krylov forces, ship resistance, the 
forces developed by a propulsor and by a rudder are taken 
into account. Details of the method are given for instance in 
Matusiak (2007).  

Extension of the method, aimed at dealing with the long-
crested irregular waves, led to giving up the concept of the 
two-stage evaluation of the responses. Instead, a direct 
solution of ship response is evaluated in the time-domain. All 
other features of the method are preserved. Similarly as in the 
original method, the linear models represent the radiation 
forces and moments and also the diffraction part of the wave 
excitation acting on ship. It is worth noting that these forces 
and moments are oriented with the axes of the body-fixed co-
ordinate system.  

A linear surface wave theory of Airy is used to model 
surface waves. However, in order to take non-linearities of 

the Froude-Krylov loads into account, both the wetted 
surface of ship’s hull and pressures are evaluated up to the 
actual position of free surface. This is done using a 
kinematical model involving a simple summation of the 
undisturbed component waves and knowing the position of a 
hull in space. Extrapolation of pressures beyond the linear 
model of Airy can in principle be done in two different ways. 
These are presented and discussed further in the paper. 

FORMULATION  

For the sake of this paper completeness, a short description of 
the Laidyn method is presented in the following. A more 
detailed description can be found in the abovementioned  

Equations of motion  

Equations of ship rigid motions are given by a set of six 
expressions (1) given below (Matusiak, 2007) with u, v and w 
being the projections of the velocities of ship’s centre of 
gravity in the Earth-fixed inertial co-ordinate system on the 
axes of the moving body-fixed system. The angular position 
of the ship is given by so-called modified Euler’s angles 
denoted as ψ, θ and φ. Refer to Figure 1 for the definitions of 
the inertia and body-fixed co-ordinate systems. In equations 1, 
Xg, Yg, Zg, Kg, Mg and Ng depict the components of global 
reaction force and moment vectors acting on the ship. These 
are given in the-body fixed co-ordinate system xyz. m and Iij 
mean ship’s mass and the components of the mass moment of 
inertia. 
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Figure 1.  Co-ordinate systems used to describe ship motion 
(Matusiak, 2007) 
 
The relation between the velocities of the ship’s centre of 
gravity in the inertial co-ordinate system and their projections 
u, v and w on the axes of the moving body-fixed system is 
(Fossen, 1994 and Clayton&Bishop, 1982)   
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(2) 

Moreover a relation between the angular velocity vector 
Ω=Pi+Qj+Rk and the Euler’s angles ψ, θ and φ  is needed 
(Fossen, 1994 and Clayton&Bishop, 1982)  
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Numerical Solution 

Equations of motion 1 are solved numerically using the 4th 
order Runge-Kutta integration scheme yielding velocities u, v, 
w, P, Q and R in the co-ordinate system fixed with the 
moving ship. Equations 2 and 3 are used to integrate theses 
velocities into the ship’s position in the inertial (Earth-fixed) 
co-ordinate system.  

At each time step the components of global reaction force 
and moment vectors acting on the ship Xg, Yg, Zg, Kg, Mg and 
Ng have to be given. These include restoring, radiation and 
wave forces, ship resistance, the forces developed by a 
propulsor and a rudder. These are described in bigger detail 
in Matusiak (2001, 2002). An allowance for wind loading is 
included as well. 

NON-LINEAR MODELS OF FROUDE-KRYLOV 
AND RESTORING FORCES AND MOMENTS 

General on the non-linear models 

There are a number of different approaches used in taking into 
account nonlinearities associated with restoring and Froude-
Krylov forces and moments in waves. Some of these are direct 
extensions to the static buoyancy models. In this approach a 
simple or more sophisticated model of static lever (GZ-curve) 
in waves is considered (Sa Young Hong et al 2009, Vidic-
Perunovic 2009, Bulian &Francescutto 2008). A parametric 
variation of restoring term results in a Mathieu-type equation 
for roll motion, which in some cases gives a prediction of the 
so-called parametric roll resonance.  

A multivariable Taylor expansion up to the third order can 
be used to model describe strongly coupled restoring terms of 
heave, roll and pitch. Also this approach is successfully used in 
a prediction of parametric roll resonance (Rodríguez et al, 
2007).  

Boundary element method, that is a panel method, either of 
a Rankine-type or utilizing a special Green function approach 
for unsteady free surface flows can be used in a linear or a non-
linear form as well.  

RANSE methods, that is the tools solving both the 
unsteady free surface flow problem using Reynolds-Averaged-
Navier-Stokes equations and the body dynamics problem are 
already in use. As they are nearly free of any assumptions they 
may be regarded as the most sophisticated and reliable 
methods. However, their usage at present is mainly of a 
demonstrative nature only, as they require a lot of computer 
resources and take a lot of time to execute.  

A more profound and detailed description of the methods 
used in predicting large amplitude motions in waves can be 
found in the reports of the ITTC Committees on Seakeeping 
and Stability.  

In the next paragraph I will concentrate on a very restricted 
problem of modeling the non-linearities of hydrostatic and 
Froude-Krylov pressures in the panel-type seakeeping method. 
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Non-linear hydrostatic and Froude-Krylov forces 
and moments in the context of a panel 
representation of ship hull 

When considering ship motions in waves, it is commonly 
believed that the most important contributors to the non-
linearities in the external forces acting on a ship hull are the 
restoring and Froude-Krylov forces and moments. Evaluation 
of these is done using a wetted surface of ship hull 
represented by a discrete panel model. This takes into 
account both an instantaneous position of ship in space and 
pressure due to waves extending up to the actual water 
surface. This is done as follows.  

Position of each control point c, that is a centre point of a 
panel, of Figure 2 below is transformed from the body-fixed 
co-ordinate system (xc,yc,zc) to the inertial Earth-fixed system 
(Xc,Yc,Zc) using transformation given by the following 
formula  
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which is similar to the transformation 2. 

 
Figure 2. Evaluation of hydrostatic and Froude-Krylov 
pressure. 
 
Wave elevation above the control point c is given by a sum 
over the wave components N 

! (t)= Aii=1

N" cos ki (Xccosµ#Ycsinµ)#$ it+% i[ ]  (5) 
where Ai and ki=ωi

2/g are wave amplitude and wave number 
corresponding to the i-th wave component. Phase angle δi of 
each wave component is a random number. Details on 
generating wave trains from a given wave spectra are given 
for instance in Naito (1995) or Matusiak (2000a). 

There are three models for evaluating the pressure at point 
c. The first one is a linear Froude-Krylov pressure model 
with the wetted surface extending up to the still water level. It 

is worth noting that restoring forces and moments are taking 
non-linearity into account. In this model pressure is given by 
the expression 
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Two other models take into account the actual wetted 
surface. The pressures are evaluated for the immersed panels, 
that is for Zc+ζ(t)>0.  

The first of these models, which is presented in Faltinsen 
(1990), is similar to the one given by Formula 6 but with a 
linear extrapolation of pressure between the still water and 
actual water levels. Thus it can be understood as an extension 
of the linear model. 

The third model, called stretched pressure model, is given 
by the formula 
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with the free surface raised by the amount of wave elevation 
(5) in the argument of the exponent function.  

The forces F and moments M are obtained by integrating 
the pressure (6 or 7) in the body fixed co-ordinate system. 
This integration is performed numerically by summing up the 
contribution from each wetted panel using 

FF.K
total = FF.K;i

total =
i

M

! pi"Sini
i

M

!

MF.K
total = ri # FF.K;i

total ,
i

M

!
 (8) 

where the total number of the panels is denoted by M, ΔSi is 
panel area, ni unit vector normal to panel and ri the position 
vector of the control point in the body-fixed co-ordinate 
system xyz. 

SHIP BEHAVIOR IN IRREGULAR WAVES USING 
THREE DIFFERENT MODELS OF FROUDE-
KRYLOV PRESSURE 

Ship motions in irregular waves were evaluated using the 
above-described three models of Froude-Krylov pressures. 
The investigated vessel is the one used in the benchmark 
study initiated by the International Towing Tank Conference 
and presented in (Spanos&Papanikolaou 2009). This is a 
containership of waterline length of LPP = 150 m. Metacentric 
height was set to GM0=1.2 [m] yielding the natural roll 
period of Tφ=21 [s]. A model of this ship was also 
investigated earlier in a similar study (ITTC, 2002).   

In all three cases the same operational condition was set. 
The desired significant wave height was set to HS=5 [m] and 
period T1=7.3 [s]. In order to save the computing time, wave 
spectrum was represented by N=19 wave components only. 
Ship was set to the stern quartering long-crested waves at 
heading µ = 30 [deg]. In simulations ship is propelled with a 
propeller and steered with a rudder under a PD-control. Ship 
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operated for 40 minutes in each numerical test. Summary of 
the results is presented in Table 1 below. 
 

Table 1 Summary of the results 
FK- 
linear 

Wave 
[m] 

Heave 
[m] 

Heave 
(linear) 

Roll 
[deg] 

Roll 
(linear) 

Pitch 
[m] 

Pitch 
(linear) 

stdev 1.15 0.20 0.19 3.99 1.09 0.58 0.64 
Max 2.98 0.46 0.46 11.65 3.40 1.44 1.36 
Min -3.62 -0.52 -0.46 -9.78 -3.10 -0.98 -1.43 
        

Faltinsen 
Wave 
[m] 

Heave 
[m] 

Heave 
(linear) 

Roll 
[deg] 

Roll 
(linear) 

Pitch 
[m] 

Pitch 
(linear) 

stdev 1.33 0.27 0.26 4.04 1.16 0.76 0.87 
Max 3.21 0.56 0.55 12.34 3.43 1.64 1.71 

Min -3.19 -0.69 -0.58 
-

11.20 -3.63 -1.47 -1.71 
        

Stretched 
Wave 
[m] 

Heave 
[m] 

Heave 
(linear) 

Roll 
[deg] 

Roll 
(linear) 

Pitch 
[m] 

Pitch 
(linear) 

stdev 1.14 0.19 0.18 2.63 1.09 0.49 0.56 
Max 3.16 0.46 0.44 6.94 3.47 1.35 1.43 
Min -3.60 -0.45 -0.43 -6.82 -2.94 -1.10 -1.37 
 
Each of the irregular realization of waves was different due to 
a randomness built into the waves’ generation algorithm. 
Heave, roll and pitch motion components, as computed in 
time-domain, are presented in terms of their standard 
deviations, maxima and minima.  

Linear approximation to the global responses of ship in 
irregular waves is evaluated in order to judge the effects of 
non-linearity on the derived responses. Normally, in the 
linear seakeeping theory, a constant forward speed is 
assumed. In the Laidyn method surge motion of ship is 
evaluated in the time domain taking into account amongst the 
others propeller action and variations of the wetted surface. 
Thus in-plane motion of ship is simulated in time-domain 
along with the other motion components. This results in ship 
position XG,YG in the Earth-fixed co-ordinate system.  This 
and the knowledge of transfer functions of the corresponding 
responses make it possible to evaluate linear approximation 
of the responses using the expressions 

zL (t)= Aii=1

N! zL0 cos ki (XGcosµ"YGsinµ)"# it+$ i"% zi&' ()
*L (t)= kiAii=1

N! *L0 cos ki (XGcosµ"YGsinµ)"# it+$ i"% *i&' ()
+L (t)= kiAii=1

N! +L0 cos ki (XGcosµ"YGsinµ)"# it+$ i"% +i[ ],  
 

(9) 

where terms with subscripts L0 depict gain factors of the 
transfer functions and γ corresponding phase angles The 
transfer functions were obtained with the software based on 
linear seakeeping theory (Journee, 1992). 

There are no significant differences between the results 
obtained with different models for Froude-Krylov pressures, 
except for the roll motion. Time domain simulations with 
Laidyn give much higher roll angles than the linear frequency 
domain strip theory. The selected operational conditions that 

is a combination of wave period, heading and ship speed 
yield frequently a resonant roll motion, which is visible in the 
selected time histories of the responses presented in Figures 3, 
4 and 5. Simulated case is critical for the ship in this 
particular case because of a kind of focusing effect of waves.  

Linear Froude-Krylov
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Fig. 3 Built-up of a resonant roll motion in irregular stern 
quartering waves simulated using a linear Froude-Krylov 
pressure model. 

Faltinsen's pressure profile
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Fig. 4 Built-up of a resonant roll motion in irregular stern 
quartering waves simulated using the wave pressure model of 
Faltinsen. 

Stretched pressure profile
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Fig. 5 Built-up of a resonant roll motion in irregular stern 
quartering waves simulated using stretched wave pressure 
model. 
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The encounter period of majority of waves is very close to 
the natural period of roll. As a result a resonant roll motion 
develops frequently during the simulation period. 

The selected records represent maxima of roll motion in 
irregular waves for each model of Froude-Krylov pressure. 
Built-up of a roll develops for the wave groups having the 
encounter period close to the natural period of roll. The same 
cannot be seen with a fully linear frequency domain analysis. 
Linear solution relates roll angle to an instantaneous value of 
wave slope and thus it does not have relation to wave 
grouping. It is worth noting that roll damping was kept same 
valued in all models. 

CONCLUSIONS 

It is impossible to draw a conclusion which of the models 
used in the presented time-domain simulations is best one. 
For the investigated case, all three yield much higher roll 
angles than the ones evaluated by the fully linear frequency 
domain model. A development of roll resonance for the 
investigated situation is known from the literature (Kluwe 
&Krüger, 2007) and acknowledged by the Authorities (IMO, 
1995&2006). A further research is needed to validate the 
method. In particular model tests in both regular and also in 
irregular quartering waves will provide better validation data 
for the method. 
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