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a b s t r a c t

Numerical and experimental studies of nonlinear wave loads are presented. A nonlinear time domain
method has been developed and the theoretical background of the method are provided. The method is
based on the source formulation expressed by means of the transient three-dimensional Green function.
The time derivative of the velocity potential in Bernoulli's equation is solved with a similar source
formulation to that of the perturbation velocity potential. The Wigley hull form is used to validate the
calculation method in regular head waves. Model tests of a roll-on roll-off passenger ship with a flat
bottom stern have been carried out. Model test results of ship motions, vertical shear forces and bending
moments in regular and irregular head waves and calm water are given. The nonlinearities in ship
motions and hull girder loads are investigated using the calculation method and the model test results.
The nonlinearities in the hull girder loads have been found to be significant and the calculation method
can predict the nonlinear loads for the model test ship.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the structural analyses of ships, an accurate prediction of
extreme wave loads is important in the ultimate strength assess-
ment of the hull girder. Direct calculations of wave loads in
structural analyses of ships are generally based on linear theories
expressed in the frequency domain. In the linear methods, the ship
motions and wave amplitudes are assumed to be small, and the
body and free surface boundary conditions can be linearised.
In high waves, the linearity assumption of wave loads with respect
to wave height is not usually valid. In the structural design of
ships, it is common practice to express the extreme design wave
loads by means of the sagging and hogging bending moments and
shear forces. For ships in heavy seas, the sagging loads are greater
than the hogging loads.

Recently, several different approaches have been developed
to take nonlinearities in wave load predictions into account.
A summary of different methods in seakeeping computations is
given by Beck and Reed (2000). A two-dimensional method for
large-amplitude ship motions and wave loads was presented by
Fonesca and Guedes Soares (1998). The method was based on a
strip-theory approach, and the radiation and diffraction forces and
moments were linear. Nonlinear effects were included in hydro-
static restoring and Froude–Krylov forces and moments. A quadratic

strip theory was applied by Jensen et al. (2008) to determine
extreme hull girder loads on container ships. A nonlinear hydro-
elastic method based on a two-dimensional strip theory was
presented by Wu and Moan (1996, 2005). Model test results for a
container ship in regular and irregular oblique waves and calculated
results were presented by Drummen et al. (2009) and Zhu et al.
(2011). Time domain three-dimensional linear and nonlinear meth-
ods based on a transient Green function were presented by Ferrant
(1991), Lin and Yue (1991), Kataoka et al. (2002) and Sen (2002).
The time domain representation of the Green function allows the
exact body boundary condition to be applied. This means that
pressures can be solved in the actual floating position of the body
and not only on the mean wetted surface. For example, the exact
body boundary condition is satisfied in the seakeeping program
LAMP (Lin and Yue, 1991). A nonlinear Rankine source method
applying a weak-scatterer hypothesis (Pawlowski, 1992) was pre-
sented by Huang and Sclavounos (1998). In the weak-scatterer
hypothesis, the disturbance due to the ship's motions in the wave
flow is assumed to be small compared to the wave flow due to the
incoming wave. Model tests and computations by the Rankine
source method for the motions and loads of the container ship were
given by Song et al. (2011). Koo and Kim (2004) presented a two-
dimensional nonlinear method in which the fluid flow was solved
with two-dimensional Rankine sources. The boundary condition
at the free surface was nonlinear and the exact body boundary
condition was satisfied on the body surface. They applied an
acceleration-potential formulation to solve the time derivative of
the velocity potential in Bernoulli's equation (Tanizawa, 1995).
Two- and three-dimensional methods based on the Rankine sources
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were presented by Zhang et al. (2010). The exact body boundary
condition was used and the free surface boundary condition was
linear. A hybrid formulation was presented by Dai and Wu (2008) and
Weems et al. (2000). They used the transient Green function on the
outer domain and Rankine sources in the inner domain to solve the
velocity potential. Close to the free surface, the transient Green
function is a strongly oscillating function. The oscillation can induce
instabilities in the solution; especially if the body has horizontal body
shapes or the inclination angle of the body shapes are small at the free
surface. The instability in the transient Green function solution was
studied by, for example, Duan and Dai (1999), and Datta et al. (2011).
Applying the hybrid formulation, the possible instabilities in the
transient Green function solution can be avoided. Kataoka and
Iwashita (2004) presented a hybrid method in which the artificial
boundary between the outer and inner domain was expressed in the
space-fixed coordinate system.

A nonlinear time domain calculation method is presented in
this paper. A method to solve the time derivative of the velocity
potential, i.e. the acceleration potential, in Bernoulli's equation is
presented. The solution is based on the same source formulation
and transient Green function as the boundary value problem for
the perturbation velocity potential but with a different body
boundary condition. The boundary and initial value problems for
the perturbation velocity potential are similar to those given by
Ferrant (1991), Lin and Yue (1991) and Sen (2002). The solution of
the boundary value problem is based on source distributions on
the body surface. The source distributions are represented with a
transient three-dimensional Green function. The solution of the
boundary value problem is expressed in the space-fixed coordi-
nate system. The time domain computer program includes the
solutions of the exact and linear body boundary conditions. The
free surface boundary condition is linear. In the nonlinear calcula-
tion, the instantaneous position of the ship with respect to the
mean water level is updated at every time step. Details of the
calculation method are presented by Kukkanen (2012). The experi-
mental results of the Wigley hull form are used to validate the
calculation method in regular waves. Model tests of a roll-on roll-
off passenger (RoPax) ship are presented. The ship model has a flat
bottom stern at the waterline (counter stern). Model test results of
ship motions and vertical shear forces and bending moments in
regular and irregular head waves are given. Model test results in
calm water at different forward speeds are also presented for
sinkage of the ship and for steady vertical shear forces and
bending moments.

2. Methods

2.1. Boundary value problem

Two coordinate systems are used: a space-fixed coordinate
system Oxyz and a body-fixed coordinate system Ox0y0z0. The
coordinate systems are shown in Fig. 1. The space-fixed coordinate
system is the inertial reference frame. The origin of the space-fixed
coordinate system is at the calm water plane with the z-axis
pointing vertically upwards. The forward speed of the body is U0.
The forward speed is defined as the speed of the centre of gravity
of the body and the body moving at speed U0 parallel to the
direction of the x-axis if the other motions in the y- and
z-directions are zero. The longitudinal coordinate x0 of the body-
fixed coordinate system is pointing to the bow of the body and the
z0-axis is pointing vertically upwards. The origin of the body-fixed
coordinate system is at the centre of gravity of the body. The
incoming waves are travelling with angle χ with respect to the
x-axis and the heading angle of χ¼180 degrees corresponds to
head sea. The six degrees of freedom body motions are surge (η1),

sway (η2), heave (η3), roll (η4), pitch (η5) and yaw (η6), defined
with respect to the space-fixed coordinate system. The transla-
tional motions surge, sway and heave define the position of the
centre of gravity of the body in the space-fixed coordinate system.
The surge velocity _η1 includes the forward speed U0. Normal
vectors are defined as positive, pointing out of the fluid. The
boundary value problem is expressed in the space-fixed coordi-
nate system.

It is assumed that the fluid is inviscid and the fluid density ρ is
constant. Hence, for the irrotational flow, the fluid velocity is given
by the velocity potentialΦ. The velocity potential is expressed as a
decomposition of the perturbation and incoming wave velocity
potentials

Φ¼ϕþϕI ; ð1Þ

where the perturbation velocity potential is ϕ and the velocity
potential of the incoming wave is ϕI. The velocity potential ϕ has
to satisfy Laplace's equation

∇2ϕ¼ 0; ð2Þ

everywhere in the fluid. On the free surface SF (z¼0), the linear
free surface boundary condition is given by

∂2ϕ
∂t2

þg
∂ϕ
∂z

¼ 0; on SF : ð3Þ

The boundary condition on the body surface SB is given as
follows:

∂ϕ
∂n

¼U % n&
∂ϕI
∂n

; on SB; ð4Þ

where n is the unit normal to the body pointing out of the fluid
and U is the velocity of the point on the body surface. The
boundary condition on the sea bottom is given by the condition

∂ϕ
∂n

¼ 0; z-–1: ð5Þ

hence, an infinite water depth is assumed. The radiation condition
takes into account the fact that the body-generated waves are
progressing outwards and vanish at infinity

∂ϕ
∂n

-0; r-1; ð6Þ
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Fig. 1. Coordinate systems used in the time domain method.
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where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
. In addition to the boundary conditions, the

boundary value problem has to satisfy the following initial condi-
tions:

ϕ¼ 0 and
∂ϕ
∂t

¼ 0 at t ¼ 0; ð7Þ

i.e. the fluid flow is not disturbed by the body at t¼0.
The velocity potential of the incoming wave satisfies Laplace's

equation, the linear boundary condition at the free surface and the
bottom boundary condition. The velocity potential of the deep
water linear wave can be given in the following form:

ϕI ¼ Re i
ga
ω
e& i kx cos χþky sin χð Þekzeiωt

n o
ð8Þ

where a is the wave amplitude, ω is the wave frequency, and k is
the wave number.

In the body nonlinear solution, the exact body boundary
condition is used and the perturbation potential is solved at the
actual floating position of the body. The body boundary condition
is applied to the instantaneous wetted surface SB(t) on zo0. In the
body boundary condition (4), the instantaneous normal compo-
nent of the velocity of the point on the body surface is given by

U % n¼ ðuþω' rÞ % n ð9Þ

where the position vector r of the point on the body surface and the
translational and rotational velocities u andω, respectively, are given
in the body-fixed coordinate system. Hence, the normal vector n is
also expressed in the body-fixed coordinate system. Thus, all the
vector operations are performed in the same coordinate system.

2.2. Boundary condition of the acceleration potential

The boundary value problem for the velocity potential given in
the previous section does not give a direct solution for the
acceleration potential, i.e. the time derivative of the velocity
potential ϕt ¼ ∂ϕ=∂t in Bernoulli's equation. In the time domain
methods, the acceleration potential is often solved using numer-
ical methods such as a backward difference method (see for
example Lin and Yue, 1991; Sen, 2002). The solution of the time
derivative of the velocity potential can also be determined by
solving a boundary value problem defined for the acceleration
potential. Different methods have been developed to solve ϕt and
the differences in the methods depend on the applied boundary
conditions and the solution methods, such as Rankine source
methods, that have been used. A review and comparison of
different acceleration-potential methods applied to the fluid and
body interaction problems were given by Bandyk and Beck (2011).
One method is to solve ϕt ¼ þU % ∇ϕ, i.e. solving the substantial
derivative of ϕ instead of solving ϕt directly. Vinje and Brevig
(1981) applied this method to calculate motions of two-
dimensional bodies, and Kang and Gong (1990) provided a solu-
tion for three-dimensional free surface problems. Greco (2001)
applied a similar approach, studying a two-dimensional green
water loading. Tanizawa (1995) developed a solution for the
acceleration potential starting from the fluid acceleration. Wu
(1998) derived a boundary condition for the acceleration potential,
using the body boundary condition of the velocity potential as a
starting point. A similar boundary condition for the acceleration
potential was presented by Bandyk and Beck (2011). They also
showed calculation results for two-dimensional bodies for which
the velocity and acceleration potentials were solved using Rankine
sources.

In this paper, a boundary condition for the acceleration poten-
tial is derived that can be used in the time domain method in the
body nonlinear and linear solutions. The same approach was
applied by Kang and Gong (1990) to represent the problem by
the substantial derivative of ϕ instead of solving ϕt directly.

However, the present boundary condition also includes terms
due to the incident wave potential ϕt . The terms describing the
body motions are the same as those presented by Wu (1998) and
Kang and Gong (1990).

The boundary condition for the acceleration potential is derived
from the body boundary condition (4). Taking the absolute time
derivative in the inertial reference frame from both sides of the
body boundary condition for the velocity potential ϕ, it follows that

d
dt

∂ϕ
∂n

" #
¼

d
dt

ðU&∇ϕIÞ % n
$ %

on SB: ð10Þ

The left-hand side of the above equation can be written as

d
dt

∂ϕ
∂n

" #
¼

d
dt
ðn % ∇ϕÞn %

d
dt
ð∇ϕÞþdn

dt
% ∇ϕ ð11Þ

The time derivative of the normal vector is dn=dt ¼ω' n. For the
fluid term, the time derivative is evaluated following the fluid on
the fixed point on the body surface. Hence, the time derivative is
given by the substantial derivative and Eq. (11) can be written as
follows:

d
dt

∂ϕ
∂n

" #
¼ n %

∂∇ϕ
∂t

þðU % ∇Þ %∇ϕ
& '

þðω' nÞ % ∇ϕ ð12Þ

The term ðU' ∇Þ ' ∇ϕ, where U¼uþω' r, can be further sim-
plified using a vector identity (Milne-Thomson, 1968, p. 46, 2–34
III) and taking into account the fact that the flow is irrotational.
The following result is obtained:

ðU % ∇Þ ∇ϕ¼∇ðU % ∇ϕÞ–2∇ϕ'ωþð∇ϕ'ωÞ: ð13Þ

Substituting this back into Eq. (12) gives

d
dt

∂ϕ
∂n

" #
¼ n %

∂∇ϕ
∂t

þ∇ðU % ∇ϕÞþω'∇ϕ
& '

þðω' nÞ %∇ϕ

¼ n %∇
∂ϕ
∂t

þU % ∇ϕ
" #

¼
∂
∂n

dϕ
dt

" #
: ð14Þ

Furthermore, defining a potential function φ as follows:

φ¼
∂ϕ
∂t

þU % ∇ϕ¼
dϕ
dt

; ð15Þ

then Eq. (14) can also be given as follows:

d
dt

∂ϕ
∂n

" #
¼
∂φ
∂n

ð16Þ

hence, the left-hand side of Eq. (10) is the normal derivative of the
potential function φ. The right-hand side of Eq. (10) is

d
dt
½ðU&∇ϕIÞ % n) ¼

d
dt
ðU % nÞ–

d
dt
ð∇ϕI % nÞ ð17Þ

The velocity of the point on the body surface in the normal
direction can be written as follows:

d
dt
ðU % nÞ ¼

d
dt
½ðuþω' rÞ % n)

¼ ð _uþ _ω' rÞ % n&ðω' uÞ % n ð18Þ

where the translational acceleration vector of the centre of gravity
of the body is _u and the angular acceleration vector of the body is
_ω. Furthermore, the velocity of the incoming wave in the normal
direction is given by

d
dt
ðn % ∇ϕIÞ ¼ n %

d
dt
ð∇ϕIÞþ∇ϕI %

dn
dt

¼ n %
∂∇ϕI
∂t

þððuþω' rÞ % ∇Þ∇ϕI

" #
–n % ðω' ∇ϕIÞ

ð19Þ
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Finally, combining the results from Eqs. (16), (18) and (19) and
substituting these with the time derivative of the body boundary
condition given in Eq. (10) leads to the following condition for the
potential function φ

∂φ
∂n

¼ n % ð _uþ _ω' rÞ&ðω' uÞ
$ %

–n

%
∂∇ϕI
∂t

þððuþω' rÞ % ∇Þ∇ϕI&ðω' ∇ϕIÞ
& '

: ð20Þ

this is the body boundary condition for the potential function φ on
the body surface SB(t). Once the potential function φ and the
velocity potential ϕ are known, the time derivative of the velocity
potential ϕt is given by

ϕt ¼
∂ϕ
∂t

¼φ&U % ∇ϕ: ð21Þ

the function φ can be solved using the same source formulation
that is used to solve the perturbation velocity potential ϕ. The
potential function φ is based on the same solution as the velocity
potential ϕ, except that it satisfies different boundary conditions
on the body surface SB. The potential function φ satisfies the linear
free surface boundary condition and Laplace's equation. Further-
more, the radiation and bottom boundary conditions are satisfied
by the transient Green function that is used to solve the potential
function φ. The initial conditions at t¼0 are the same for the
potential function φ and for the perturbation velocity potential ϕ.

The boundary condition for the potential function φ was
derived applying the absolute time derivative of the fluid and
the body velocities given in the normal direction on the point of
the body surface. Hence, the first term inside the square brackets
on the right-hand side of the condition (20) does not give the
acceleration of the point on the body surface (term _uþ _ω'
r&ω' u). The term φ&U % ∇ϕ can be regarded as the rate of
change of ϕ in the moving coordinate system, i.e. the rate of
change of ϕ at a fixed point of fluid measuring from a moving body
of which the velocity is U (Milne-Thomson, 1968, p. 89, 3–61).
If the body is in constant translational motion, then the body
acceleration is zero and the first term on the right-hand side in
(20) is zero. Furthermore, if the body is in constant translational
motion in calm water then the right-hand side is entirely zero.
Hence, the potential function φ is also zero. Then, the Bernoulli's
equation includes only the term &U % ∇ϕ from the acceleration
potential ϕt . From this it also follows that if the body is in steady
motion, the term ϕt¼∂ϕ=∂t¼ is not zero in a space-fixed coordi-
nate system (Batchelor, 1967, p. 404). If the body is translating at a
constant forward velocity U0 in calm water and the other motions
are zero then the term gives φ&U % ∇ϕ¼&U0∂ϕ=∂x.

The higher order derivatives of ϕ do not appear in the
boundary condition (20) because the potential function φ is used.
The direct solution of the ϕt term includes second-order deriva-
tives of ϕ with respect to the space variables; ðn % ∇Þ∇ϕ
(Wu, 1998; Bandyk and Beck, 2011). The indirect solution applied
to the present time domain method saves computational time
because the evaluation of the higher order derivatives of the
transient Green function is not needed.

The body accelerations appear on the right-hand side of the
boundary condition for the potential function φ in Eq. (20).
However, equations of motion have not yet been solved that give
the accelerations for the freely floating body, i.e. the body accel-
erations are unknown. The acceleration potential exists in Ber-
noulli's equation that is used to determine the forces and
moments on the body. The forces and moments are needed in
the equations of motion, and the accelerations are not known until
the equations of motion are solved. In the present time domain
method, an iterative solution procedure is applied to solve the
accelerations and the function φ. Another technique is to combine

the boundary value problem of the acceleration potential and the
equations of motion to solve the acceleration of the body directly
(Wu and Eatock Taylor, 1996; Bandyk and Beck, 2011).

2.3. Velocity and acceleration potentials

The solutions of the perturbation velocity and acceleration
potentials are obtained from integral equations by applying Green's
theorem. The potentials are expressed with source distributions
over the body, where the source distributions are represented by a
transient Green function. In the numerical solution, the body
surface is discretised by panels and the velocity and acceleration
potentials are determined using the constant panel method. The
transient Green function can be decomposed into the impulsive and
memory parts as follows:

G¼ Gð0Þ þGðtÞ ð22Þ

The impulsive part is given as

Gð0Þ ¼
1
R
&

1
R′; ð23Þ

where R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx&x′Þ2þðy&y′Þ2þðz&z′Þ2

q
,

R′¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx&x′Þ2þðy&y′Þ2þðzþz′Þ2

q
. The field point P is at the point

(x, y, z), and the source point Q is at (x′,y′,z′). The image source Q ′
is located at the point (x′,y′,–z′). The memory part is (Wehausen
and Laitone, 1960, p. 491, Eq. (13.49))

GðtÞ ¼ 2
Z 1

0
ekðzþ z′Þ

ffiffiffiffiffiffi
gk

p
sin ð

ffiffiffiffiffiffi
gk

p
ðt&τÞÞJ0ðkrÞ

h i
dk; ð24Þ

where r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx&x′Þ2þðy&y′Þ2

q
and J0 is the Bessel function of the

first kind of order zero. The present time is t and the time delay t–τ
gives the memory effect at time t of the fluid flow at time τ.
In numerical computations, the series expansion can be used to
solve the memory part (see for example Newman, 1992). By
applying the series and asymptotic expansions, the solution
domain is divided into sub-domains in which the different solu-
tion schemes are applied (Liapis and Beck, 1985). Polynomial
approximations and Filon's integral formulae have been used in
addition to the series and asymptotic expansions (Lin and Yue,
1991; Sen, 2002). In the present calculation method, the memory
part of the transient Green function and its derivatives are solved
beforehand with the use of a numerical integration (Kukkanen,
2012). During the calculation in the time domain, the values of the
memory part are interpolated from the pre-calculated results
using the finite element presentation of the memory part of the
Green function. The interpolation is based on the finite element
shape functions, and nine-node quadrilateral elements are used to
describe the shape functions.

The velocity potential ϕ and the Green function G can be
expressed by means of Green's theorem. This derivation for the
integral equation is given by Lin and Yue (1991), and Ferrant
(1991). The integral equation for the velocity potential using the
distribution of sources can be written as follows:

φðP; tÞ ¼
1
4π

∬SBðtÞsðQ ; tÞ Gð0ÞðP;Q ÞdS

þ
1
4π

Z t

0
∬SBðτÞsðQ ; τÞ GðtÞðP;Q ; t; τÞdS
h i

dτ

–
1
4π

1
g

Z t

0

Z

ΓF ðτÞ
sðQ ; τÞ GðtÞðP;Q ; t; τÞ unUNdΓ

& '
dτ; ð25Þ

where the source strength is s. The velocity un¼u % n is the
velocity of the body in the normal direction at the intersection
of the body and the free surface at source point Q at time τ.
The surface and line integrals, SB(τ) and ΓF(τ) and the derivative in
the normal direction are expressed in the source point coordinates
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Q at (x′,y′,z′). The source and field points P and Q depend on time t
in the body nonlinear solution because the body position is
updated during the calculation. The line integral ΓF(τ) is eval-
uated at the intersection of the body and the free surface. The
velocity UN¼UΓ %N is the two-dimensional velocity of ΓF in the
normal direction N¼N(Q,τ) where N is the normal vector of ΓF

at z¼0.
In the above integral equation, the source strengths are

unknown at time t. The unknown source strengths can be solved
using the condition of the velocities of the fluid and body on the
body surface, i.e. the body boundary condition (4). The body
boundary condition is ∂ϕ=∂n¼ n % ∇ϕ¼ðU % n&∂ϕI=∂nÞ. Thus, the
unknown source strengths of the velocity potential can be solved
from the following equation:

–
1
4π

∬SBðtÞsðQ ; tÞ
∂Gð0ÞðP;Q Þ

∂n
dS¼ – UUn&

∂φI
∂n

" #

þ
1
4π

Z t

0
∬SBðτÞsðQ ; τÞ

∂GðtÞðP;Q ; t; τÞ
∂n

dS

" #
dτ

–
1
4π

1
g

Z t

0

Z

ΓF ðτÞ
sðQ ; τÞ

∂GðtÞðP;Q ; t; τÞ
∂n

unUNdΓ

" #

dτ; ð26Þ

where the normal derivative ∂=∂n¼ n % ∇ is given with respect to
the field point coordinates (x, y, z). Once the source strengths are
known, the velocity potential can be determined from Eq. (25).
In the acceleration potential method, the above equations are also
valid for the potential function φ, replacing ϕ with φ. In solving
the source strengths for the potential function φ, the condition
∂φ=∂n¼ n %∇φ for the acceleration potential is applied. Hence, the
condition ðU % n&∂ϕI=∂nÞ in the above Eq. (26) is replaced by the
condition given by the right-hand side of Eq. (20). Thus, applying
Eq. (26) the source strengths for the potential function ϕ can be
solved and then the potential function ϕ can be expressed with a
similar equation to Eq. (25). The time derivative of the velocity
potential is finally given by Eq. (21).

2.4. Pressure loads and equations of motion

The pressure on the body can be determined from Bernoulli's
equation

p1ðP; tÞ ¼ &ρ
∂Φ
∂t

þ
1
2
∇Φ
(( ((2þgz

& '
; ð27Þ

where the velocity potential is the combination of the perturba-
tion and incoming wave velocity potentials Φ¼ϕþϕI . Using
ϕþϕI and the acceleration-potential solution for ϕt given by
Eq. (21), Bernoulli's equation can be written in the following form:

p1ðP; tÞ ¼ &ρ φ&U %∇ϕþ
1
2
∇ϕ
(( ((2þ∂ϕI

∂t
þ
1
2
∇ϕI

(( ((2þ∇ϕ ∇ϕIþgz
& '

:

ð28Þ

Forces and moments on the body are obtained by integrating
the pressure over the wetted surface of the body. The forces F¼(F1,
F2, F3) and moments M¼(F4, F5, F6) can be determined as follows

FiðtÞ ¼
Z

SBðtÞ
p1ðP0; tÞn0 idS; i¼ 1;2;…;6; ð29Þ

where n0i are components of the normal vectors. The normal
vector for the forces is given as

n¼ n0 1iþn0 2jþn0 3k; ð30Þ

and the generalised normal vector for the moments is defined as
follows:

r' n¼ n0 4iþn0 5jþn0 6k: ð31Þ

The position vector from the centre of gravity of the body
indicating point P0 on the body surface is r¼x0iþy0jþz0k. Point P0
is given in the body-fixed coordinate system at (x0, y0, z0).
In addition, the vector components in n and r' n are expressed
in the body-fixed coordinate system. Thus, the forces and moments
are expressed in the body-fixed coordinate system. The forces and
moments are expressed in the body-fixed coordinate system
because the equations of motion given in the coordinate system
are fixed on the body and the origin is at the centre of gravity. The
accelerations of the body are solved by the equations of motion:

m _uþqw&rvð Þ ¼ F1þFG1
m _vþru&pwð Þ ¼ F2þFG2
m _wþpv&quð Þ ¼ F3þFG3

I44 _pþ I45 _qþ I46_rþ I66& I55ð Þ qr& I45rpþ I64pqþ I56ðq2&r2Þ ¼ F4
I54 _pþ I55 _qþ I56 _rþ I44& I66ð Þ rp& I56pqþ I45qrþ I64ðr2&p2Þ ¼ F5
I64 _pþ I65 _qþ I66_rþ I55& I44ð Þ pq& I64rqþ I56rpþ I45ðp2&q2Þ ¼ F6

ð32Þ

here, m is the mass of the body and Iij are the mass moment of
inertias of the body with respect to the body-fixed coordinate
system. The translational velocity components in the body-fixed
coordinate system are u, v and w in the x0-, y0- and z0-directions,
respectively. The angular velocities in the body-fixed coordinate
system are p, q and r about the x0, y0 and z0 axis, respectively. The
components of the gravity force FGi in the body-fixed coordinate
system are given by

FG ¼ ðFG1; FG2; FG3Þ ¼mgð sin η5; & sin η4 cos η5; & cos η4 cos η5Þ
ð33Þ

The translational and angular velocities are transformed to the
space-fixed coordinate system using the transformation matrices.
The relations between the body and space-fixed coordinate
systems are given by the Eulerian angles roll, pitch and yaw. The
orientation of the body velocities from the body-fixed coordinate
system to the space-fixed coordinate system is obtained using the
following transformation matrices:

_xG ¼ L½ ) u ð34Þ

Ω¼ B½ )ω ð35Þ

here, u¼(u, v, w) is the vector of translational velocities and ω¼
(p, q, r) is the vector of the angular velocities expressed in the
body-fixed coordinate system. In the space-fixed coordinate sys-
tem, the same velocities are the translational velocities
_xG ¼ ð _η1; _η2; _η3Þ and the rotational velocities Ω¼ ð _η4; _η5; _η6Þ.
The transformation matrix is [L] for the translational velocities
and [B] for the angular velocities. The matrices are given as
follows:

L½ ) ¼
c5c6 &c4s6þs4s5c6 s4s6þc4s5c6
c5s6 c4c6þs4s5s6 &s4c6þc4s5s6
&s5 s4c5 c4c5

2

64

3

75 ð36Þ

B½ ) ¼

1 s4t5 c4t5
0 c4 &s4
0 s4=c5 c4=c5

2

64

3

75 ð37Þ

where ci¼cosηi, si¼sinηi and t5¼tanη5. The transformation matrix
[L] is also used to transform directional vectors between the body-
fixed and space-fixed coordinate systems. The transformationmatrices
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are applied to perform all the vector operations in the same coordinate
system.

In the body linear solution, the body position is not updated
during the calculation and the wetted surface of the body is the
same as at t¼0 for all t40. The pressure is solved for the mean
wetted surface below the mean water level z¼0. In the body
nonlinear solution, the instantaneous position of the body is
updated during the calculation. The pressure is solved for the
instantaneous, wetted surface of the body below z¼0. At every
time step, all of the panels are checked to find out if they are above
or below the free surface level. The panel is considered wet if all of
the corner points of the panel are below the water level, z¼0.
Otherwise, the panel is dry and then it is not included in the
solution. The line integral at the waterline is approximated at the
centroid of the panels.

In addition to the body linear and nonlinear solutions, the time
domain method includes the option to solve forces and moments
using what is termed a body-wave nonlinear solution. The body-
wave nonlinear solution is the same as the body nonlinear
solution but additional nonlinear effects are included with the
Froude–Krylov and hydrostatic restoring forces and moments. The
Froude–Krylov and hydrostatic restoring pressures are solved up
to the free surface elevation of the incoming wave.

The rigid hull girder loads are the normal force (V1), lateral
shear force (V2), vertical shear force (V3), torsion moment (V4),
vertical bending moment (V5) and lateral bending moment (V6).
The hull girder loads are determined in the body-fixed coordinate
system. The positive direction of the forces (V1, V2, V3) is the same
as that of the axis of the body-fixed coordinate system. The
moments (V4, V5, V6) are defined about the axis in the body-
fixed coordinate system. The internal hull girder loads at cross
section xp of the body can be determined as follows:

Viðt; xpÞ ¼
Z

VðxpÞ
am i dm&

Z

SBðxpÞ
p1np i dS; i¼ 1;2;…; 6; ð38Þ

where ami are the acceleration components of the mass dm. The
integrations are carried out from the stern of the body to the cross
section xp. For the hydrodynamic forces and moments, the
integration includes the wetted surface of the body SB(xp) to a
cross section at xp. For the inertia forces and the moment of inertia
terms, the integration is performed over the volume V(xp) of the
mass distribution of the body from the stern to a cross section at
xp. In the equation presented above, npi are the components of the
generalised normal vectors for the forces and moments.

3. Results

3.1. Wigley

The comparison of the time domain calculation method with
the model test results are given for the Wigley III hull form, for
which the model test results are presented by Journee (1992).
The panel mesh of the hull used in the calculation is shown in
Fig. 2. All of the results presented here were calculated in head
waves. At time t¼0, the wave amplitude was a, the forward speed
was U0 and the other motions were zero. The results were
calculated using the acceleration potential method to solve the
time derivative of the velocity potential in Bernoulli's equation.

Time histories of the heave calculated with different panel
meshes are shown in Fig. 3. Half of the hull was discretised by 180,
320 and 500 quadrilateral panels. The wave frequency was
ω

ffiffiffiffiffiffiffiffi
L=g

p
¼2.24 and the forward speed given by the Froude number

was Fn¼0.30 (Fn¼U0=
ffiffiffiffiffi
gL

p
). In the calculations, the number of

time steps in one period was Te/Δt¼46, where Te was the
encounter wave period. The calculation results are based on the

body linear solution. The figure shows that the different mesh
sizes have an effect on the convergence of the solution for the
heave amplitudes and the amplitudes fluctuate somewhat
between the coarse and fine meshes. However, the difference in
the amplitudes of the heave is less than 3% between the different
meshes. In the rest of the calculations, the number of panels was
320 on half of the Wigley III hull form.

The calculation results using three different time step sizes are
presented in Fig. 4. The calculations were performed using the
number of time steps in one encounter period Te/Δt¼23, 46 and
92. The calculated time histories of the heave are based on the

Fig. 2. The panel mesh of the Wigley III hull form. The number of panels on the half
hull below the still waterline (WL) is 320.

Fig. 3. Time history of heave at forward speed Fn¼0.30 in head waves at wave
frequency ω

ffiffiffiffiffiffiffiffi
L=g

p
¼2.24. The number of panels was 180, 320 and 500 on the half hull.

Fig. 4. Time history of heave at forward speed Fn¼0.30 in head waves at wave
frequency ω

ffiffiffiffiffiffiffiffi
L=g

p
¼2.24. The number of time steps in one period was Te/Δt¼23, 46

and 92. The number of panels was 320 on the half hull.
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body linear solution. The wave frequency was ω
ffiffiffiffiffiffiffiffi
L=g

p
¼2.24 and

the forward speed Fn¼0.30. The number of time steps Te/Δt¼46
gives 2% lower heave amplitudes than the shortest time step size
for which the number of time steps in one period is Te/Δt¼92.
However, the difference between the longest and shortest time
step sizes is 15%. The longest time step size gives lower motion
amplitudes than the shorter time step sizes. In the rest of the
calculations to determine the body motions, forces and moments
for the Wigley III hull form, the number of time steps in one
encounter period was about 50.

The added mass and damping coefficients at forward speed
were determined from the forced oscillation in the calmwater. The
body was oscillating harmonically at the given heave or pitch
amplitude and frequency. The oscillation amplitude was 0.025 m
and 1.5 degrees in heave and pitch, respectively, which were the
same as in the model tests. The time histories of the radiation
forces and moments in heave and pitch were calculated and
Fourier transforms were performed to define the added mass
and damping coefficients. The added mass corresponds to the in-
phase component with the body acceleration of the radiation force
or moment, and the damping corresponds to the in-phase com-
ponent with the velocity. The heave and pitch added mass and the
damping coefficients in heave are shown in Fig. 5 and in pitch in
Fig. 6 at the Froude number Fn¼0.3. The body linear and nonlinear
solutions for the added mass and damping coefficients are given in
the figures. The acceleration potential method was used to solve
the time derivative of the velocity potential determining the added
mass and damping coefficients. In addition to the acceleration
potential method, the backward difference method was also used
in the body nonlinear solution. The acceleration potential and

backward difference methods give similar predictions for the added
mass and damping coefficients. In the acceleration potential solu-
tion, the time derivative of the velocity potential was calculated
accurately at each time step because the body was in forced
monochromatic oscillation and hence the body motions, velocities
and accelerations were known at each time step. However, the time
derivative of the velocity potential was solved numerically in the
backward difference method. Hence, these two methods resulted
in slightly different time histories which were used to determine
the added mass and damping coefficients. Furthermore, the body
linear and nonlinear solutions are close to each other. The diagonal
coefficients, Aii and Bii, are in good agreement with the experi-
ments. Moreover, the predictions for the cross-coupling added mass
coefficients are satisfactory, but larger differences exist in the cross-
coupling damping terms. For the pitch added mass and damping
coefficients, the body nonlinear solution gives better results than
the body linear solution. In the body nonlinear solution, the forward
speed effects are taken into account at the instantaneous floating
position. Hence, the angle of attack due to pitch in the steady flow is
determined for the actual body geometry below the mean water
level.

The transfer functions of the heave and pitch at forward speed
Fn¼0.30 in head waves are shown in Fig. 7. In the calculations, the
wave amplitude was a/L¼0.0067. Calculations were carried out
using the body linear and nonlinear solutions. In general, the
calculated motions are in close agreement with the model test
results. At the heave resonance, the calculation overestimates the
heave motion. At the longer waves, the body nonlinear solution
gives somewhat larger amplitudes for the heave motion than the
body linear solution. Both the body linear and nonlinear methods

Fig. 5. Heave and pitch added mass and damping coefficients in heave at Fn¼0.3. The experimental results are from Journee (1992).
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give close to the same results at the heave resonance. Hence, the
nonlinearities due to the instantaneous position of the body with
respect to the still water level cannot explain the differences with

the model test results. In the governing equations, it is assumed
that the free surface boundary condition is linear and the flow is
inviscid. These assumptions can possibly have an effect on the

Fig. 6. Heave and pitch added mass and damping coefficients in pitch at Fn¼0.3. The experimental results are from Journee (1992).

g
L

g
L

Fig. 7. Heave and pitch of the Wigley III in head waves at Fn¼0.30.
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calculated results. The body linear and nonlinear solutions give
good predictions for the pitch. However, the body nonlinear
solution gives slightly lower amplitudes near the resonance of
the pitch.

3.2. RoPax ship

Model tests were carried out for the RoPax ship to investigate
the hull girder loads in regular and irregular head waves and also
in calm water (Kukkanen, 2012). The ship has a bulbous bow and a
flat-bottom stern at the waterline. The lines drawing is shown in
Fig. 8 and the main dimensions and weight data used in the model
tests are given in Table 1. The ship model was manufactured to a
scale of 1:39.024. The ship model was a segmented ship model

and force and moment transducers were installed in two cut-off
sections. The locations of the force and moment transducers are
shown in Fig. 8. The midship transducer was at frame 4 (x/L¼0.40)
and the foreship transducer at frame 6.5 (x/L¼0.65). The char-
acteristic length L of the ship is the length between the perpendi-
culars Lpp. The transducers were installed at the centre line and the
vertical distance from the base line was the same as the centre of
gravity of the ship. According to the calibration certificate of the
force transducers, the measurement uncertainties were 4.25% and
3.25% for the shear force and bending moment, respectively. The
heave and pitch motions were measured at the centre of gravity of
the ship model.

Fig. 8. Lines drawing of the RoPax ship. The longitudinal locations of the force transducers are measured from the AP (frame 0). The midship transducer was located at frame
4 and the foreship transducer at frame 6.5.

Table 1
Main dimensions and weight data of the RoPax ship. The aft perpendicular is AP at
lines drawing frame 0, CL is the centre line and BL is the base line.

Quantity Symbol Unit Value

Length overall Loa [m] 171.4
Length between perpendiculars Lpp [m] 158.0
Breadth max. at waterline Bwl [m] 25.0
Draught T [m] 6.1
Displacement ∇ [m3] 13 766
Block coefficient CB – 0.55
Centre of gravity:

From AP xCG [m] 74.9
From CL yCG [m] 0.0
From BL zCG [m] 10.9

Radius of gyration in pitch kyy/Lpp – 0.25

Fig. 9. Panel meshes of the RoPax ship in the calculations. The number of panels is
327 on the half body below the still waterline.
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The panel meshes of the RoPax ship are shown in Fig. 9. The
number of panels on the half hull below the still waterline was
327. The transom of the ship was not included on the panel mesh.

Hence, the transomwas always dry and the pressure was the same
as the atmospheric pressure at the transom. The time step used in
the calculation was Δt

ffiffiffiffiffiffiffiffi
g=L

p
¼0.025.

Responses in calm water were also measured in the calm water
and compared to those of the calculated results. The body non-
linear solution was used in the calculation. The sinkage at the
centre of gravity of the ship is shown in Fig. 10 as a function of the
ship speed. The vertical shear force at foreship and the vertical
bending moment at midship are presented in Fig. 11. The calcu-
lated sinkage, shear force and bending moment are similar to
those in the model tests. The vertical bending moment increases
with the speed. The steady pressure and wave pattern due to the
forward speed induce a sagging bending moment on the hull
girder.

The linear transfer functions are presented in Figs. 12–15. In the
time domain calculation, the wave amplitude related to the ship
length was a/L¼0.006 in regular waves in order to determine the
first harmonic component of the response. The first harmonic
component gives the linear transfer function for the response.
The model test results are presented for wave amplitudes a/L¼0.006,
0.013 and 0.019 at zero speed and a/L¼0.006 and 0.013 at forward
speed Fn¼0.25. The first harmonic components from the model tests
were close to each other at the different wave amplitudes. Hence, the
nonlinearities are relatively small in the first harmonic components

Fig. 10. Sinkage positive upwards at the centre of gravity of the ship in calm water
as a function of the ship speed.

Fig. 11. Shear force at the foreship (left) and vertical bending moment at midship (right) in calm water as a function of the ship speed.

Fig. 12. Heave and pitch at Fn¼0.0 in head seas calculated with the body-wave nonlinear solution.
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of the responses with respect to the first harmonic component of the
wave amplitude. However, the mean of the response and the single
positive and negative amplitudes, i.e. the higher order components,
are not necessarily linear with respect to wave amplitude.

At zero speed, the transfer functions for heave and pitch are
presented in Fig. 12 and for the shear force and bending moment
in Fig. 13. The results using the time domain calculation method
are based on the body-wave nonlinear solutions. The calculated
results are in good agreement with the model test results. The
time domain method gives a slightly higher prediction for
the shear force and bending moment. At forward speed Fn¼0.25,
the transfer functions are shown in Fig. 14 for the heave and pitch
and for the shear force and bending moment in Fig. 15. The body-

wave nonlinear solution and the model test results of the shear
force and bending moment are close to each other at forward speed
Fn¼0.25. The transfer function of the calculated shear force exists at
somewhat lower wave frequencies than in the model tests. The
pitch motion is also close to the model test results, but the
calculation gives rather high heave amplitude at the resonance.

The maximum and minimum peaks of the bending moment in
regular head waves and the contribution of the steady bending
moment at forward speed Fn¼0.25 are presented in Fig. 16. The
figure is given in a dimensional form in order to gain an insight
into the contribution of the steady bending moment to the sagging
and hogging bending moment. The maximum and minimum
peaks are given for two wave amplitudes, a/L¼0.006 and 0.013

Fig. 13. Shear force at the foreship and bending moment at midship at Fn¼0.0 in head seas calculated with the body-wave nonlinear solution.

Fig. 14. Heave and pitch at Fn¼0.25 in head seas calculated with the body-wave nonlinear solution.
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(a¼1 m and 2 m). It can be noted that the mean of the maximum
and minimum at the longest and shortest waves is about the same
as the steady bending moment in calm water with the forward
speed. The contribution of the steady bending moment also
explains a large part of the differences between the sagging and
hogging bending moment at the lower wave amplitude. However,
the contribution of the steady bending moment is small at the
higher wave amplitude. At higher wave amplitudes, the steady
bending moment is small and a large part of the nonlinearities in
sagging and hogging is due to the ship motions in waves.

In irregular waves, calculated responses are compared with the
model test results at zero speed. The significant wave height was
Hs¼9 m and the zero crossing period was Tz¼10.5 s in the model
tests and calculations. The irregular waves were generated using
the modified Pierson–Moskowitz wave spectrum (ITTC, 2002).
The irregular long-crested waves were described as a sum of

regular wave components with different amplitudes and phases.
The time history of the irregular wave was generated in the same
way in the model tests and calculations. The duration of the

gL gL

Fig. 15. Shear force at the foreship and bending moment at midship at Fn¼0.25 in head seas calculated with the body-wave nonlinear solution.

Fig. 16. Maximum and minimum peaks of the bending moment in regular waves and the contribution of the steady bending moment at Fn¼0.25. The calculation was
carried out using the body-wave nonlinear solution. The given steady bending moment is based on the model test results.

Table 2
Mean and standard deviation (St.Dev.) of responses in sea state Hs¼9.0 m and
Tz¼10.5 s at Fn¼0.0.

Time domain Model tests

Mean x St.dev. sx Mean x St.dev. sx

Wave a/Hs 0.000 0.246 &0.003 0.251
Heave η3/Hs &0.004 0.141 0.007 0.137
Pitch η5L/(2πHs) 0.002 0.097 0.003 0.096
Shear force V3/(ρgHsBL) 0.0018 0.0097 0.0014 0.0080
Bending moment V5/(ρgHsBL2) &0.0007 0.0030 &0.0006 0.0030
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irregular sea states in the time domain calculation was about 3 h
and in the model tests about 1.6 h. The mean and standard
deviation of the responses are shown in Table 2. The standard
deviations of heave and pitch in the calculation and model tests
are close to each other. The standard deviation of the bending
moment is the same. However, the shear force is about 20% bigger
in the calculation than in the model tests. The exceedance
probabilities of heave and pitch are presented in Fig. 17 and the
shear force and bending moment are shown in Fig. 18. In the
sagging condition, the bending moment is negative (minimum)
and the shear force is positive (maximum). The peak distributions
of heave and pitch follow the model test results well. The sagging
bending moment deviates at small exceedance probability levels
from the model test results. The peak distribution of the shear
force is at a higher level in the sagging condition in the calculation
than in the model tests and there are also differences in the
hogging condition. Hence, heave and pitch are well predicted by
the time domain calculation method in irregular waves. The
bending moment is also well predicted but there are differences
in the shear force predictions. Possible reasons for this may

include inaccuracies in the load predictions on the bow and
perhaps the different longitudinal mass distribution in the model
tests and calculations. The loads on the bow can have a greater
effect on the shear forces at the foreship than for the bending
moment at midship.

4. Conclusions

A time domain calculation method for nonlinear hydrodynamic
loads of floating bodies in waves is presented. The perturbation
velocity potential is solved using source distributions on the body
surface. The source distributions are represented by means of the
transient Green function. The time derivative of the velocity
potential in Bernoulli's equation is solved using an acceleration
potential method. In the acceleration potential method, a potential
function is solved with a similar source formulation to that of the
perturbation velocity potential. The acceleration potential method
gives a reliable and stable solution for the responses.

Fig. 17. Exceedance probabilities (Qx) of heave and pitch in sea state Hs¼9.0 m and Tz¼10.5 s in head seas at Fn¼0.0.

Fig. 18. Exceedance probabilities (Qx) of shear force and bending moment in sea state Hs¼9.0 m and Tz¼10.5 s in head seas at Fn¼0.0.
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For the Wigley hull form, the comparison between the existing
experimental results and the time domain method shows good
agreement of added mass damping coefficients, and the heave and
pitch motions. Furthermore, the time domain method was applied
to predict responses for the RoPax ship and the calculated
predictions were compared with the model test results. In calm
water, the model test results show that the steady bending
moment and shear force increase if the forward speed increases.
The calculated results are in good agreement with the model test
results but the uncertainty of the calculated predictions increases
if the forward speed increases. For the model test ship, the steady
hull girder loads are in the order of 10% of the still water loads at
forward speed Fn¼0.25. The model test results show that differ-
ences between the sagging and hogging shear force and the
bending moment in regular and irregular head waves are sig-
nificant for the RoPax ship. The time domain method can predict
the nonlinearities in the sagging and hogging shear forces and
bending moments. At zero speed, the time domain method gives
good predictions for the bending moment, but the differences for
the shear force were larger comparing to the model test results.

Further studies are needed to investigate the effect of the bow
and stern impact loads on the hull girder loads and dynamic
responses. The calculation method should also be verified and
validated in oblique waves.
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