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The reliable prediction of springing excitation requires a detailed understanding of the origin of exciting
wave loads. This study clarifies the origin of the second harmonic wave loads that can excite the
springing of a large cruise ship (roughly 300 m long) in short and steep head waves. The findings are
based on the analysis of previously validated numerical simulations (RANS-VOF) of the flow around a
rigid hull. The accumulation of the loading is presented both along the length and the depth of the hull.
The results show that the second harmonic vertical loading originates mainly in the foremost part of the
ship, where the whole depth of the hull matters. The analysis focuses on the effect of the phase and the
amplitude of second harmonic local loading. The irregular variation of the phase of the local loading with
respect to that of the freely propagating wave demonstrates a serious deformation of the waves en-
countered in the area where the second harmonic total loading of the hull mainly originates. The analysis
of the temporal behaviour of local loads indicates that the magnitude of the local second harmonic
loading relates to the rise time of the respective local loads.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Springing is a serious matter for ship builders and operators,
because long-lasting vibration puts freighters at risk of fatigue
damage and because it may affect the comfort of the passengers
on a large cruise ship. The scientific community can help control
the effects of springing by providing information on its origin and
by providing tools that can predict springing in the design stage. A
crucial question relating to the numerical prediction of springing is
what the behaviour of the exciting wave loads is like from the
hydrodynamic point of view. This study clarifies this matter by
describing the development of the second harmonic wave loads
that can cause springing (so-called second-order springing) in the
case of a large cruise ship.

When searching for a numerical tool that can predict springing
or another phenomenon, it is typical to conduct numerical simu-
lations with a selected tool and to compare the numerical results
against the corresponding experimental ones. Such comparisons
provide information on the relevant physical phenomena, too. If
the numerical and experimental results are similar, we can assume
that the physics modelled by the numerical tool agree with the
physics that matter for the phenomenon or vice versa. In the case
n).
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of springing-type vibrations, the most authentic comparisons be-
tween the numerical and experimental results are the ones where
the numerical simulations are compared against the vibratory
response measured on board a full-scale ship. In such a case, the
benchmark study of Storhaug et al. (2003) concluded that tradi-
tional seakeeping methods are not capable of predicting the
springing response of a bulk carrier in realistic sea states. The
methods that were tested in Storhaug et al. (2003) were different
strip theories and one linear 3-D Rankine method. Soon after-
wards, Vidic-Perunovic (2005) and Vidic-Perunovic and Jensen
(2005) showed that the prediction of the springing response is
improved when the effect of the bi-directional waves is included
in a second-order strip theory. The capability of strip theories to
predict springing is of interest from the point of view of practical
design work, because strip theories require only scant computa-
tional resources in comparison to the other numerical tools: 3-D
potential codes and Navier–Stokes solvers. From the point of view
of physics, one challenge of strip theories is their limited capability
to predict diffraction. For instance, Vidic-Perunovic (2010) pointed
out the significance of the linear excitation caused by diffracted
waves in the case of the springing of a container ship.

Overall, studying springing in the context of realistic sea states
is a great challenge. The physics involved can be very complex for a
ship advancing through irregular waves. Furthermore, the in-
formation on the prevailing sea state during the measurements
may be vague, but it is needed as an input for the numerical si-
mulations. The situation becomes more controlled and more
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Fig. 1. Ship frames between the fore perpendicular and the midship. The colour
zones are used in Section 5.2. (For interpretation of the colours in this figure, the
reader is referred to the web version of this paper.)
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simplified when regular waves are studied by means of numerical
simulations and model tests. When springing in regular waves is
studied, the waves encountered are typically selected in such a
way that linear wave loading or a multiple of the encounter fre-
quency (ωe) resonates with an eigenmode of the hull (ωhull). This
study focuses on the second harmonic wave loads ( ω ω· =2 e hull),
which can excite the springing of a large cruise ship. Springing
excited by second harmonic wave loads is often called second-or-
der resonant springing in the literature.

In the previous literature, second-order springing has been
studied e.g. by comparing numerical and experimental results and
by varying different case parameters such as the velocity of the
ship and the height of the waves that are encountered. Kim et al.
(2012), Lee et al. (2012), and Oberhagemann and el Moctar (2012),
for instance, presented comparisons of the numerical and ex-
perimental results for a container ship using a Rankine panel
method with a Timoshenko beam, a 3-D hydroelastic code with a
2-D beam model, and a RANS solver coupled with a model de-
composition approach, respectively. They all report that the nu-
merical results agree or are comparable with the experimental
ones. From a theoretical point of view on hydrodynamics, the
capability of a potential code to predict wave loads depends on the
non-linear terms that are included in the model, while a RANS-
VOF solver does not set any theoretical limitations on the non-
linearity of the wave loads that can be predicted. The case para-
meters can matter for the significance of predicting different non-
linear terms and for the requirements concerning the resolutions
in RANS simulations. For instance, both an increase in the speed of
the ship and an increase in the steepness of the waves en-
countered are reported to increase the second-order resonant
springing. The effect of the speed of the ship has been demon-
strated e.g. with experimental results in Storhaug and Moan
(2007) and with numerical results in Shao and Faltinsen (2012). As
for the wave height, the importance of the increasing wave height
was demonstrated in the experimental studies of Slocum and
Troesch (1983) and Miyake et al. (2008).

To conclude our overview of the existing knowledge on the
matter of second-order resonant springing, the previous studies
showed encouraging agreement between the numerical and ex-
perimental results and gave ideas about the significance of dif-
ferent case parameters. However, more detailed information on
the development of second-order resonant springing is needed in
order to understand the requirements for a tool that can predict
exciting wave loads in the case of arbitrary case parameters. Such
information is needed when selecting a tool for the reliable pre-
diction of springing in realistic sea states as well.

This study describes what matters for the development of the
second harmonic wave loads, which can excite the springing of a
large cruise ship in one type of regular wave conditions. The
findings are based on the analysis of the behaviour of the forces
acting at stations on the ship. The data to be analysed was ob-
tained by conducting numerical simulations with a RANS-VOF
solver. The structural responses were omitted because of the low
amplitude of vibration relating to the stiffness of cruise ships,
which is greater than that of some other ship types.

The simulation results that form the basis of the analysis pre-
sented in this paper were verified and validated against experi-
mental data in Hänninen et al. (2014) and in Hänninen (2014). The
conclusions from these studies are that the numerical uncertainty
is insignificant from the point of view of the present analysis and
that in the selected case the modelling approach can capture the
essential features of the development of the pressure impact at the
bow. The validation was performed by comparing the computed
time histories of the pressure at 10 locations against data which
was obtained by conducting dedicated model tests. The numerical
uncertainty of the computed pressure histories used in the
validation is assessed in Hänninen et al. (2014) and in Hänninen
(2014) by systematically studying the influence of grid and time
resolution and the influence of the number of iterations within
each time step. The verification of the time histories of the vertical
forces acting at selected stations and the distribution of the second
harmonic amplitude and phase of this force along the length of the
hull is presented in Hänninen (2014). Additionally, the verification
of the distributions of the first–third harmonic amplitude of the
vertical forces acting at the stations for a similar computation is
addressed in Hänninen et al. (2012). The requirements concerning
the numerical simulation of a similar flow case are also considered
in Hänninen and Mikkola (2008) and Hänninen et al. (2011). In
this paper, the focus is on the physical phenomena only as the
verification and the validation of the computation were done
before.
2. Study case

The study case describes a large cruise ship that is advancing
through short and steep head waves. The hull form is one of the
development versions of a real ship which was constructed. The
length of the ship is 328 m. The encounter period of the ship and
waves was selected to be such that the second harmonic compo-
nent of the wave loads resonates with the two-node vertical mode
of the ship.

The computation is performed on the model scale 1:49. The
ship frames are shown in Fig. 1 and the case parameters are pre-
sented in Table 1. The origin of the coordinate system is located at
the aft perpendicular of the ship at the level of the design water-
line. The positive z-axis points upwards and the positive x-axis
from the stern towards the bow of the ship.

The setup applied in studying this case includes two assump-
tions about the physics of the flow. First, it is assumed that the
motions of the ship are negligible, which implies that the effect of
the radiation forces can be ignored. The validity of this assumption
was confirmed by the measured data of the motions of the ship in
the model tests (Hänninen et al., 2014; Hänninen, 2014). Second, it
is assumed that the deformation of the hull (springing vibration)
does not significantly affect the main features of the flow. As a
consequence, the hull is considered rigid. The reasoning that un-
derpins this assumption is that the order of magnitude of the vi-
bration amplitude is about 1% of the wave height in this case.



Table 1
Ship and wave particulars on model scale. Lship denotes the length between the
perpendiculars of the ship. The draught is the draught at the velocity of the model
(Hänninen et al., 2014; Hänninen, 2014).

Model scale 1:49
Length Lship 6.69 m Wave length Lwave 1.05 m
Breadth Bship 1.10 m Wave height =H A2input 0.08 m

Draught 0.184 m Wave steepness kA 0.24
Block coefficient 0.72 Encounter period te 0.38 s
Velocity Vship 1.47 m/s
Froude number 0.181
Reynolds number ·0.982 107

Table 2
Boundary conditions (Hänninen et al., 2014; Hänninen, 2014).

xmin Far-field condition xmax Wave generator, first order Stokes
ymin Mirror condition ymax Mirror condition
zmin Prescribed pressure zmax Prescribed pressure
Deck Slip wall Hull Wall with wall-functions

Table 3
Locations of the grid boundaries.

x L/min wave �8.32 x L/max wave 9.23

y L/min wave 0.00 y L/max wave 6.63

z L/min wave �8.13 z L/max wave 1.63
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3. Numerical method

3.1. Mathematical model

The computation was performed using the ISIS-CFD flow solver,
which is distributed by Numeca International under the name
FINE™/Marine. The description of the governing equations follows
Queutey and Visonneau (2007). The conservations of mass, mo-
mentum, and volume fraction are modelled with the equation of
continuity, the Navier–Stokes equations, and the transport equa-
tion of the volume fraction in Eqs. (1)–(3), respectively. Eqs. (1)–(3)
are written for incompressible fluids in a moving grid system. In
the case of the equation of continuity, distinct phases are assumed
to have constant densities. In the case of a moving grid, a so-called
space conservation law is satisfied:
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where V is the control volume and S its closed surface. The velocity

of the surface is denoted with
→
Ud and its outwards-directed unit

normal vector with →n .
→
U represents the velocity field, p the

pressure field, T̄ the stress tensor, →g the gravity vector, and ci the
volume fraction of the fluid i.

The coupling of the velocity and pressure fields is performed
with a SIMPLE algorithm that takes into account the presence of a
density discontinuity; see Queutey and Visonneau (2007).

The behaviour of the free surface is modelled with the volume-
of-fluid method, which predicts the flows of both the water and
the air in the computational domain using Eq. (3). This means that
i¼air or i¼water. In each computational volume, the volume
fraction ci indicates the presence of fluid i ( =c 1i ) or its absence
( =c 0i ) or a mixture of the two fluids ( < <c0 1i ). The value

= =c c 1/2air water is selected as the free surface. Using these volume
fractions, the fluid density ρ and the fluid viscosity μ are defined
for each control volume with

ρ ρ ρ= · + · ( )c c , 4water water air air

μ μ μ= · + · ( )c c , 5water water air air

respectively. In this case, the volume fraction cair can be defined as
= −c c1air water . Only the volume fraction cwater is solved from Eq. (3).
The turbulence model applied is Menter's STT ω−k model
with wall functions.

The boundary conditions that were applied are given in Table 2.
They are described below according to Numeca (2011). At the far-
field boundary, the velocity is set to zero at the beginning of the
computation. The variables that are imposed depend on the local
flow direction with respect to the boundary patch. Depending on
whether the flow enters or leaves the domain, a Dirichlet or a
Neumann condition is applied. At the boundaries with the pre-
scribed pressure, the pressure pboundary is set to the value

ρ= − ( − ) ( )p g z z , 6boundary boundary 0

where zboundary is the z-location of the boundary and z0 the loca-
tion of the free surface at the beginning of the computations. The
fluid can both enter and exit at this boundary. At the boundary
with the mirror condition, the geometry and the flow are assumed
to be symmetric. Then the velocity field is assumed to be tan-
gential to the mirror plane. At the boundary with the slip wall, the
velocity component that is normal to the boundary is set to zero.
Further, the turbulent production resulting from shear is
neglected.

The wave generation at the boundary xmax is based on the first-
order Stokes wave theory, which gives instantaneous wave height
and velocity distribution at the boundary.

3.2. Setup for the flow solver

The discretisations of the governing equations are explained in
Queutey and Visonneau (2007). In this study, second-order dis-
cretisation schemes were selected as user-defined options. In the
case of the time derivatives, a second-order backward scheme is
used; see Queutey and Visonneau (2007). In the case of the con-
vective terms of momentum and turbulence equations, the GDS
gamma differencing scheme is used; see Queutey and Visonneau
(2007). In the case of the convective term of the volume fraction
conservation equation, the BRICS blended reconstructed interface
capturing scheme is used; see Wackers et al. (2011).

The computational domain includes only one half of the hull
because of the symmetric flow case. The computational domain
moves with the ship. The locations of the domain boundaries are
given in Table 3; see also Fig. 2. The distance between the inlet
boundary (xmax) and the bow is about three times the wave length,
which gives the waves generated at the inlet enough distance to
develop before reaching the bow. The distance between the stern
and the outlet boundary (xmin) is such that the grid can be made
coarse in front of the outlet boundary for wave damping without
needing to make the grid coarse in the vicinity of the stern. No
special treatment is applied at the outlet boundary for wave ab-
sorption. The locations of the lower boundary (zmin) and the upper
boundary (zmax) are such that they do not affect the flow around
the hull or the free propagation of the waves. The location of the
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Table 5
Locations of the boundaries of the refinement boxes b1 and b2 (Hänninen, 2014).

Location b1 b2 b1 b2

| − |x x L/FPP bi wave,1 8.12 1.93 | − |x x L/FPP bi wave,2 2.86 0.13

y L/bi wave,1 0.00 0.00 y L/bi wave,2 6.63 0.95

z L/bi wave,1 �0.06 �0.12 z L/bi wave,2 0.06 0.21

Table 6
Information on fluids (Hänninen et al., 2014; Hänninen, 2014).

Water density ρwater 998.1 kg/m3 Air density ρair 1.2 kg/m3

Water viscosity μwater 0.001 kg/sm Air viscosity μair × −1.85 10 kg/sm5

Standard gravity g 9.81 m/s2
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boundary ymax is such that the waves generated by the ship do not
reflect from the boundary.

The spatial domain has three sub-domains of local refinements.
One of them is designed for the transportation of waves in the
computational domain (refinement box b1, Fig. 2, Table 5). This
refinement box extends for the whole computational domain in
the longitudinal and lateral directions, except in the vicinity of the
outlet boundary (xmin), where the waves need to be dampened
before they reach the outlet boundary. The vertical edges of this
refinement box are such that the propagating waves fit into the
box. Another local refinement (refinement box b2, Fig. 2, Table 5) is
applied in the y-direction for capturing impact-type flow phe-
nomena in the bow area of the ship. The edges of the refinement
bow b2 were selected according to the visual observations and
pressure signals of the model tests of a similar flow case. The third
local refinement covers the boundary layer near the hull surface.

Information on the resolution is given in Table 4. The number of
cells, the cell height Hcell and length Lcell in the refinement boxes b1
and b2, and the first cell height y1 in the boundary layer are given.
The first cell height was selected to be such that the dimensionless
distance from the wall +y gets the value of roughly 30 in the area
of the stern of the ship. The stretching ratio in the boundary layer
is 1.20. The grids were generated with the Hexpress hexahedral
grid generator (version 2.11-1). The time step is given in Table 4.
The number of iterations per time step was set to be 20, while the
requirement for the decrease of the residuals (infinity norms) was
set so high that practically it did not limit the iteration number;
see Hänninen et al. (2014) and Hänninen (2014).
Table 4
Information on grids and time steps.

Number of cells 6.53M
L L/wave cell 87.49 y1 0.0013

H H/wave cell 11.94 Δt t/e 367.86
At the beginning of the computation (0.00–3.00 s), the ship
accelerates according to an acceleration ramp with the form 0.5–
0.5 cos(tπ/ 3.00 s). The wave generation starts at the inlet
boundary at the beginning of the simulation. The results to be
analysed cover the time frame 6.98–10.80 s, which includes 10
encounter periods.

Table 6 gives information on the fluid properties in the
computations.

The feasibility of the present setup for the computation is
shown through a verification and validation study in Hänninen
et al. (2014) and Hänninen (2014).
4. Analysis of the results

4.1. Forces

The focus is on the vertical force at the stations and on the
vertical force that accumulates along the length of the hull.

The calculation of the vertical force Fz station, at a station starts
with the selection of the grid points that are located within a thin
vertical section and represent the station (Hänninen et al., 2012).
The points representing one half of the ship frame are organised in
such a way that the point closest to the centreline of the ship is
chosen to be the point iy¼1, the second closest point is iy¼2, and
so forth. The bulb area is an exception. There, the points closest to
each other are adjacent. The vertical force per unit ship length at a
station is calculated using the trapezoidal rule:

∑( ) = · ·( ( ) + ( ))·( − )
( )=

− −F t p t p t y y2
1
2

,
7

z station
iy

N

iy iy iy iy,
2

1 1

p f,

where Np f, is the number of points that represent one half of the
ship frame. In addition to the force Fz station, acting on the whole
frame, the force acting on a part of it has also been analysed. This
can be evaluated using Eq. (7) by choosing points belonging to a
specific part of the frame.

The total force acting on the hull can be calculated by adding up
all the vertical forces at the stations multiplied by the width of the
x-span that a frame force represents. The development of this total
force along the length of the hull is called the cumulative force
Fz cum, , which is defined between the stem of the ship and an x-
location downstream using

∑( ) = ·
( )=

F x t F dx, ,
8

z cum
ix

n

z station ix,
1

, ,

station

where dx is the width of the x-span that a force at a station re-
presents. The non-dimensional width of the x-span is

=dx L/ 0.0036ship in this study. The index ix¼1 indicates the
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foremost station and the index =ix nstation indicates the rearmost
station that is observed.

4.2. Discrete Fourier Transformation

The Discrete Fourier Transformation is applied when resolving
the second harmonic component and low-pass filtered time his-
tories of the forces and the phase of the freely propagating wave.

The second harmonic component is distinguished from the
force history (after subtracting the mean value) by applying Dis-
crete Fourier Transformation (DFT) e.g. Chapra and Canale (1988).
The time history can be considered as a data sequence = ( )F F n of
discrete times = …n N1, 2, , t . The time step Δt affects the total
number of points in the frequency domain through the Nyquist
frequency π Δt/ and the length of the time history = ΔL N tt t defines
the spacing of the frequency domain ω πΔ = L2 / t .

The Fourier series of a real-valued time history F can be written
as

∑ ∑π π( ) = +
( )= =

ω ω⎛
⎝
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The second harmonic amplitude of the force is calculated in
such a way that it includes the energy in the frequency span of
width ωe around the second harmonic encounter frequency:

∑ξ = +
( )=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟a b .

12
span

k
k k2,

15

24
2 2

As the length of the time histories is 10 times that of the encounter
period, the index that corresponds to the second harmonic of the
encounter frequency is 20 in the frequency domain. Hänninen
(2014) and Hänninen et al. (2012) showed that the difference
between the amplitude ξ span2, and the amplitude

ξ = ( + )a bsingle2, 20
2

20
2 is negligible from a practical point of view.

The definition that is applied in this study is more appropriate
from the point of view of the springing excitation.

The phase of the second harmonic force at a station is calcu-
lated with

δ =
( )

⎛
⎝
⎜⎜
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a
atan .
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20,
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The distribution of the phase δ2 of the second harmonic force
Fz station, is presented with the distribution of the phase δwave of the
freely propagating waves. Here, δwave is the phase of the second
harmonic component that is bounded to the freely propagating
wave:

δ = ·
( )

⎛
⎝⎜

⎞
⎠⎟

b
a

2 atan .
14

wave
wave

wave

10,

10,

The effect of the difference between the phases δ2 and δwave on the
cumulative force Fz cum, is demonstrated by comparing the second
harmonic amplitude of Fz cum, (Eq. (8)) and the second harmonic
amplitude of the cumulative force, which is calculated using the
phase of the freely propagating wave as follows:

∑
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ξ δ δ
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dxcos
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In all, the cumulative force Fz cum, depends on both the ampli-
tude and the phase of the second harmonic force Fz station, at a
station. The joint effect of the amplitude and phase is presented by
projecting the second harmonic amplitude of Fz station, to the phase
of the second harmonic total vertical force acting on the hull. The
phase of the second harmonic total force is denoted as δ total2, . The
projected second harmonic amplitude is calculated as

( ) ( ) ( ) ( )ξ ξ δ δ δ δ= [ · + · ] ( )sin sin cos cos . 16proj span total total2, 2, 2 2, 2 2,

The low-pass filtered time histories, which consist either of the
zeroth–first harmonic components or of the zeroth–second har-
monic components are calculated with Eq. (9) using only the 14
and 24 lowest Fourier components, respectively.

4.3. Average time history and its rise time

The figures on time histories depict average time histories. The
average time histories are the averages of the 10 encounter periods
which the computational data includes. An instantaneous result of
a quantity ϕ ( )t is calculated with

∑ϕ ϕ( ) = ( )
( )=

t t
1

10
,

17j
j

1

10

where ϕ ( )tj is the corresponding instantaneous value of the jth
encounter. The time histories for individual encounters are ob-
tained by dividing the whole time history into 10 pieces whose
length is one encounter period.

The rise time of a force history is calculated from the average
time history with

= − ( )t t t , 18rise 2 1

where t1 is the instant when the average force history has its
minimum value and t2 is the instant when the average force his-
tory first reaches its maximum value after the instant t1.

4.4. Non-dimensional results

All the results are presented in a non-dimensional form.
The time domain is made non-dimensional by division by the

average of the encounter period te. An arbitrary instant is selected
to be =t t/ 0.0e and its value does not matter for the presentation
of the results.

When the local pressures, the forces Fz station, , and the forces
Fz cum, are made non-dimensional, the average wave height H is
used. H is calculated from the computational results between the
x-location of the fore perpendicular and =x L/ 0.88ship on the cross-
section =y B/ 6.0ship . See Hänninen et al. (2014) and Hänninen
(2014) for more details on H.

The local pressures p, the forces at the stations Fz station, , and the
cumulative forces Fz cum, are made non-dimensional as follows:

ρ ρ ρ
= = =

( )
⁎ ⁎ ⁎p

p
gH

F
F
gB H

F
F

gL B H
,

2
, and

2
,

19
z station

z station

ship
z cum

z cum

ship ship
,

,
,

,

respectively.
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5. Development of the second harmonic loading along the hull
surface

Sections 5.1 and 5.2 describe how different parts of the hull
contribute to the total second harmonic loading in the longitudinal
and vertical directions of the hull, respectively.

5.1. Development in the longitudinal direction of the hull

Fig. 3a shows how the second harmonic vertical force Fz cum,
accumulates along the length of the hull from the fore perpendi-
cular to the aft perpendicular. The main contribution of the load-
ing originates from the foremost part of the bow. For instance,
within the distance of about L0.2 ship from the fore perpendicular,
the magnitude of the second harmonic vertical loading is roughly
94% of the respective loading of the whole ship. The accumulation
of the second harmonic force Fz cum, correlates with the second
harmonic force Fz station, acting at the stations. The essential increase
of the cumulative force Fz cum, (Fig. 3a) occurs in the same area
where the amplitude of the second harmonic vertical force Fz station,

at the stations (Fig. 3b) is the largest. As the bow area makes the
most significant contribution, it is observed in more detail below.

The accumulation of the second harmonic vertical force Fz cum, is
irregular in two ways: the rate of the increase and the decrease in
the level of the force varies and the lengths of the x-spans of the
increasing and decreasing force vary; see the black dotted line in
Fig. 4a. The varying rate of the increase and decrease of the force
Fz cum, relates to the varying amplitude of the force Fz station, at a
station. The change in the cumulative force is high in the areas
where the amplitude of the vertical force Fz station, at a station is
high, e.g. around ≈x L/ 0.96ship , and low in the areas where the
amplitude of the vertical force Fz station, at a station is low, e.g.
around ≈x L/ 0.74ship ; compare Fig. 4a and b. The varying lengths of
the decreasing and increasing force relate to the distribution of the
phase of the second harmonic force Fz station, at stations; see the
black dotted line in Fig. 4c. A local maximum or minimum of the
cumulative force Fz cum, (Fig. 4a) occurs when the phase shift of the
forces Fz station, at the stations (Fig. 4c) is roughly one π from the
previous local minimum or maximum of the cumulative force
Fz cum, (Fig. 4a). In practice, the variation of the phase is irregular
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forward of ≈x L/ 0.82ship , aft which it increases linearly. Aft
≈x L/ 0.82ship , the second harmonic phase has a fixed difference

from the phase of the second harmonic component (δwave, Eq. 14)
that is bounded to the freely propagating wave; see Fig. 4c. In the
area where the phase difference between the force and the freely
propagating wave is fixed ( <x L/ 0.82ship ), the variation of the
amplitude of the cumulative force Fz cum, continues but becomes
smaller and smaller in the middle part of the hull, while its mean
value does not change significantly; see Fig. 4a and also Fig. 3a. The
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effect of the irregular distribution of the phase of the second
harmonic component of Fz station, on the second harmonic amplitude
of the cumulative force Fz cum, can be seen by comparing the actual
cumulative force and the cumulative force that is calculated using
the phase of the freely propagating wave (Eq. (15)); see Fig. 4a. If
the cumulative force was calculated using the phase of the freely
propagating wave, the second harmonic amplitude of the loading
of the whole ship would only be roughly 15 % of the actual loading.

In all, the accumulation of the force Fz cum, relates both to the
amplitude and to the phase of the second harmonic force Fz station, at
the stations. Their joint effect is illustrated in Fig. 5 by giving the
second harmonic amplitude ξ proj2, of the force Fz station, , which is
projected to the phase of the second harmonic total force; see Eq.
(16). The force Fz station, at a station makes the largest positive
contribution to the accumulating force Fz cum, when the force
Fz station, at the station is in the same phase as the total force and the
largest negative contribution when the phase is opposite. This il-
lustration gives slightly different locations for the zero contribu-
tion; in other words, the locations of the local minima and maxima
of the accumulative force Fz cum, are slightly different from those
of the zero crossing of the projected force at the stations. The
reason is that the phase of the accumulative force changes as a
function of x.

5.2. Development in the vertical direction of the hull

This section describes how the loading at different depths of
the hull contributes to the second harmonic force Fz station, at the
stations. In order to do this, the hull is divided into six horizontal
parts limited by the deck, five waterlines, and the bottom of the
ship; see Fig. 1.
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Fig. 6a shows how the distribution of the second harmonic
force Fz station, at the stations accumulates towards its complete form
when the area of the observation expands in the vertical direction
from the deck towards the bottom of the hull. The significance of
the loading at different depths varies along the length of the hull.
Forward of the station ≈x L/ 0.82ship , the uppermost part of the hull

>z H/ 0input (the red and green lines in Fig. 6a) makes a particularly
significant contribution (on average 57 %) to the total amplitude of
the second harmonic force Fz station, . Nevertheless, all the horizontal
parts of the hull matter for the total second harmonic amplitude of
the forces Fz station, and, thus, for the final shape of its distribution
along the length of the hull. As an example, the bottom-most area
of the hull < −z H/ 1.5input (the black line in Fig. 6a) contributes to
the maximum value of the distribution ( ≈x L/ 0.96ship ) by 19 %. Aft
the station ≈x L/ 0.82ship , all the horizontal parts of the hull below

=z H/ 0.5input (the green, blue, pink, turquoise, and black lines in
Fig. 6a) contribute to the total amplitude of the frame forces
Fz station, , while none of them has a particularly dominant effect.

When looking at the results in Fig. 6a, one should keep in mind
that the change of the force Fz station, as a result of the loading at a
certain depth does not directly reflect the magnitude of the local
loading at the respective depth. As a consequence of the phase
differences between the local loadings at different depths of a
station, the local loading at a certain depth can either increase or
reduce the total loading at the station. Fig. 6b gives the distribu-
tions of the phase of the second harmonic forces Fz station, , whose
amplitudes are presented in Fig. 6a. Forward of the station

≈x L/ 0.82ship , the differences between the distributions of the
phase vary locally along the length of the hull. Both locations
where the phase differences of the local loading have the most
similar values ( ≈x L/ 0.97ship and ≈x L/ 0.87ship ) occur in the area
where the second harmonic amplitude of the force Fz station, is in-
creasing towards its maximum value. Aft the station ≈x L/ 0.82ship ,
the distributions of the phase are fixed in relation to each other.
Thus, the phase difference between the loading at different depths
does not cause variation in the distribution of the second har-
monic amplitude of the force Fz station, in that area.

Fig. 6c and d gives the second harmonic amplitude of the force
Fz station str, , acting at the previously mentioned horizontal stripes.
The results in Fig. 6c and d are divided by the respective total force
Fz station tot, , , which is shown as a black line in Fig. 6a. These results
give different observations on the significance of the different
depths for the loading in comparison with the results in Fig. 6a. For
instance, the second harmonic force Fz station str, , is the most sig-
nificant on the horizontal stripes − < < −z H1.0 / 0.5input (the pink
line in Fig. 6d) and − < <z H0.5 / 0.0input (the blue line in Fig. 6c),
the averages being =F F/ 0.51z station str z station tot, , , , and 0.37, respectively.
These horizontal stripes do not make that significant a contribu-
tion to the accumulation of the second harmonic force Fz station, in
Fig. 6a (the pink and blue lines) because of the phase difference
from the loading in the upper parts of the hull (the green and red
lines in Fig. 6a). The comparison of the magnitude of the forces
within the horizontal stripes in Fig. 6c and d and the accumulation
of the total force Fz station, in Fig. 6a underlines the fact that the
phase difference between the loading at different depths of the
hull makes the total second harmonic amplitude of the force
Fz station, smaller than the sum of the local forces Fz station str, , would be.
6. Second harmonic component and the temporal behaviour
of the loading

Section 6.1 describes how the effect of the second harmonic
loading is seen in the temporal behaviour of the forces acting at
the stations in the present study case. Section 6.2 presents a the-
oretical analysis that supports the findings of Section 6.1.
6.1. Identifying the second harmonic loading in the temporal beha-
viour of the forces at the stations

This section describes how the development of the second
harmonic amplitude of the force Fz station, at the stations along the
length of the hull is seen in the temporal behaviour of the forces.
First, four force histories are presented as examples; the locations
of these stations are indicated by the numbers 1–4 in Fig. 4b.
Second, the temporal behaviour of the force Fz station, is commented
on for the whole area under observation in Fig. 4b.

Immediately aft the fore perpendicular at =x L/ 0.98ship (Num-
ber 1 in Fig. 4b), the second harmonic amplitude of Fz station, is in-
creasing towards its maximum value. The respective unfiltered
force history (the black line in Fig. 7a) shows distinctly impact-
type behaviour with a sudden rise at ≈t t/ 0.1e . The total rise time
is =t t/ 0.22rise e , as defined by Eq. (18). The comparison of the low-
passed filtered time history with the zeroth–second harmonic
components (the red line) and the unfiltered time history (the
black line) shows that the most distinct features of the impact
relate to the third–nth harmonic components of the force. The
comparison of the low-passed filtered time histories with the
zeroth–second harmonic components and with the zeroth–first
harmonic components (the red and green lines) shows that the
second harmonic component correlates with the asymmetric be-
haviour of the force history.

Aft =x L/ 0.98ship , the second harmonic amplitude increases
until it reaches its maximum value in the vicinity of =x L/ 0.96ship

(Number 2 in Fig. 4b). The unfiltered time history at =x L/ 0.96ship

(the black line in Fig. 7b) behaves more smoothly than the one at
=x L/ 0.98ship . The rise time (Eq. (18)) is somewhat longer

( =t t/ 0.28rise e ). The force history can be presented quite accurately
with the zeroth–second harmonic components only; compare the
black and red lines in Fig. 7b. The comparison of the low-pass
filtered time histories with the zeroth–second and zeroth–first
harmonic components (the red and green lines in Fig. 7b) shows
that again the contribution of the second harmonic component
correlates with the asymmetric behaviour of the force history.

Aft =x L/ 0.96ship , the second harmonic amplitude mainly de-
creases (Fig. 4b). The force histories at the stations =x L/ 0.93ship

and =x L/ 0.82ship make it possible to observe what happens when
the second harmonic amplitude decreases gradually. The asym-
metry of the force history decreases. Fig. 7c and d shows that the
difference between the low-pass filtered time histories with the
zeroth–second harmonic and the zeroth–first harmonic compo-
nents become smaller and smaller further from the fore perpen-
dicular. At =x L/ 0.93ship , the second harmonic amplitude has a
similar value as at =x L/ 0.98ship , but now the rise time is sig-
nificantly longer, being =t t/ 0.37rise e . At =x L/ 0.82ship , the second
harmonic amplitude is already minor. The force history is sym-
metric in practice, the rise time being =t t/ 0.47rise e .

In all, the magnitude of the second harmonic component cor-
relates with the asymmetry of the force history in this study case.
A parameter that can describe the asymmetry is the rise time of
the force history. Fig. 8 compares the distribution of the rise time
t t/rise e of the force Fz station, at a station to the distribution of the
second harmonic component of the force Fz station, ; see the black and
grey lines in Fig. 8, respectively. This comparison indicates that
there is a correlation between the distribution of the second har-
monic amplitude of the force and its rise time trise. The red line in
Fig. 8 shows the rise time t t/rise e of the low-pass filtered time
history with the zeroth–second harmonic components. The two
distributions of the rise time are rather similar. Naturally, the
difference between them is greatest aft the stem, where the force
histories include a significant contribution of the third–nth har-
monic components.
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6.2. On the correlation between the second harmonic amplitude and
the rise time of a time history

This section addresses further the relation of the second har-
monic component of the force history and the rise time of the low-
passed filtered force history with the zeroth–second harmonic
components in order to confirm that a correlation between the
rise time and the second harmonic component exists.

Let us first consider the rise time of an arbitrary time history
( )y t , which consists of first and second harmonic components:

ω δ ω δ( ) = ( + ) + ( + ) ( )y t C t C tsin sin 2 , 201 1 2 2

where = +C a bk k k
2 2 with ak and bk defined in Eqs. (10) and (11),

respectively, ω π= k L2 /k t , and δk a phase. The rise time trise of the
time history ( )y t can be expressed using two parameters: the ratio
of the second and first harmonic amplitudes C C/2 1 and the phase
difference δ δ−2 1 between the components. The lines in Fig. 9a
show | − |t t/ 0.5rise e as a function of the amplitude ratio C C/2 1. When

>C C/ 0.42 1 , | − |t t/ 0.5rise e depends nearly unambiguously on C C/2 1.
When <C C/ 0.42 1 , | − |t t/ 0.5rise e also depends on the phase differ-
ence. However, when the phase difference δ δ π( − )/22 1 is not close
to the values zero, 0.5, and one, | − |t t/ 0.5rise e depends nearly un-
ambiguously on the amplitude ratio C C/2 1 even if <C C/ 0.42 1 ; see
the red lines in Fig. 9a.

The black dots in Fig. 9a show the respective results for the
low-pass filtered time histories of the forces Fz station, with the
zeroth–second harmonic components in the bow area of the ship.
Most of the results have a nearly unambiguous correlation be-
tween | − |t t/ 0.5rise e and C C/2 1. The red dots in Fig. 9b show how the
results with a nearly unambiguous correlation are distributed
along the length of the bow area of the ship. The only areas where
the correlation is not unambiguous are at ≤ ≤x L0.77 / 0.83ship and
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≤ ≤x L0.87 / 0.89ship ; see the grey dotted line in Fig. 9b. Moreover,
in the area < <x L0.82 / 1ship , the rise time gets values

< <t0 0.5rise t/ e . This implies that the rise time t t/rise e can be used as
an indicator of the amplitude ratio C C/2 1 of the low-pass filtered
time history of Fz station, with the zeroth–second harmonic compo-
nents in the area where the most significant loading exists.

These findings support the observation in Section 6.1 according
to which the rise time and the second harmonic amplitude of
Fz station, correlate. However, caution is needed when a time history
includes third–nth harmonic components. In addition, the varia-
tion of the first harmonic amplitude in the area under observation
should be taken into account. Fig. 9c shows that the distributions
of the second harmonic amplitude of Fz station, and of the ratio C C/2 1
are rather similar in this case, even if some differences exist.
7. Discussion and conclusions

On the whole, the findings of this study underline that the
development of the second harmonic wave loads, which can excite
the springing of a large cruise ship, is a complex phenomenon. The
results show that the accumulation of the excitation along the
length of the hull can be explained on the basis of the variation of
both the phase and the amplitude of the second harmonic force
acting at the stations.

In the foremost part of the ship, where the excitation mainly
originates, the distribution of the phase of the second harmonic
vertical force at the stations is irregular and does not follow the
phase of the freely propagating wave. Moreover, the phase of the
loading at the individual stations varies as a function of depth in
an irregular manner between different stations. These findings
indicate that the hull has a significant effect on the propagation of
the wave in the vicinity of the hull in the foremost part of the ship.
In other words, the three-dimensional effects of the flow play an
important role in the loading in that area. Moreover, this study
shows that, aft the foremost part of the ship in the vicinity of the
fore shoulder, the phase difference between the second harmonic
vertical force at stations at different depths and the freely propa-
gating wave becomes fixed. Simultaneously, the second harmonic
amplitude of the vertical force at the stations starts decreasing.
These observations imply that the effect of the hull on the flow
and the magnitude of the local loading decrease simultaneously.
The present findings on springing-type excitation are in line with
the previous studies that suggest that the diffraction matters for
springing, e.g. Vidic-Perunovic (2010), and with the studies that
demonstrate that 3D methods with sufficient non-linear terms are
capable of predicting springing, e.g. Kim et al. (2012), Lee et al.
(2012), and Oberhagemann and el Moctar (2012), and with the
studies that report that strip methods fail to predict springing, e.g.
Storhaug et al. (2003).

The present results demonstrate that the second harmonic
amplitude of the vertical force at a station and the accumulation of
the total force are at their largest in the foremost part of the ship.
This is a logical finding as the bow encounters the head waves first.
It is more surprising that the present results show that the whole
depth of the hull matters for the accumulation of these ampli-
tudes. Furthermore, it is worth noticing that the actual magnitude
of the local loading at a certain depth cannot necessarily be seen
when studying the accumulation of the force in the vertical di-
rection, because the loadings at different depths can cancel each
other out as a result of the phase difference.

As for the variation of the second harmonic amplitude of the
force at the stations along the length of the hull, this study shows
that the ratio of the second and first harmonic amplitude corre-
lates with the rise time of the force at the station. Basically, the rise
time of the force must be distinctly shorter than the fall time or
vice versa in order for there to be a significant second harmonic
force. In this case, the rise time is distinctly shorter than the fall
time at the locations where the second harmonic component
loading is significant. This can mean impact-type behaviour of the
loading, which typically becomes more important at higher ship
speeds and when the height of the waves that are encountered is
greater. Previous studies have shown that such matters make the
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second-order resonant springing more important; see e.g. Stor-
haug and Moan (2007), Shao and Faltinsen (2012), Slocum and
Troesch (1983), and Miyake et al. (2008). All in all, showing a
correlation between the second harmonic amplitude and the rise
time of the force is important, because it allows the accumulation
of the springing excitation to be connected to local and temporal
flow phenomena in future work.

To conclude, this study indicates that correct prediction of the
second-order resonant springing excitation can require careful
prediction of the variation of both the phase and amplitude along
the length of the hull. This means that the effect of the hull on the
propagation of the waves that are encountered must be predicted
in detail and that the variation of the rise time of loading between
different stations must be captured. In practice, this study in-
dicates that the numerical tools that are used to predict springing
should model the three-dimensional and impact-type behaviour
of the flow.
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