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• Aim : To introduce  the equations of motion and how these are formed using basic rigid body 

dynamics. 

• Literature

➢ Journee, J.M.J., ”Introduction to Ship Hydromechanics”

➢ Lloyd, A.R.J.M, ”Seakeeping – Ship Behavior in Rough Weather”, John Wiley & Sons

➢ Bertram, V., ”Practical Ship Hydrodynamics”, Butterworth-Heinemann, Ch. 4.

➢ Matusiak, J., ”Ship Dynamics”, Aalto University

➢ Lewis, E. V. Principles of Naval Architecture. Vol. 3, ”Motions in waves and controllability”

➢ Rawson, K. J., ”Basic Ship Theory. Volume 2, Ship dynamics and design - ch.12 Seakeeping & ch.13 

Manoeuvrability”.



Motivation

• Ship motions are affected by numerous factors such as : 

➢ Sea state

➢ Propulsive equipment (rudders, propulsors etc.)

➢ Cargo movement 

➢ Special general arrangement features

• Practical and well validated methods and procedures that 

are suitable for ship design are essential.

• Classic methods are based on linear ship dynamics 

(potential flow analysis methods). 

➢ They allow us to use spectral techniques and statistics

➢ They can be updated with correction factors to account 

non-linearities

• Non linear methods become useful when ship motions are 

excessive or we model extreme events. Approaches exist in 

time-domain for specific sea states, time-frames and using 

different time histories. CFD approaches also emerge. 



Assignment 3

• Grades 1-3:

✓ Select a book-chapter related to the ship equations of 

motion and read it

✓ Identify the main components associated to equations of 

motion of your ship. How and why they relate with the 

ship’s mission (think in operational safety terms) ? 

✓ Discuss how the general arrangement, hull form and 

operational profile of your ship affect the equations of 

motion (think in design for safety terms).

✓ Start getting familiar with motions and loads design 

software (e.g. Maxsurf, Napa, etc.) and reflect the 

software use to the theory learned

• Grades 4-5:

✓ Read 1-2 scientific journal articles related to Ship 

Equations of Motion

✓ Reflect these in relation to knowledge from books and 

lecture slides

• Report and discuss the work.
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• A rigid ship moves in waves in 6 degrees of 

freedom (DOF)

• This means that for arbitrarily-shaped ship 

we will have 

✓ 6 equations of motion

✓ 6 unknowns

• These must be solved simultaneously

• For port-starboard-symmetry these 

equations reduce to two sets of uncoupled 

EoM containing 3 unknows namely : 

✓ surge, heave, pitch

✓ sway, yaw, roll

• We approximate the response by 

superposition of elementary waves 

progressing in :

✓ Different lengths

✓ Different directions

Ship Motions - Introduction
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Ship Motions - Introduction

• Heave is a rigid body response proportional to the distance displaced (Linear seakeeping).

• Disparity between displacement and buoyancy forces may be considered linear for different 

waterlines.

• Ships with large water plane area have large heave restoring forces.

✓ “Beamy” ships (tugs, fishing vessels ) suffer short period heave oscillations and high 

heave accelerations. 

✓ Ships with small water plane areas will have much longer heave periods and experience 

lower heave accelerations, so it is more comfortable.
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Encounter frequency

• For ships moving with forward speed we 

use the encounter frequency (𝜔𝑒) instead 

of the absolute wave frequency (ω)

• The encounter frequency and the ship 

dynamics depend on whether she is 

advancing into the waves or travelling in 

their direction.

• The encounter period 

• The encounter frequency 

𝜔𝑒 =
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Definition of headings

• The heading angle determines the “type” of seas the ship experiences.

𝜇 = 00

Following seas
𝜇 = 1800

Head seas

𝜇 = 900

starboard beam seas

𝜇 = 2700

port beam seas

0 ≤ 𝜇 ≤ 900

Quartering waves on 

the ship starboard side

900 ≤ 𝜇 ≤ 1800

Bow waves on the 

starboard side 

2700 ≤ 𝜇 ≤ 3600

Quartering waves 

on the ship port 

side

1800 ≤ 𝜇 ≤ 2700

Bow waves on the 

port side



Coordinate system 
Describes the position and orientation of a ship

❑ Earth fixed inertial coordinate system 

{n} - Defines the position of the vessel on 

the earth, the direction of wind, waves and 

current.

❑ Body-fixed coordinate system (Ob) -

Expresses velocity and acceleration 

measurements taken onboard

❑ Seakeeping coordinate system

❑ Positioned at the center of gravity

❑ Moves with the ship

❑ Sensitive to wave elevation and the 

definition of hydrodynamic forces
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Dynamics of ships as rigid bodies
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Newton’s 2nd Law

• If we set 𝑭 𝒕 = 𝟎 then we obtain the complementary function; i.e. the function expressing the response

of the system when we have free vibration

• F(t) is also known as the particular integral ; i.e. a function expressing the excitation and affecting the

frequency response function

• In ship dynamic terms this means that dynamic response may be simply affected by the complementary

function or her combination with the particular integral

• For ships the mass (m), stiffness (k) and damping (c) terms should include both wet and dry parts

𝑚 ሷ + 𝑐 ሶ + 𝑘 = 𝐹 𝑡

𝑐
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𝐹
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Case 1 : Undamped free vibration (1 - DOF)

• Assume the system is conservative and the vibration is free. The equation of

motion reduces to:

0mx kx+ =

• Assume sinusoidal solution
tx e=

𝜆2𝑚 + 𝑘 = 0, 𝜆 = ±
𝑘

𝑚
= ±𝑗𝜔𝑛

• The response is defined as : 

൯ = 𝐴1𝑒
𝑗𝜔𝑛𝑡 + 𝐵1𝑒

−𝑗𝜔𝑛𝑡 = 𝐴 𝑠𝑖𝑛ሺ𝜔𝑛𝑡) + 𝐵 𝑐𝑜𝑠ሺ𝜔𝑛𝑡) = 𝑋 𝑠𝑖𝑛ሺ𝜔𝑛𝑡 + 𝜙

1
tan ( / )B A

−
=

Natural frequency of the system 

• The amplitude and phase are defined as : 

𝑋 = 𝐴2 + 𝐵2



Case 1 : Undamped free vibration (1 dof)

𝑋 =
𝜔𝑛
2 0

2 + 𝑣0
2

𝜔𝑛

𝜙 = 𝑡𝑎𝑛−1
𝜔𝑛 0
𝑣0

 𝑡 = 𝑋 sin 𝜔𝑛𝑡 + 𝜙 =
1

𝜔𝑛
𝜔𝑛
2 0

2 + 𝑣0
2 𝑠𝑖 𝑛 𝜔𝑛𝑡 + 𝜙

ሶ 𝑡 = 𝑋𝜔𝑛 cos 𝜔𝑛𝑡 + 𝜙 = 𝜔𝑛
2 0

2 + 𝑣0
2 cos 𝜔𝑛𝑡 + 𝜙

ሷ 𝑡 = −𝑋𝜔𝑛
2 sin 𝜔𝑛𝑡 + 𝜙 = −𝜔𝑛 𝜔𝑛

2 0
2 + 𝑣0

2 sin 𝜔𝑛𝑡 + 𝜙

• To find 𝑋 and 𝜙, we need the following initial conditions:

 𝑡 = 0 =  0 = 𝑋 sin𝜙 and Ǘ ሺ𝑡 = 0) = 𝑣0 = 𝑋 𝜔𝑛cos𝜙

• Solving this system of two equations and two unknowns gives us:

• Therefore the final solution of this system displacement, velocity and acceleration

are defined as:
 , [𝑚]

𝑡, 𝑡𝑖𝑚𝑒[𝑆]

𝑀𝑎 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑨

∅

𝜔𝑛

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑑𝑖𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡  0

−𝑨

𝑀𝑎 𝑣𝑒𝑙𝑜𝑐𝑖𝑡 
𝑑𝑥

𝑑𝑡
= 𝐴 𝜔𝑛

𝑇 =
2𝜋

𝜔𝑛



Case 2 : Damped free vibration (1- DOF)

• The amplitude of oscillation of the spring, mass, damper system will reduce with 
time due to damping effects. The damper works by dissipating the energy of the 
system to zero. For this case Newton’s equation becomes :

0mx cx kx+ + =

• Assume sinusoidal solution

𝑚𝜆2 + 𝑐𝜆 + 𝑘 = 0, 𝜆1,2 =
−𝑐 + 𝑐2 − 4𝑚𝑘

2𝑚

tx e=

• There are three solutions to the above differential equation that link to three

different types of motions:

1. If 𝜆1,2 are real 𝑐2 − 4𝑚𝑘 > 0 )corresponding to overdamped case).

2. If 𝜆1,2 are imaginary 𝑐2 − 4𝑚𝑘 < 0 )corresponding to underdamped case).

3. If 𝜆1 = 𝜆2 are real 𝑐2 − 4𝑚𝑘 = 0 )leading to 𝑐𝑐𝑟 = 4𝑚𝑘 = 2𝑚𝜔𝑛) that

corresponds to critically damped case (i.e., the system overshoots and comes

back to rest).



Case 2 : Damped free vibration (1- DOF)

• Another approach to solve Newton’s equation is the damping ratio (𝜁). This is the 
ratio of the damping coefficient of the system to the critical damping coefficient:

𝜁 =
𝑐

𝑐𝑐𝑟
=

𝑐

2𝑚𝜔𝑛
=

𝑐

2 𝑘𝑚
→ 𝑐 = 2𝑚𝜔𝑛𝜁

ቃ𝜆1,2 = 𝜔𝑛[−𝜁 ± 𝜁2 − 1

• The three types of motions can then be defined by the damping ratio as:

1. ζ > 1 (for overdamped case);

2. ζ < 1 (for underdamped case) and

3. ζ = 1 for the critically damped case.

• The response of the system in terms of these two roots is defined as:

 ሺ𝑡) = 𝑎1𝑒
𝜆1𝑡 + 𝑎2𝑒

𝜆2𝑡



Case 2 : Damped free vibration (1- DOF)

For the underdamped case where the damping ratio range is 0 < 𝜁 < 1 this 

leads to:

Assume initial values  0 =  0 and ሶ ሺ𝑡) = 𝑣0

𝜆1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1 = −𝜁𝜔𝑛 ± 𝜔𝑑𝑗

𝜔𝑑 = 1 − 𝜁2

 𝑡 =
ቀ𝑣0 +  0𝜁𝜔𝑛 )

2 + ൫ 0𝜔𝑑 )
2

𝜔𝑑
2 𝑒−𝜁𝜔𝑛𝑡 𝑠𝑖𝑛 𝜔𝑑𝑡 + 𝑡𝑎𝑛−1

 0𝜔𝑑

𝑣0 +  0𝜁𝜔𝑛

 𝑡 = 𝐴𝑒−𝜁𝜔𝑛𝑡 𝑠𝑖𝑛ሺ𝜔𝑑𝑡 + 𝜙)



Case 2 : Damped free vibration (1 dof)

• If we follow the same procedure, the solution of overdamped case is given by:

 ሺ𝑡) = 𝑎3𝑒
ሺ−𝜁𝜔𝑛+𝜔𝑑)𝑡 + 𝑎4𝑒

ሺ−𝜁𝜔𝑛−𝜔𝑑)𝑡

• Similarly, for the critically damped case, the solution is given by:

 ሺ𝑡) = [ 0 + ሺ𝑣0 + 𝜔𝑛 0)𝑡]𝑒
−𝜔𝑛𝑡

 ሺ𝑡)

𝑡

Underdamped

Critically Damped

Over Damped



How can we practically assess damping ?

A practical way to assess damping that is broadly applicable in the area of ship
hydrodynamics is the damping decay test. This can be mathematically expressed using
the log decrement that is the natural logarithm of the ratio of two successive
amplitudes.

𝛿 = 𝑙𝑛
𝑋1
𝑋2

= 𝑙𝑛
𝐴𝑒−𝜁𝜔𝑛𝑡1

𝐴𝑒−𝜁𝜔𝑛 𝑡1+𝑇𝑑
= 𝑙𝑛 𝑒𝜁𝜔𝑛𝑇𝑑 = 𝜁𝜔𝑛𝑇𝑑

∵ 𝑇𝑑 = 2 Τ𝜋 𝜔𝑑 →∴ 𝛿 =
2𝜋𝜁𝜔𝑛
𝜔𝑑

=
2𝜋𝜁

1 − 𝜁2

Since the damping ratio is very small in

that case, the log decrement can be

approximated by:

𝛿 = 2𝜋𝜁
0.5 1 1.5 2.0 2.5 3.0 3.5

0

0.25

0.5

0.75

1

−0.25

−0. 5

−0.75

−1

𝑡 [𝑠]

𝑘 = 1000 𝑁/𝑚 𝜔1 = 10 𝑟𝑎𝑑/sec

𝑐 =0

𝑐 =0.1

 𝑡 [𝑚]



Case 3 : Forced Vibration – 1 DOF

Consider adding harmonic excitation to the vibration system where 𝐹ሺ𝑡) varies in

sinusoidal manner instead of being arbitrary function in time:

𝑚 ሷ + 𝑐 ሶ + 𝑘 = 𝐹ሺ𝑡) = 𝐹0 𝑐𝑜𝑠ሺ𝜔𝑡)

2

0( ) 2 ( ) ( ) cos( )n nx t x t x t f t  → + + =

0 0 /f F m=

This is a differential equation of the 2nd order. Accordingly, it is prone to a general 
and particular solution which when combined together they may give the response 
function of the system. 
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Case 3 : Forced Vibration – 1 DOF

Consider adding harmonic excitation to the vibration system where 𝐹ሺ𝑡) varies in

sinusoidal manner instead of being arbitrary function in time:

)𝑚 ሷ + 𝑐 ሶ + 𝑘 = 𝐹ሺ𝑡) = 𝐹0 𝑐𝑜𝑠ሺ 𝜔𝑡

This is a differential equation of the 2nd order. Accordingly, it is prone to a general 
and particular solution which when combined together they may give the response 
function of the system. The general solution is given when the left-hand side of the 
equation is equal to zero.

ሷ 𝑡 + 2𝜁𝜔𝑛 ሶ 𝑡 + 𝜔𝑛
2 𝑡 = 𝑓0 𝑐𝑜𝑠ሺ𝜔𝑡)

𝑓0 = 𝐹0/𝑚

ሷ 𝑔 𝑡 + 2𝜁𝜔𝑛 ሶ 𝑔 𝑡 + 𝜔𝑛
2 𝑔 𝑡 = 0

 𝑔 𝑡 = 𝐴𝑒−𝜁𝜔𝑛𝑡 𝑠𝑖𝑛 𝜔𝑑𝑡 + 𝜙

𝜔𝑑 = 𝜔𝑛 1 − 𝜁2
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Case 3 : Forced Vibration – 1 DOF

• The particular solution is defined as:

• There are two possible trial solutions to the particular solution namely

 𝑝ሺ𝑡) = 𝐴𝑠 𝑐𝑜𝑠ሺ𝜔𝑡) + 𝐵𝑠 𝑠𝑖𝑛ሺ𝜔𝑡) 𝑜𝑟  𝑝ሺ𝑡) = 𝑋 𝑐𝑜𝑠ሺ𝜔𝑡 − 𝜃)

where 𝑋2 = 𝐴𝑠
2 + 𝐵𝑠

2, 𝜃 = 𝑡𝑎𝑛−1ሺ 𝐵𝑠/𝐴𝑠)

• Substituting the trial solution in the equation of motion leads to:

ሺ−𝐴𝑠𝜔
2 + 2𝐵𝑠𝜁𝜔𝑛𝜔 + 𝐴𝑠𝜔𝑛

2 − 𝑓0) ⋅ 𝑐𝑜𝑠ሺ𝜔𝑡) + ሺ−𝐵𝑠𝜔
2 − 2𝐴𝑠𝜁𝜔𝑛𝜔 + 𝐵𝑠𝜔𝑛

2) ⋅ 𝑠𝑖𝑛ሺ𝜔𝑡) = 0

• For this equation to be zero at any time 𝑡, the two coefficients multiplied 

by 𝑠𝑖𝑛ሺ𝜔𝑡) and 𝑐𝑜𝑠ሺ𝜔𝑡) must be zero.

൯ሷ 𝑝 𝑡 + 2𝜁𝜔𝑛 ሶ 𝑝 𝑡 + 𝜔𝑛
2 𝑝 𝑡 = 𝑓0 𝑐𝑜𝑠ሺ𝜔𝑡



Case 3 : Forced Vibration – 1 DOF

• Solving these two equations we can find the two unknowns:

𝐴𝑠 =
ሺ𝜔𝑛

2 − 𝜔2)𝑓0

ሺ𝜔𝑛
2 − 𝜔2)2 + ሺ2𝜁𝜔𝑛𝜔)

2

𝐵𝑠 =
2𝜁𝜔𝑛𝜔𝑓0

ሺ𝜔𝑛
2 − 𝜔2)2 + ሺ2𝜁𝜔𝑛𝜔)

2

 𝑝ሺ𝑡) =
ሺ𝜔𝑛

2 − 𝜔2)𝑓0

ሺ𝜔𝑛
2 − 𝜔2)2 + ሺ2𝜁𝜔𝑛𝜔)

2
𝑐𝑜𝑠ሺ𝜔𝑡) +

2𝜁𝜔𝑛𝜔𝑓0

ሺ𝜔𝑛
2 − 𝜔2)2 + ሺ2𝜁𝜔𝑛𝜔)

2
𝑠𝑖𝑛ሺ𝜔𝑡)

• The second particular solution after solving the unknowns 𝑋 and 𝜃 becomes:

 𝑝ሺ𝑡) = 𝑋 𝑐𝑜𝑠ሺ𝜔𝑡 − 𝜃)

 𝑝 𝑡 =
𝑓0

ሺ𝜔𝑛
2 − 𝜔2)2 + ሺ2𝜁𝜔𝑛𝜔)

2
𝑐𝑜𝑠 𝜔𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛

2𝜁𝜔𝑛𝜔

𝜔𝑛
2 − 𝜔2



Case 3 : Forced Vibration – 1 DOF

• The full solution is the summation of the general solution  𝑔 𝑡 and the

particular solution  𝑝 𝑡

 𝑡 =  𝑔 𝑡 +  𝑝 𝑡

 𝑡 = 𝐴𝑒−𝜁𝜔𝑛𝑡 𝑠𝑖𝑛ሺ𝜔𝑑𝑡 + 𝜙) + 𝑋 𝑐𝑜𝑠ሺ𝜔𝑡 − 𝜃)

• 𝐴 and 𝜙 can be obtained assuming initial conditions  0 =  0, and ሶ 0
= 𝑣0

𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛[
𝜔𝑑  0 − 𝑋 𝑐𝑜𝑠 𝜃

𝑣0 +  0 − 𝑋 𝑐𝑜𝑠 𝜃 𝜁𝜔𝑛 − 𝜔𝑋 𝑠𝑖𝑛 𝜃
]

𝐴 =
 0 − 𝑋 𝑐𝑜𝑠 𝜃

𝑠𝑖𝑛 𝜙



Case 3 : Forced Vibration – 1 DOF

• The first term in the full solution is
the transient solution, which tends
to zero as the time goes to infinity.

• Second term is the steady
oscillatory solution.

• Assuming steady state solution and
neglecting the transient solution
we got the full solution which
equals the particular solution:

 𝑝ሺ𝑡) = 𝑋 𝑐𝑜𝑠ሺ𝜔𝑡 − 𝜃)

 𝑡 = 𝐴𝑒−𝜁𝜔𝑛𝑡 𝑠𝑖𝑛ሺ𝜔𝑑𝑡 + 𝜙) + 𝑋 𝑐𝑜𝑠ሺ𝜔𝑡 − 𝜃)



Case 3 : Forced Vibration – 1 DOF

If we rewrite these equations as a function of the frequency ratio tuning factor
we get the expression of

The amplitude of the response can be represented in dimensionless form by the so-
called magnification factor (𝑄)

When the encounter frequency approaches
the natural frequency, the magnification factor
gets to extremely significant value, and such
case is known by resonance.

Λ =
𝜔𝑒
𝜔𝑛

𝑄 =
𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑜𝑠𝑐𝑖𝑙𝑎𝑡𝑖𝑜𝑛

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑖𝑐 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡
=

𝑋

ൗ𝐹0 𝐾

=
1

1 − Λ2 2 + 2𝜁Λ 2

𝑋 =
𝐹0

𝑘 1 − Λ2 2 + 2𝜁Λ 2
𝑐𝑜𝑠 𝜔𝑒𝑡 − 𝜙 𝜙 = 𝑡𝑎𝑛−1

2𝜁Λ

1 − Λ2



Forced Vibrations due to Harmonic Excitation

• If we apply a Fourier integral on the excitation force of Newton’s equation of motion 
external loading and response are defined as

𝐹ሺ𝑡) =
1

2𝜋
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• Then Newton’s equation of motion becomes :
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• For 𝐴𝑥ሺ𝜔
∗) =

)𝐴𝑃
𝑛ሺ𝜔∗

−𝑚𝜔∗2 + 𝛿𝑖𝜔∗ + 1

𝐴𝑃
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Quasi-Static Response

• At sub-critical case (also known as quasi-static response) the system can reach

high values of spectral density at small frequencies relative to the natural

frequency and the stiffness has the major effect on the system

• Only stiffness affects the system response

𝑆𝑥 𝛬 =
𝑆𝑃
𝑛 𝛬

൫1 − 𝛬2 )2 + 𝛿2𝛬2
→ 𝑆𝑥 ≈ 𝑆𝑃

𝑛

Transfer function of 
structural system

Spectral density of forcing 
function 

𝜔𝑛𝜔1 𝜔2



Dynamic Response

• At super-critical stage (also known 
as dynamic response) the highest 
values of spectral density lie in only 
high values of frequencies with 
respect to the natural frequency 
and damping plays an important 
role:

• Only inertia forces affect the 
system response

𝑆𝑥 𝛬 =
𝑆𝑃
𝑛 𝛬

൫1 − 𝛬2 )2 + 𝛿2𝛬2
→ 𝑆𝑥 ≈

𝑆𝑃
𝑛

𝛬4
Transfer function of 
structural system Spectral density of 

forcing function 

𝜔𝑛 𝜔1 𝜔2



Resonance

• At resonance condition when there is 
very low damping the frequency ratio 
𝜔∗approaches unity. The denominator 
approaches zero, and the spectral 
density approaches extremely large 
value:

• Serious problems which can be 
controlled only by adjusting damping

𝑆𝑥 𝛬 =
𝑆𝑃
𝑛 𝛬

ሺ1 − 𝛬2 )2 + 𝛿2𝛬2 →≈ 0
→ 𝑆𝑥 >>>>

1

Transfer function of 
structural system

Spectral density of 
forcing function 

𝜔𝑛
𝜔1 𝜔2



Dynamic behavior in different dynamic states

Quasi-static

𝝎 < 𝝎𝒏

Resonance

𝝎 = 𝝎𝒏

Dynamic

𝝎 > 𝝎𝒏



Preamble to Lecture 6 – Ship Eq. of Motion

As the functions of motion are trigonometric, there is relation between displacement, velocity and 

acceleration, i.e. 

With these relations, the equation of motion for all 6 

components is given as



Summary and next steps

• Ship is a 6 DOF rigid body system
✓ 3 translations surge, heave and sway

✓ 3 rotations pitch, yaw and roll.

• Ship motions are influenced by
✓ The ship main particulars

✓ Shape

✓ Weights

✓ Excitation loads

• The most significant motions are those that have a restoring force associated 

with them : Pitch, Heave and Roll

• In motions analysis we usually use the encounter frequency (𝜔𝑒) to account 

for the effect of ship forward speed.

• The derivation of ship motions equations are reflected by rigid body dynmic

system theory - Free undamped or damped vibration subject to harmonic excitation or 

random loading 



Thank you !


