

#### **CHEM-E5125**

#### Thin Film Technolgy - Introduction Functional Materials Major

(5 credits)

Jari Koskinen jari.koskinen@aalto.fi

10.1.2023

#### Contents

#### Terminology

- Motivation: Why thin films?
- Applications
- Deposition methods thin film process
- Examples
  - Microstructure
  - Composition
  - Properties resistivity
  - Properties Stress
  - Mechanical
- Interface



## **Terminology**

- Film or coating is material which is restricted in one dimension
- Substrate is solid material supporting the film
- Thickness
  - Atomic level:
    - 2-5 atom layers on the surface ( $\approx 0.2 0.5$  nm)
    - over 10 atomic layers (≈ 1 nm) is bulk
  - Technically
    - 1nm 10 µm
    - Needed layer thickness, which is needed to:
      - protect substrate
      - Wanted functionality of the coating





Mikko Ritala Thin Films

#### Contents

- Terminology
  - Motivation: Why thin films?
- Applications
- Deposition methods thin film process
- Examples
  - Microstructure
  - Composition
  - Properties resistivity
  - Properties Stress
  - Mechanical
- Interface



#### **Motivations - why thin films?**

- Interaction of materials (commonly) via surface
- Modification of material properties added functionality
   Functional thin films
- Market of thin films and coatings
  - volume about about 1% of GNP
  - common in all areas of industry
    - Electronics
    - Transport
    - Energy
    - Building
    - Bio-technology



#### Contents

- Terminology
- Motivation: Why thin films?
  - Applications
- Deposition methods thin film process
- Examples
  - Microstructure
  - Composition
  - Properties resistivity
  - Properties Stress
  - Mechanical
- Interface



#### Hardness, protection and wear

Diamond-like carbon









#### Art & Decoration



Titanium Nitride, Titanium Dioxide





### **Function and utility**



Titanium Dioxide: Photocatalytic activity



Indium Tin Oxide, ITO: Defrosting coating



Microelectromechanical systems, MEMS



RAITH150 Mag = 800 X EHT = 500 kV Signal A = 8E2 Date 11 Feb 2010

## **Applications of thin films**

- Electronic components
  - semiconducting, dielectric, insulating, conductors, barriers...
- Electronic displays
  - LCrystalD, LED, ELuminescent, Echorimc, transparent conductive...
- Photo voltaic
- Optical coatings
- Magnetic Films for Data Storage
- Optical data storage
- Antistatic coatings
- Hard protective coatings
- Decorative films
- Decorative and wear-resistant (decorative/functional) coatings
- Permeation barriers for moisture and gases
- Corrosion resistant films
- Coating of engine turbine blades
- Wear and erosion resistant (hard) coatings (tool coatings)
- Dry film lubricants
- Thin-walled freestanding structures
- etc.



#### Contents

- Terminology
- Motivation: Why thin films?
- Applications
  - Deposition methods thin film process
- Examples
  - Microstructure
  - Composition
  - Properties resistivity
  - Properties Stress
  - Mechanical
- Interface



#### **Coating technologies**

Aalto University School of Chemical Engineering 
 Table 1.1: Vacuum deposition techniques [10]
 Handbook of Deposition Technologies for Films and Coatings - Science, Applications and Technology (3rd Edition)

| Atomistic deposition              | Particulate deposition | Bulk coatings             | Surface modification |
|-----------------------------------|------------------------|---------------------------|----------------------|
| Electrolytic<br>environment       | Thermal spraying       | Wet processes             | Chemical conversion  |
| Electroplating                    | Plasma spraying        | Painting                  | Electrolytic         |
| Electroless plating               | D-gun                  | Dip coating               | Anodization (oxide)  |
| Fused salt electrolysis           | Flame spraying         | Electrostatic<br>spraying | Fused salts          |
| Chemical displacement             | Fusion coatings        | Printing                  | Chemical-liquid      |
| Vacuum environment                | Thick film ink         | Spin coating              | Chemical vapor       |
| Vacuum evaporation                | Screen printing        | Cladding                  | Thermal              |
| Ion beam deposition               | Jet printing           | Explosive                 | Plasma               |
| Laser ablation                    | Enameling              | Roll bonding              | Leaching             |
| Molecular beam<br>epitaxy         | Electrophoretic        | Overlaying                | Mechanical           |
| Cathodic arc                      | Impact plating         | Weld coating              | Shot peaning         |
| Vacuum polymer<br>deposition      |                        |                           | Thermal              |
| Plasma environment                |                        |                           | Surface enrichment   |
| Sputter deposition                |                        |                           | Diffusion from bulk  |
| Activated reactive<br>evaporation |                        |                           | Sputtering           |
| Cathodic arc                      |                        |                           | Ion implantation     |
| Plasma polymerization             |                        |                           | Self-assembly        |
| lon plating                       |                        |                           | -                    |
| Chemical vapor<br>environment     |                        |                           |                      |
| Plasma enhanced                   |                        |                           |                      |
| Atomic layer                      |                        |                           |                      |
| deposition                        |                        |                           |                      |
| Reduction                         |                        |                           |                      |
| Decomposition                     |                        |                           |                      |
| Spray pyrolysis                   |                        |                           |                      |
| Liquid phase epitaxy              |                        |                           | 11                   |

#### **Coating technologies in this cource**

 Table 1.1: Vacuum deposition techniques [10]
 Handbook of Deposition Technologies for Films and Coatings - Science, Applications and Technology (3rd Edition)

 Table 1.1: Vacuum deposition techniques [10]
 Edited by: Martin, Peter M. © 2010 William Andrew Publishing

| Atomistic deposition              | Particulate<br>deposition | Bulk coatings             | Surface modification |
|-----------------------------------|---------------------------|---------------------------|----------------------|
| Electrolytic<br>environment       | Thermal spraying          | Wet processes             | Chemical conversion  |
| Electroplating                    | Plasma spraying           | Painting                  | Electrolytic         |
| Electroless plating               | D-gun                     | Dip coating               | Anodization (oxide)  |
| Fused salt electrolysis           | Flame spraying            | Electrostatic<br>spraving | Fused salts          |
| Chemical displacement             | Fusion coatings           | Printing                  | Chemical-liquid      |
| Vacuum environment                | Thick film ink            | Spin coating              | Chemical vapor       |
| Vacuum evaporation                | Screen printing           | Cladding                  | Thermal              |
| Ion beam deposition               | Jet printing              | Explosive                 | Plasma               |
| Laser ablation                    | Enameling                 | Roll bonding              | Leaching             |
| Molecular beam<br>epitaxy         | Electrophoretic           | Overlaying                | Mechanical           |
| Cathodic arc                      | Impact plating            | Weld coating              | Shot peaning         |
| Vacuum polymer<br>deposition      |                           |                           | Thermal              |
| Plasma environment                |                           |                           | Surface enrichment   |
| Sputter deposition                |                           |                           | Diffusion from bulk  |
| Activated reactive<br>evaporation |                           |                           | Sputtering           |
| Cathodic arc                      |                           |                           | Ion implantation     |
| Plasma polymerization             |                           |                           | Self-assembly        |
| Ion plating                       |                           |                           | -                    |
| Chemical vapor                    |                           |                           |                      |
| environment                       |                           |                           |                      |
| Plasma enhanced                   |                           |                           |                      |
| Atomic layer                      |                           |                           |                      |
| deposition                        |                           |                           |                      |
| Reduction                         |                           |                           |                      |
| Decomposition                     |                           |                           |                      |
| Spray pyrolysis                   |                           |                           |                      |
| Liquid phase epitaxy              |                           |                           | 12                   |



#### The thin film process





#### SUBSTRATE

component

tool











School of Chemical Engineering

#### SURFACE PROCESSES

•adsorption of film forming atoms
•desorption of film forming atoms
•film nucleation and coalescence
•impurity adsorption, desorption, incorporation

ion bombardmentenergy from depositing specieexternal heating





| ANNEALING           |
|---------------------|
| inert atmosphere    |
| reactive atmosphere |
| chemical reactions  |
| phycical reactions  |
| global vs. local    |
|                     |

#### ANALYSIS

physical chemical electrical optical









School of Chemical Engineering

#### **PVD: Physical Vapor Deposition**



# **CVD: Chemical Vapor Deposition**





## **Deposition viewpoint: PVD**

PVD activation methods:

- open resistive heating
- electron beam heating
- equilibrium source heating
- argon ion bombardment
- arc discharge
- laser beam bombardment

- evaporation (thermal)
- evaporation (e-beam)
- molecular beam epitaxy MBE
- sputtering

 $\rightarrow$ 

→

→

 $\rightarrow$ 

**→** 

→

- evaporation+ionization
  - ablation



## Sputtering variables Deposition of "optimal" AIN

| Power<br>supp1y | Power<br>(kW) | Pressure<br>(mTorr) | N <sub>2</sub><br>(%) | d<br>(mm) | Temp.<br>(°C) | Base P<br>(Torr)   | fwhm<br>(°) |
|-----------------|---------------|---------------------|-----------------------|-----------|---------------|--------------------|-------------|
| dc              | 2-6           | 1-5                 | 100                   | ?         | 500           | $1 \times 10^{-8}$ | 2-3         |
| ſſ              | 1.0           | 3.4                 | 33                    | 50        | 315           | $1	imes 10^{-8}$   | 1           |
| dc              | ?             | 2.7                 | ?                     | ?         | ?             | $3 \times 10^{-9}$ | ?           |
| dc              | 0.2           | 1                   | 100                   | 40        | 200           | ?                  | 2.3         |
| ſſ              | 0.4           | 5                   | 50                    | 50        | 100           | $1	imes 10^{-8}$   | 3.3         |
| ıf              | 0.3           | 30                  | 100                   | 75        | 350           | ?                  | ?           |
| dc              | 0.1           | 6                   | 100                   | 35        | 250           | $8	imes10^{-6}$    | 11          |
| ıf              | 0.2           | 3                   | 50                    | 40        | 50            | ?                  | 2.5         |



Journal of The Electrochemical Society, 146 (2) 691-696 (1999)

## **Deposition viewpoint: CVD**

- thermal CVD
- PECVD (a.k.a. PACVD) plasma enhanced
- MOCVD (metal organic)
- HDP-CVD (High Density Plasma)
- HW-CVD (Hot Wire)
- Photo-CVD
- LACVD (Laser Assisted)
- remote-PECVD
- low frequency (55 kHz; 400 kHz)
- µw-CVD (microwave)



#### Contents

- Terminology
- Motivation: Why thin films?
- Applications
- Deposition methods thin film process
  - Examples
    - Microstructure
    - Composition
    - Properties resistivity
    - Properties Stress
    - Mechanical
- Interface



## **Film viewpoint**

- amorphous
- nanocrystalline
- microcrystalline
- polycrystalline
- epitaxial
- textured



(a) Crystalline

(b) Polycrystalline

(c) Amorphous

Allen: MEMS



#### **Texture coefficient TC**





Journal of The Electrochemical Society, 146 (2) 691-696 (1999) 27

#### Film thickness and texture, TiN





Aalto Journal of The Electrochemical Society, **146** (2) 691-696 (1999) Engineering

## Film viewpoint cont'd

- stoichiometric
- hydrogenated
- porous/dense
- reacted
- doped

metals, oxides: 1-5% dopant polysilicon: 10<sup>-3</sup>...10<sup>-6</sup> dopant



# Doped oxides SiO<sub>x</sub>F<sub>y</sub>

|                                                                              | FTMS  | FTES  | TEOS/O3 |
|------------------------------------------------------------------------------|-------|-------|---------|
| Deposition rate (nm/min)                                                     | 31    | 22    | _       |
| Fluorine concentration $(\times 10^{21} \text{ atoms/cm}^3)$                 | 5.4   | 5.3   | -       |
| Carbon concentration <sup>a</sup> ( $\times 10^{21}$ atoms/cm <sup>3</sup> ) | 1.1   | 2.0   | -       |
| Refractive index                                                             | 1.390 | 1.403 | 1.451   |
| Etching rate (nm/min) (1:30 buffered HF)                                     | 202   | 215   | 120     |
| Si-O peak position (cm <sup>-1</sup> ) (FTIR spectra)                        | 1083  | 1083  | 1075    |

<sup>a</sup> At the depth of 0.2  $\mu$ m.

FTES fluorotriethoxysilane FTMS fluorotrimethoxysilane TEOS tetraethyl orthosilicate

T. Homma / Materials Science and Engineering R23 (1998) 243–285



## Film viewpoint cont'd

- low resistivity
- low impurity concentration
- low stress
- free of moisture absorption
- small surface roughness
- low shrinkage
- good step coverage



#### Resistivity



 $\rho = \rho_{\text{residual}} + \rho_{\text{temp}}$ 

Linear TCR above Debye temperature (typically 200-400K)

Annealing defects at elevated temperature lowers resistance (no reaction with underlying film/substrate)

Murarka











#### **Resistivity: impurity effects**



Aalto University School of Chemical Engineering

#### **Stress and Poisson ratio**



Stress  $\sigma = F/A$ longitudinal strain  $\varepsilon = \Delta L/L$ transverse strain  $\varepsilon_t = \Delta D/D$ Young's modulus  $E = \sigma/\varepsilon$ 

Poisson ratio  $v = -\epsilon_t / \epsilon$ For many metals  $v \approx 0.3$  Kovacs



#### **Stress and strain**





Elastic/Linear region, Hooke's law valid:  $\sigma = \varepsilon E$ 

Plastic I: permanent deformation

Yield strength: 0.2% shifted curve intersects stress-strain curve

Maximum stress = tensile stress

Plastic II: necking occurs

Toughness = area below stress-strain curve = energy absorbed

Hardness: resistance to plastic deformation

Murarka

## **Terminology 1**

- Ductile materials (many metals) will bend before breaking. Tensile stress is greater than yield stress.
- Brittle materials (like silicon) will break suddenly and without warning. Tensile stress is roughly the same as yield stress



### Sources of stress: $\sigma = \sigma_i + \sigma_{th}$

- intrinsic:
  - film microstructure (grain size, orientation)
  - defects and impurities in film
  - volume changes
  - lattice mismatch (important in epitaxy)
- thermal mismatch:

$$\sigma = E_{\rm f}/(1-\nu) \times (\alpha_{\rm f} - \alpha_{\rm s}) \times \Delta T$$



#### **Volume changes**

 $xM + ySi \rightarrow M_xSi_y$ ,

the volume change  $\triangle V(\%)$  is given by

$$\triangle \mathbf{V} = \frac{(\mathbf{x}\mathbf{V}_M + \mathbf{y}\mathbf{V}_{Si}) - \mathbf{V}(\mathbf{M}_x\mathbf{S}\mathbf{i}_y)}{(\mathbf{x}\mathbf{V}_M + \mathbf{y}\mathbf{V}_{Si})} \times 100,$$

In silicide formation, negative volume change  $\rightarrow$  tensile stress

In thermal oxidation, positive volume change  $\rightarrow$  compressive stress





# **Sputtering pressure affects stress**



At low pressures sputtered films are compressively stressed;

above critical pressure, tensile stressed

At low pressure there is large momentum transfer resulting in energetic argon atoms that will densify the film by knockon (peening) or get implanted in the film

#### Murarka

Aalto University School of Chemical Engineering

#### **Mechanical and tribological properties**

#### Table 1 Mechanical and tribological properties of commercially available hard coatings.

|                                                    | TiN       | TiCN    | TiC     | TiAlN   | CrN     | Al <sub>2</sub> O <sub>3</sub> |
|----------------------------------------------------|-----------|---------|---------|---------|---------|--------------------------------|
| Deposition method                                  | PVD/CVD   | PVD/CVD | CVD     | PVD     | PVD/CVD | CVD/PVD                        |
| Typical thickness (µm)                             | 1-5       | 1-5     | 1-5     | 1-5     | 1-15    | 1-5                            |
| Hardness (HV 0.05) <sup>a</sup>                    | 2300      | 3000    | 3100    | 3000    | 1 900   | 2100 (HV 0 1)                  |
| Oxidation temperature (°C) <sup>b</sup>            | > 450     | > 350   | > 350   | > 700   | > 600   | 2100 (111 0.1)                 |
| Friction coefficient <sup>a</sup>                  | 0.5 - 0.7 | 0.5-0.7 | 0.5-0.7 | 0.6-0.8 | 0.5-0.8 | 0.7-0.9                        |
| Abrasive wear resistance                           | + +       | +++     | + + +   | + + +   | ++      | ++                             |
| Adhesive wear resistance against steel             | + +       | +/++    | +       | + +     | ÷ +     | + + +                          |
| Resistance against wear by diffusion               | + +       | +       | +       | +++     | ÷ ÷     | + + +                          |
| Corrosion protection of base material <sup>d</sup> | +         | +       | +       | +       | + +     | +                              |



# Mechanical and tribological properties cont'd

#### Table 2

Mechanical and tribological properties of MoS<sub>2</sub>, diamond, and different DLC films.

|                                                    | MoS <sub>2</sub> | Me-DLC  | DLC        | Si-DLC      | ta-C     | Diamond                      |
|----------------------------------------------------|------------------|---------|------------|-------------|----------|------------------------------|
| Deposition method                                  | PVD              | PVD     | PECVD      | PECVD       | PVD      | CVD                          |
| Thickness (µm)                                     | 0.1 - 1          | 1-5     | 1-5        | 1-5         | 1-3      | 3-10                         |
| Hardness (HV 0.05)*                                | < 500            | 8001800 | 1 5003 500 | 600-1000    | 30007000 | 10000                        |
| Typical values for compressive stress (GPa)        |                  | 0.1-1   | 1-3        | 1           | 2–6      |                              |
| Temperature of transformation (°C) <sup>b</sup>    | 350              | 350     | 400        | 500         | 450      | > 600                        |
| Friction coefficient <sup>c</sup>                  | 0.02-0.1         | < 0.2   | 0.15 - 0.2 | 0.07 - 0.15 | 0.15-0.2 | < 0.2                        |
| Abrasive wear resistance                           |                  | +       | + + +      | +           | + + + +  | + + + +                      |
| Adhesive wear resistance against steel             |                  | + +     | + + +      | + +         | + + +    | (+++) only with good cooling |
| Corrosion protection of base material <sup>d</sup> |                  | +       | + + +      | + + +       | + + +    | +++                          |



#### Interfaces



