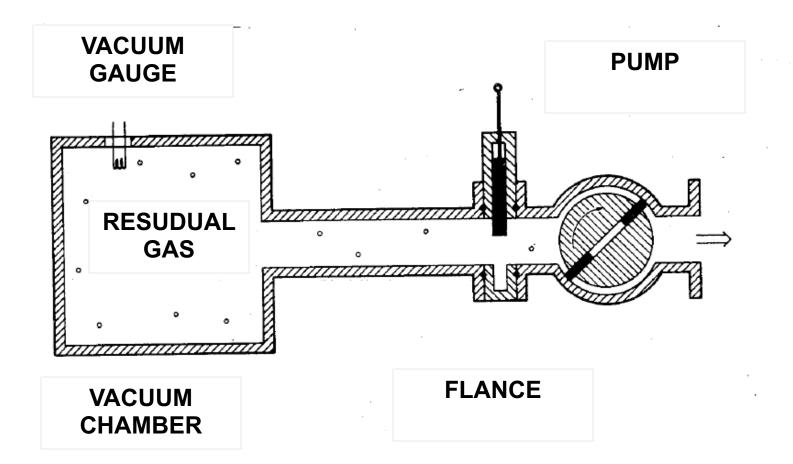
Thin Films Lecture 2


Vacuum Technology

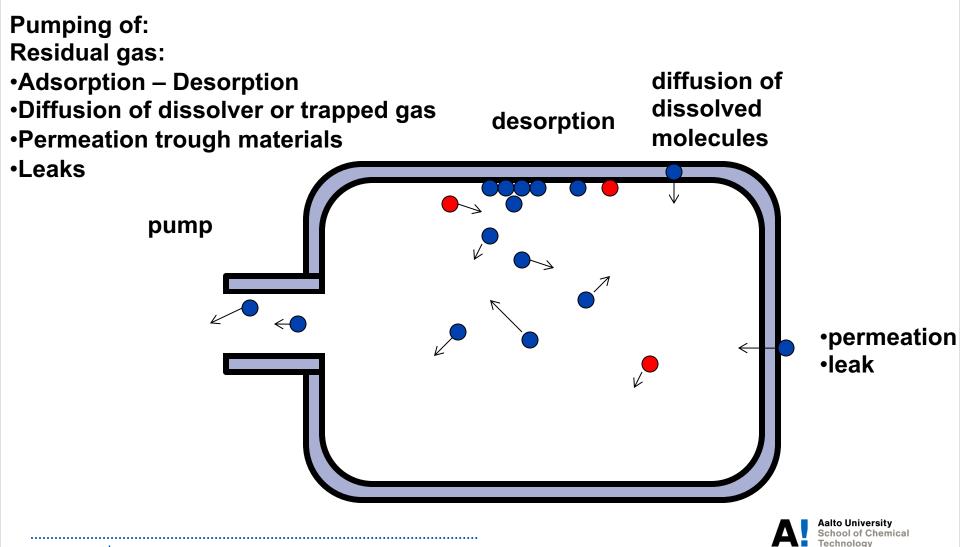
Jari Koskinen

2023

Vacuum system

Jari Koskinen 2

School of Chemical Technology


Jari Koskinen 3

Large surfaces, upscaling

www.scheuten.com

Residual gas

Composition of atmospheric air

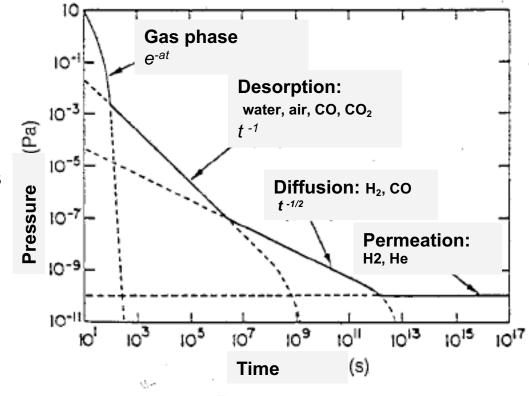
	% by weight	% by volume	Partial pressure mbar	
N ₂	75.51	78.1	792	
02	23.01	20.93	212	
O ₂ Ar	1.29	0.93	9.47	
CO ₂	0.04	0.03	0.31	
Ne	1.2 · 10 ⁻³	1.8 · 10 ^{−3}	1.9 · 10 ^{−2}	
He	7 · 10 ⁻⁵	7 · 10 ^{−5}	5.3 · 10 ^{−3}	
CH₄	2 · 10 ⁻⁴	2 · 10 ⁻⁴	2 · 10 ^{−3}	
Kr	3 · 10 ⁻⁴	1.1 · 10 ⁻⁴	1.1 · 10 ^{−3}	
N ₂ O	6 · 10 ⁻⁵	5 · 10 ⁻⁵	5 · 10 ⁻⁴	
H ₂	5 · 10 ⁻⁶	5 · 10 ⁻⁵	5 · 10 ⁻⁴	
N ₂ O H ₂ Xe	4 · 10 ⁻⁵	8.7 · 10 ⁻⁶	9 · 10 ^{−5}	
O ₃	9 · 10 ⁻⁶	7 · 10 ^{−6}	7 · 10 ^{−5}	
5	Σ 1 00 %	Σ 100 %	Σ 1013	
50 % RH at 20 °C	1.6	1.15	11.7	

Note: In the composition of atmospheric air the relative humidity (RH) is indicated separately along with the temperature. At the given relative humidity, therefore, the air pressure read on the barometer is 1024 mbar.

Units of pressure

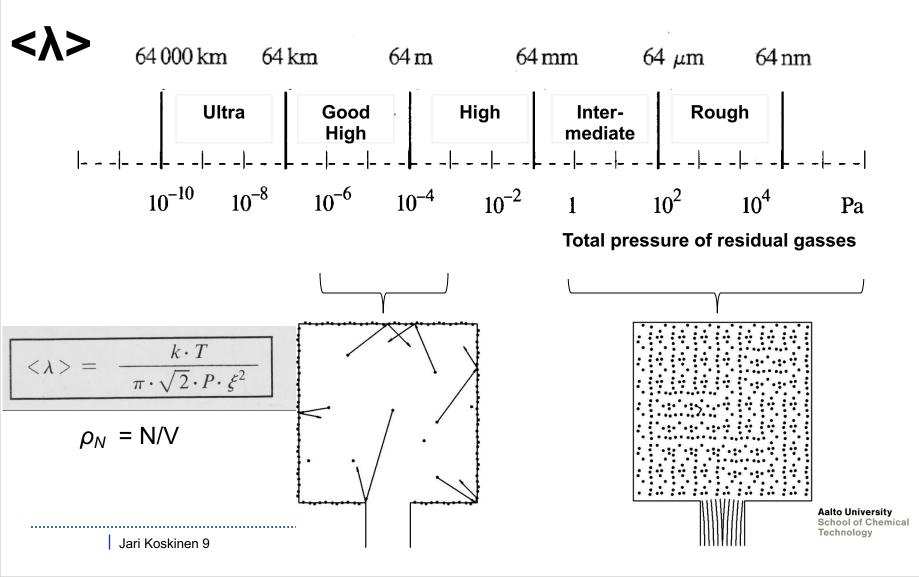
	Ра (N m ⁻²)	mbar	Torr (mm Hg at 0 °C)	Technical Atmospheres (at)	Physical Atmospheres (atm)
Ра (N m ⁻²)	1	1.0 x 10 ⁻²	7.5 x 10 ⁻³	1.02 x 10 ⁻⁵	9.87 x 10 ⁻⁶
mbar	1.0 x 10 ²	1	7.5 x 10 ⁻¹	1.02 x 10 ⁻³	9.87 x 10-4
Torr (mm Hg at 0 °C)	1.33 x 10 ²	1.33	1	1.36 x 10 ⁻³	1.32 x 10 ⁻³
Technical Atmospheres (at)	9.80 x 10 ⁴	9.80 x 10 ²	7.36 x 10 ²	1	9.68 x 10 ⁻¹
Physical Atmospheres (atm)	1.01 x 10 ⁵	1.01 x 10 ²	7.60 x 10 ²	1.03	1

http://vacuumtech.blogspot.com/2009/06/in-international-system-of-unit-units.html

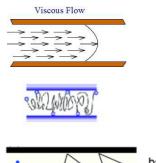


Sources of residual gas

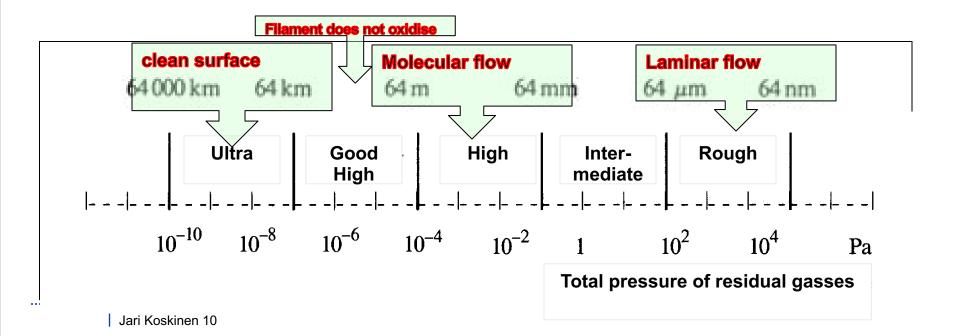
Limiting factors


•High vacuum

- pumping speed
- leak
- Good High vacuum
 - desorption from walls
 - baking
- Ultra high vacuum
 - impurities
 - internal leaks
 - material selection
 - diffusion
 - permeation

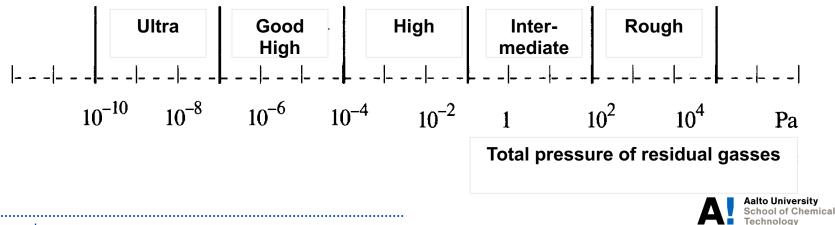


Average mean free path (distance between collission) in nitrogen residual gas



Phases of residual gas

- d = diameter of chamber
- Viscotic <λ> < d/100
- Intermediate
- Molecular $\langle \lambda \rangle >> d$

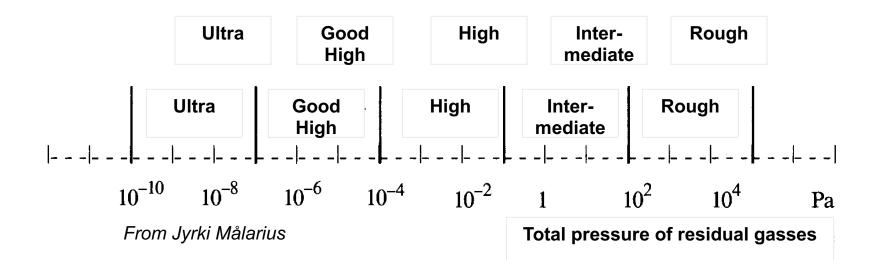

Time to form one molecular layer on surface

average molecule mass m diameter of molecule

$$\tau = \frac{(2 * \pi * m * k * T)^{1/2}}{\zeta^2 * P}$$

ζ

15 vrk 21 min 1,3 s 1,3 ms 1,3 μs 1,3 ns



Use of High Vacuum

- Ultra High vac. UHV $\tau \sim \text{hour}$
 - Clean surface during slow experiment
 - Atomic clean surface
 - Ion accelerators
 - MBE-processes
 - Surface analysis
 - XPS, ESCA
 - SIMS

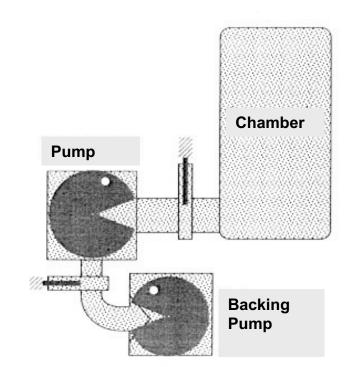
- Good High Vacuum $\tau \sim \min$
 - Sufficient for electron gun
 - Clean surfacea during slow process
 - Several thin film processes
 - Crystal growth
 - Electron microscopy
 - Mass spectroscopy
 - Lithography

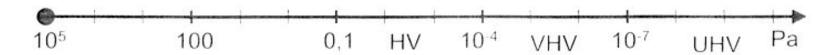
- High vacuum $\tau \sim s$
 - Clean surface during process
 - Several thin film processes
 - Ion implantation

Critical temperatures for some residual gasses

Gas or vapor		<i>T</i> _c (°C)
Helium	He	
Hydrogen	H ₂	240
Nitrogen	N ₂	147
Carbon monoxide	CO	
Argon	Ar	122
Oxygen	O ₂	
Methane	CH₄	
Carbon dioxide	CO ₂	31
Chlorine	Cl_2	144
Ether	$(C_2H_5)_2O$	195
Ethanol	C ₂ H ₅ OH	243
Carbon tetraclor.	CCl₄	283
Water	H ₂ O	374

above T_c no liquid

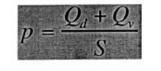



Vacuum Pumping

• Mechanical pumping \rightarrow 0.1 Pa

 High Vacuum pumps with backing pump → HV, Good HV (VHV)

• High Vacuum closed \rightarrow UHV



Vacuum

- Pump throughput Pa m³/s
- Pumping speed m³/s, l/s, m³/h

$$Q_p = p \frac{\Delta V}{\Delta t}$$
$$S = \frac{\Delta V}{\Delta t}$$
$$Q_p = Q_d + Q_v$$

• Final pressure

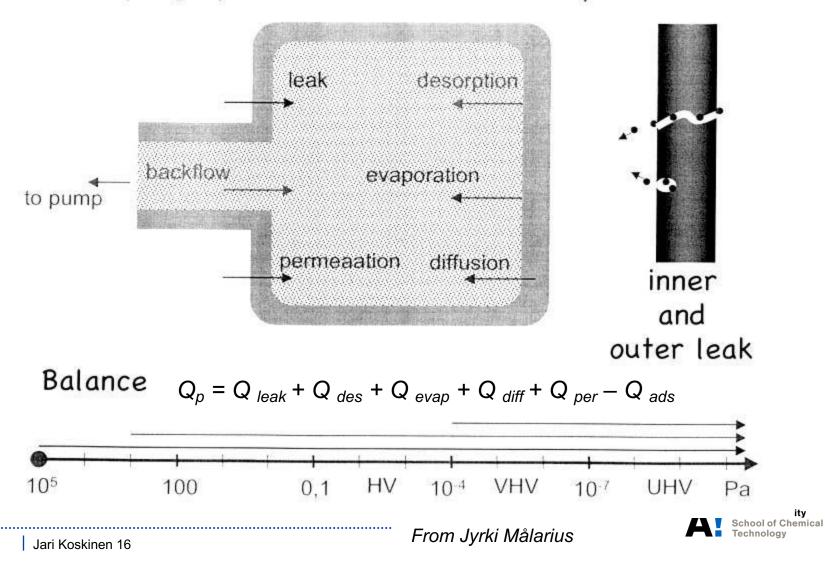
• m³/s • l/s Q,

Chamber

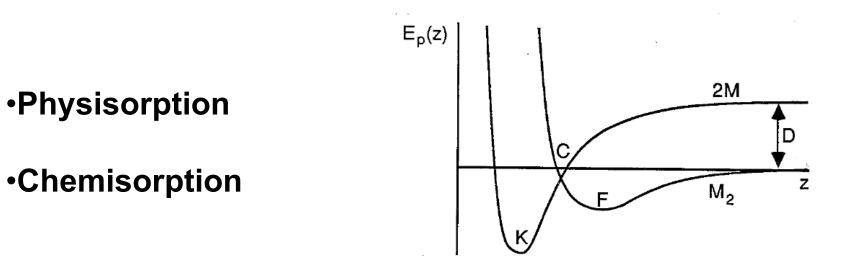
0,

• m³/h

PV = NRT


Pump

r



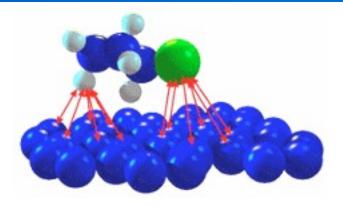
Vacuum

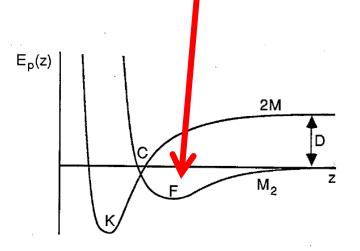
Pumping speed and the ultimate pressure

Adsorption

Kuva 12.1. Lennard-Jones-diagrammi.

Jari Koskinen 17


Adsorption

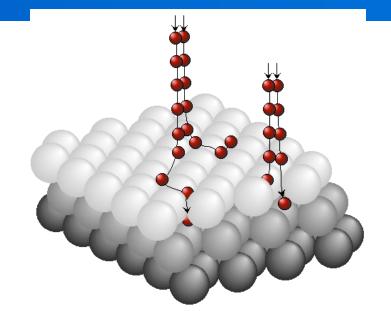

Physisorption

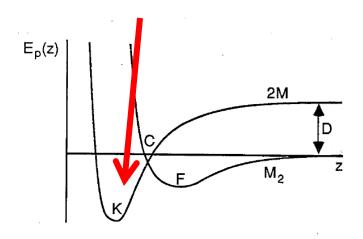
Chemical bonding:

polaroization (van der Waals)

Bonding energy ≈ 0.001 – 0.5 eV
Bond length ≈ 3 – 10 Å
For example: nobel gas or molecules on materials
Possibly precursion state before chemisorption

Kuva 12.1. Lennard-Jones-diagrammi.


Adsorption


Chemisorption

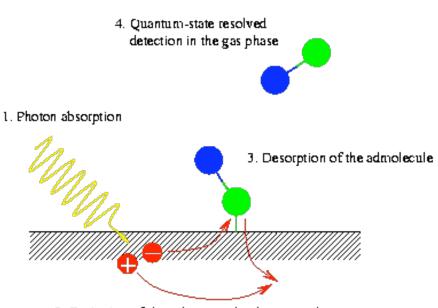
Chemical bonding:

charge exchange

Bonding energy ≈ 0.5 – 5 eV
Bond length ≈ 1 – 3 Å
For example: H, O, N, CO on metals
Dissociation of molecule
Final absorption

rersity Chemical 39

Kuva 12.1. Lennard-Jones-diagrammi.


Desorption

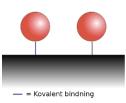
Adsorbed molecule must receive energy E_D in order to leave surface

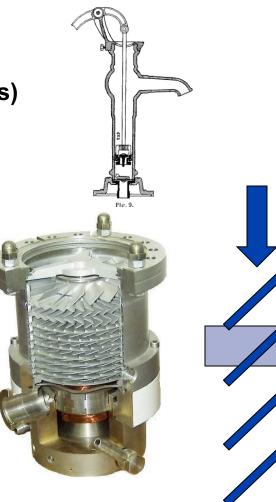
thermal

radiation

- photons
- electrons
- ions
- electric field

2. Excitation of the substrate-adsorbate complex

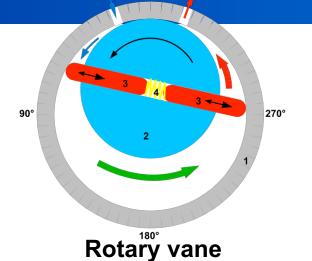



Vacuum pumps

Positive displacement (mechanical pumps)

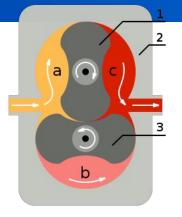
Momentum transfer (molecular pumps)

• Entrapment



Jari Koskinen 21

Mechanical pumps


Very common fore vacuum-and general vacuum pump.

- •Typically 1 or 2 stage configuration.
- •Gas is moved by rotating vanes.
- •Oil is used as seal, lubricant, and coolant.

+ High capacity from 10³ to ~10⁻²mbar.
- Potential back streaming of oil into vacuum chamber.

Mechanical pumps

Counter rotating blades moves gas volume.

•No contact between surfaces \rightarrow oil free operation.

Roots

ZJP-1200C

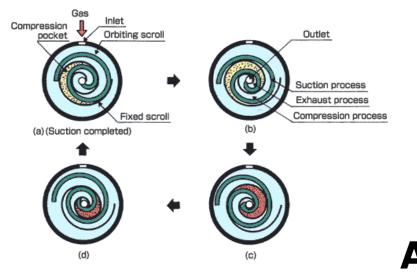
•Runs very hot without fore vacuum pump.

+ High capacity from 10 to ~10⁻⁴ mbar.
(Medium capacity from 1000 to ~10 mbar)
+ Oil free

- Works best together with fore vacuum pump.

Mechanical pumps

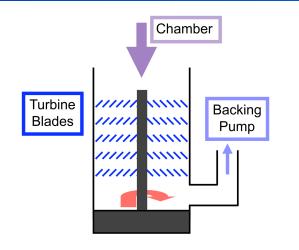
Moving scroll orbiting a fixed scroll.


•Compressed gas volume pushed towards center outlet.

+ Oil free

- + Reliable, low maintenance.
- Low to medium capacity (10³to ~10⁻²mbar)

Scroll pump



Jari Koskinen 24

Momentum transfer - Turbo pump

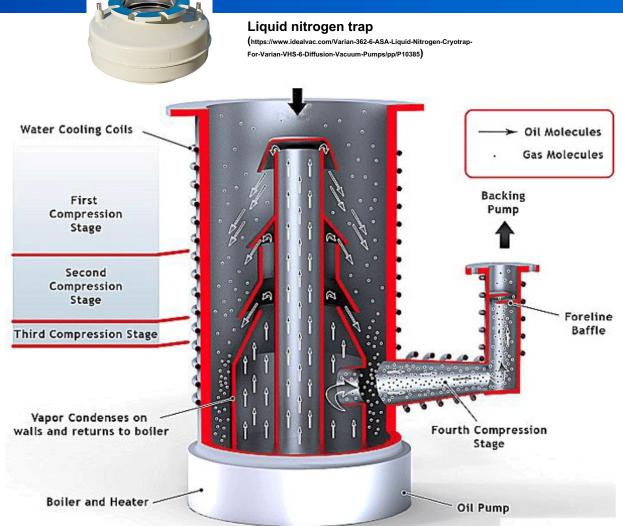
Turbo molecular

•Fast moving rotor (30k to 90k rpm) with several stages and many blades per stage.

•High efficiency in the molecular regime where gas molecules collide with rotor blade and not each other.

•Some modern pumps have magnetic, non-contact, bearings.

- + High capacity from 10⁻³to ~10⁻⁸ mbar.
- + Low maintainance.
- Sudden large gas loads may cause severe, expensive damage.



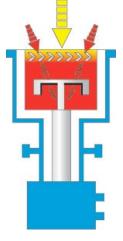
Momentum transfer in turbo molecular pump

Momentum transfer - oil diffusion pump

•Hot dense oil vapor is forced through central jets angled downward to give a conical curtain of vapor.

•Gas molecules are knocked downwards and eventually reach the backing vacuum pump.

- + Simple pump without moving parts.
- + High capacity from 10⁻³ to ~10⁻⁸ mbar.
- + Low maintenance.
- Needs cooled baffle to reduce oil contamination of vacuum chamber.


https://vacaero.com/information-resources/vac-aero-training/170466-the-fundamentals-of-vacuum-theory.html

Aalto University School of Chemical Technology

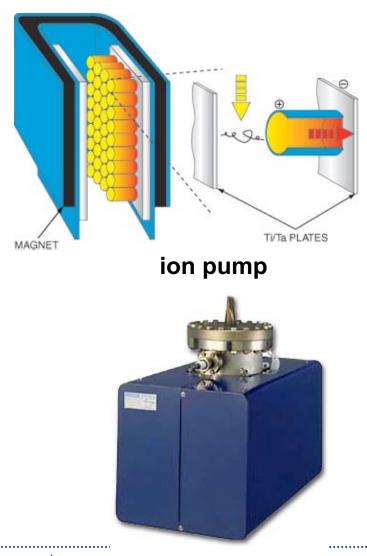
Jari Koskinen 27

Entrapment

cryo pump

Cool head with several plates (stages).

The metal top side of the cool (12K) plates traps gas molecules by cryocondensation.


The bottom side of the plates are coated with active charcoal and traps gas molecules by cryo-adsorption.

The cooling is done with a Helium filled refrigerator loop.

- + Very High capacity down to ~10⁻⁹ mbar.
- + No backflow contamination.
- Pump saturates if exposed to high pressure or continuous gas flow.
- Need periodic regeneration of cool head.

Entrapment

Free electrons move in helical trajectories towards the anode, ionizing gas molecules upon collisions.

•Gas ions strike the Ti cathodes and some get buried.

•Sputtered Ti deposits inside the tubes and getters gas molecules through chemical reactions.

- + Simple pump without moving parts.
- + Can work at very low pressure ~10⁻¹¹mbar.
- + Oil free.
- Not suitable for gas loads.

Pumps and vacuum ranges

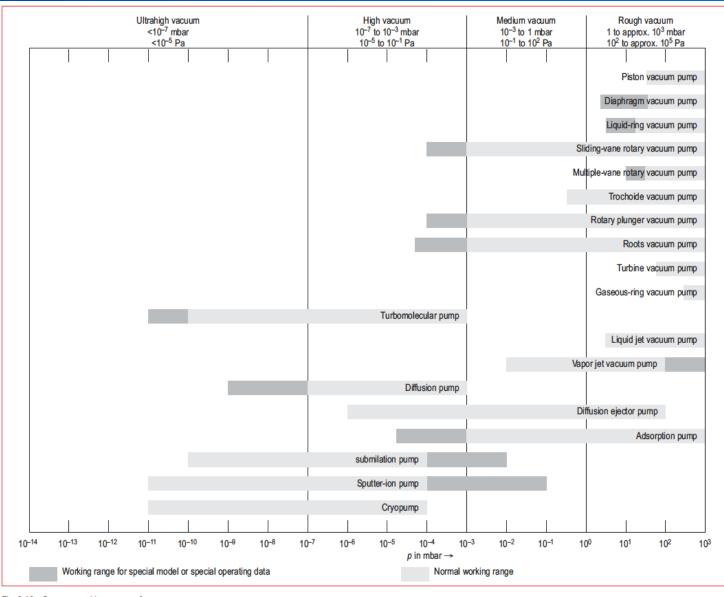
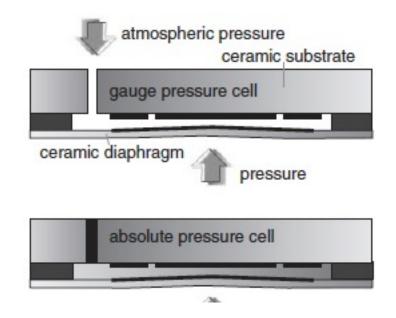
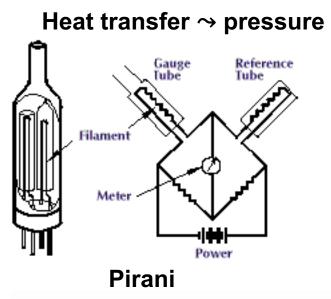


Fig. 9.16: Common working ranges of vacuum pumps

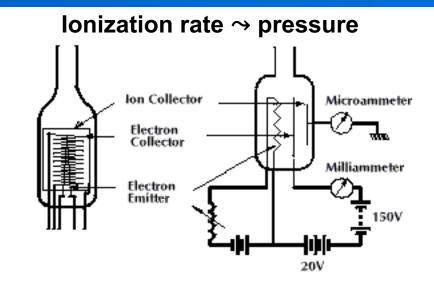

alto University chool of Chemical Technology

Jari Koskinen 30

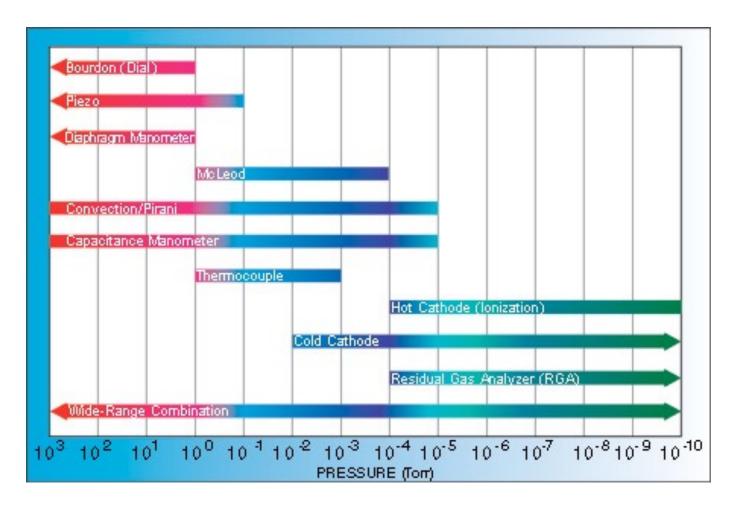
.....


Vacuum gauges

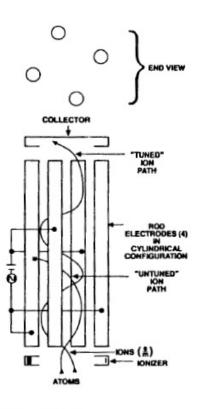
- Mechanical diaphragm
- Electronic
 - Piezoresitive (strain gauge)
 - Capacitive
 - Magnetic
 - Piezoelectric
 - Optical
 - Potentiometric
 - Resonant
- Thermal conductivity Pirani
- Ionzation gauge
- Hot cathode
- Cold cathode (Penning)



Gauges



ionization gauge hot filament


Aalto University School of Chemical Technology

Jari Koskinen 32

Residual gas analyser

When the voltage applied to the analysis electrode The filament ionizes the gas changes, ions with different mass/electric charge ratios corresponding to the voltage being applied molecules. pass through the quadropole. Focus lens Filament Ionization area H_2 • • 0 H₂O 000 ଡ N2 Quadropole Faraday cup Filament The ions gathered by the Faraday cup are detected as an electric current.

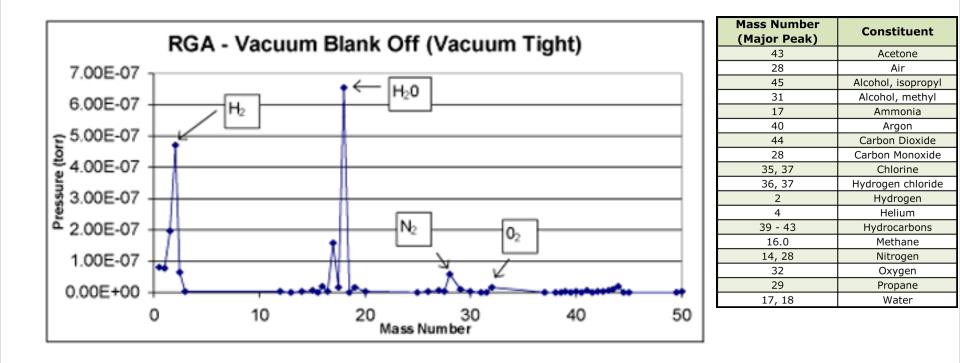

Aalto University School of Chemical Technology

Figure 3-1 cont. A quadrapole mass spectrometer.

https://vacaero.com/information-resources/vac-aero-training

Jari Koskinen 34

Residual gas analyser

https://vacaero.com/information-resources/vac-aero-training/6884-residual-gas-analyzers.html

Vacuum systems

.....

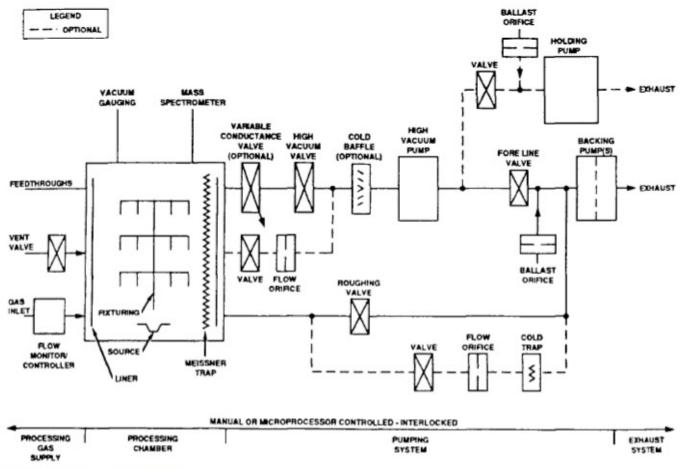
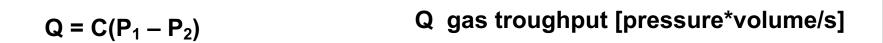
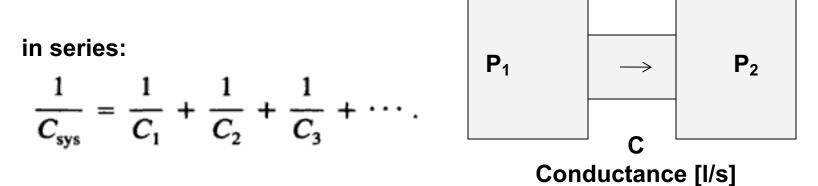




Figure 3-8. Vacuum/plasma processing system.

Handbook of Physical Vapor Deposition (PVD) Processing

in parallel:

$$C_{\rm sys} = C_1 + C_2 + C_3 + \cdots$$

Conductance of various geometries

M. Ohring

(A)
$$C = 3.64A \left(\frac{T}{M}\right)^{1/2} = 11.7A$$

(D) D (A) $C = 6.18 \frac{A^2}{DL} \left(\frac{T}{M}\right)^{1/2} = 12.2 \frac{D^3}{L}$

rersity Chemical 3y

				At room te	emperature				
Standard values1 (mbar · I · s ⁻¹ · cm	-2)		Metals 10 ⁻⁹ · 10 ⁻⁷				Nonmetals 10 ⁻⁷ · 10 ⁻⁵		
			Outgassing	rates (standard	values) as a function	on of time			
Examples: Ag Al	1/2 hr. 1.5 · 10 ^{−8} 2 · 10 ^{−8}	1 hr. 1.1 · 10 ⁻⁸ 6 · 10 ⁻⁹	3 hr. 2 · 10 ⁻⁹	5 hr.	Examples: Silicone NBR	1/2 hr. 1.5 · 10 ^{_5} 4 · 10 ^{_6}	1 hr. 8 · 10 ⁻⁶ 3 · 10 ⁻⁶	3 hr. 3.5 · 10 ⁻⁶ 1.5 · 10 ⁻⁶	5 hr. 1.5 · 10 ⁻⁶ 1 · 10 ⁻⁶
Cu Stainless steel	4 · 10 ^{–8}	2 · 10 ⁻⁸ 9 · 10 ⁻⁸	6 · 10 ^{_9} 3.5 · 10 ^{_8}	3.5 · 10 ⁻⁹ 2.5 · 10 ⁻⁸	Acrylic glass FPM, FKM	1.5 · 10 ^{–6} 7 · 10 ^{–7}	1.2 · 10 ^{−6} 4 · 10 ^{−7}	8 · 10 ⁻⁷ 2 · 10 ⁻⁷	5 · 10 ⁻⁷ 1.5 · 10 ⁻⁷

Table X: Outgassing rate of materials in mbar \cdot I \cdot s^{-1} \cdot cm^{-2}

Table 3.2. Pressure (in Pascal and Torr), impingement rate, and monolayer formation time for selected vacuum and process conditions

<i>p</i> (Pa)	p (Torr)	$J_{\rm g}~({\rm m}^{-2}~{\rm s}^{-1})$	τ (s)
1 10 ⁻¹ 10 ⁻²	7.5×10^{-3} 7.5×10^{-4} 7.5×10^{-5}	Nitrogen 2.9×10^{22} 2.9×10^{21} 2.9×10^{20}	3.5×10^{-4} 3.5×10^{-3} 3.5×10^{-2}
10 ⁻³ 10 ⁻⁴ 10 ⁻⁵	7.5×10^{-6} 7.5×10^{-7} 7.5×10^{-8}	water vapor 3.6×10^{19} 3.6×10^{18} 3.6×10^{17}	0.28 2.8 28

Vacuum Baking

- In order to obtain UHV
- heated to high temperatures (100 300 ° C or so)
- mostly water is adsorbed to the chamber walls
- very long time at room temperature.

- Electrical heating tapes (shown in the picture below).
- Then everything is covered with aluminium foil for insulation and heat distribution.

http://philiphofmann.net/ultrahighvacuum/ind_bakeout.html

Basics 5:Outgassing Resources

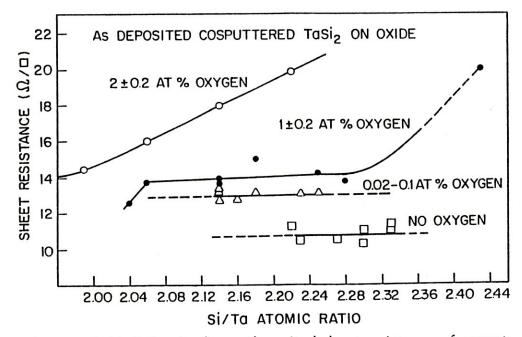
The outgassing table below is a bit dated but still useful as an introduction. Check the N.A.S.A. link below for a really large data base on the subject.

Outgassing Data Table							
		Outgassing Rate in Torr Liters Per Square Cm. Per Second					
Material	Condition	1 Hour	10 Hours	100 Hours	Source		
Aluminum	Cleaned	_	8X10e-09	_	1		
Aluminum	Anodized	_	1X10e-07	_	1		
Aluminum	Anodized	_	1X10e-07	_	<u>3</u>		
Aluminum	degassed	1.7X10e-07	2.7X10e-08	4.6X10e-09	4		
Aluminum	none	1.3X10e-06	_	_	4		
Aluminum 6061-T6	none	_	2.5X10e-09	_	5		
Aluminum 6061-T6 @ 200 deg. C	hot	_	4.5X10e-09	_	5		
Aluminum 6061-T6	Bake 13.5 hr. @ 200 deg. C	_	3.7X10e-10	_	5		
Aluminum 6061-T6 @ 300 deg. C	hot	_	1.4X10e-08	_	5		
Aluminum 6061-T6	Bake 15 hr. @ 300 deg. C	_	1.6X10e-10	_	5		
Brass	Cast, cleaned	_	3X10e-07	_	1		
Copper		2.3X10e-06	_	_	3		
Copper, 450 Deg.C	None	1.6X10e-06	_	_	4		
Copper, 450 Deg.C	degreased, pickled	2.6X10e-07	_	_	4		
Copper, 450 Deg.C	degreased	1.4X10e-06	_	_	4		
Molybdenum	_	7X10e-07	_	_	3		
Nickel	_	6X10e-07	_	_	3		
Silver		6X10e-07	_	_	3		
Silver	_	6X10e-07	_	_	3		

Basics 5:Outgassing Resources

The outgassing table below is a bit dated but still useful as an introduction. Check the N.A.S.A. link below for a really large data base on the subject.

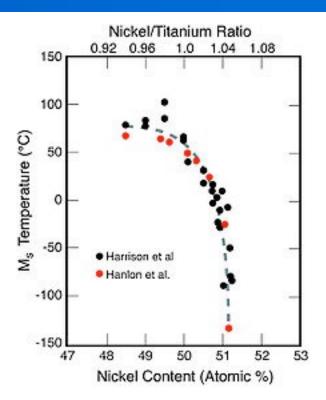
	Outgassi	ing Data Tab	ble			
		Outgassing Rate	Dutgassing Rate in Torr Liters Per Square Cm. Per Second			
Material	Condition	1 Hour	10 Hours	100 Hours	Source	
Steel, Mild	Shot-blasted	_	6X10e-08	_	1	
Steel, mild	_	5X10e-07	5X10e-08	_	3	
Steel, mild	degassed	5.3X10e-08	1X10e-08	1.9X10e-09	4	
Steel, mild	none	_	1.9X10e-9	4X10e-10	5	
Steel, mild @ 200 deg. C	hot	_	8.6X10e-9		5	
Steel, mild	baked 15 hrs. @ 200 deg. C	_	_	4.3X10e-11	5	
Steel, mild @ 400 deg. C	hot	_	8.4X10e-9	_	5	
Steel, mild	Baked 15 hrs. @ 400 deg. C	_	1.2X10e-11	_	5	
Steel, mild	none	4.2X10e-07	_	_	4	
Steel, mild	none	4.2X10e-07	_		4	
Steel, chrome plated	Polished & vapour degreased	1X10e-08	9X10e-10	_	3	
Steel, nickel plated	Polished & vapour degreased	5X10e-07	1X10e-09	_	3	
Steel, stainless	_	2X10e-07	2X10e-08	_	1	
Steel, stainless	Polished & vapour degreased	_	1.4X10e-09	_	3	
Steel, stainless	none	6.4X10e-07	_	_	4	
Steel, stainless	degreased	4X10e-07	_	_	4	
Steel, stainless	annealed	5.3X10e-08	_	_	4	
Steel, stainless	none	7.6X10e-10	_	1.1X10e-10	5	
Steel, stainless	none	_	1.2X10e-08	_	5	
Steel, stainless	bake 24 hr, 200 deg. C	_	1.5X10e-10	_	5	
Steel, stainless	bake 12 hr., 400 deg. C	_	9.3X10e-13	_	5	
Steel, stainless @ 400 deg. C	hot	_	1.4X10e-09	_	<u>5</u>	
Tantalum	_	9X10e-07	_	_	3	
Tungsten	_	2X10e-07	_	_	3	


Basics 5:Outgassing Resources

The outgassing table below is a bit dated but still useful as an introduction. Check the N.A.S.A. link below for a really large data base on the subject.

Outgassing Data Table							
		Outgassing Rate in Torr Liters Per Square Cm. Per Second					
Material	Condition	1 Hour	10 Hours	100 Hours	Source		
"Araldite D"	_	_	1X10e-06	3X10e-07	1		
Neoprene	_	3X10e-05	1.5X10e-05	_	1		
PVC	_	_	8X10e-07	1.3X10e-07	1		
Mylar	outgassed	2X10e-07	_	_	2		
Neoprene	As received	2X10e-04	_	_	2		
Silicone rubber	As received	3X10e-05	_	_	2		
Teflon	As received	5X10e-06	_	_	2		
PVC	As received	9X10e-07	_	_	<u>2</u>		
Textolite	As received	7X10e-06	_	_	<u>2</u>		
Mylar	As received	3X10e-06	_	_	2		
Zirconium	_	1.3X10e-06	_	_	<u>3</u>		
Butyl rubber	_	1.5X10e-06	_	_	3		
Kel F	_	4X10e-08	_	_	<u>3</u>		
Plexiglass	Outgassed	1X10e-06	_	_	<u>3</u>		
Polyethylene	_	2.6X10e-07	_	_	<u>3</u>		
Nylon	_	1.2X10e-05	_	_	3		
Porcelain	Glazed	6.5X10e-07	_	_	<u>3</u>		
Steatite	_	9eX10e-08	_	_	<u>3</u>		
Epon 828	degassed	6.7X10e-07	5.9X10e-08	9.4X10e-09	<u>4</u>		
Teflon	degassed	4.6eX10e-07	2.1X10e-07	9X10e-09	4		

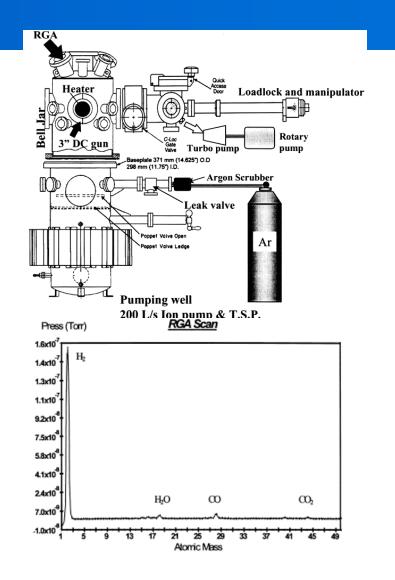
Oxygen contamination


Figure 4.3. Variation in the as-deposited sheet resistance of cosputtered Ta-Si deposits (on SiO_2) as a function of Si:Ta atomic ratio for several oxygen concentration ranges. Oxygen was incorporated as a contaminant during sputtering.

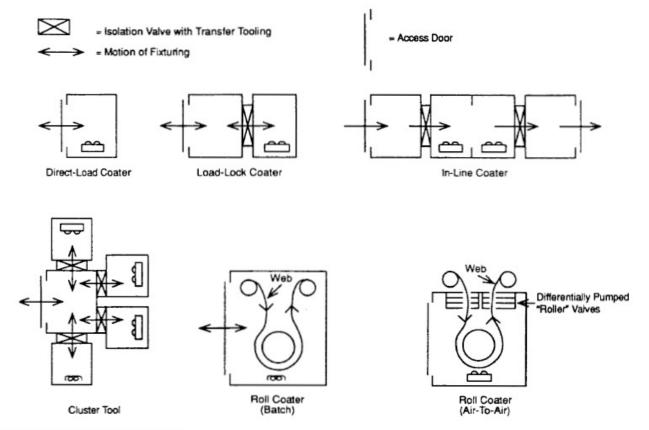
Jari Koskinen 46

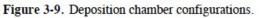
Case NiTi

- Nickel Titanium shape memory alloy
- MEMS devises
- Based on reversible austenitemartensite transformation, which is temperature driven
- Transformation temperature depends on stoichimetry
- oxygen reacts with Ti forming TiO_x, which changes Ni/Ti ratio in alloy

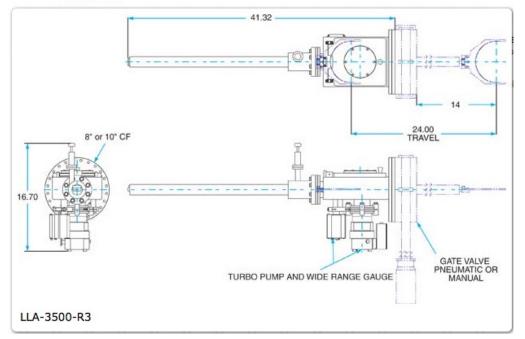

Thin Solid Films 370 (2000) 18-29

47

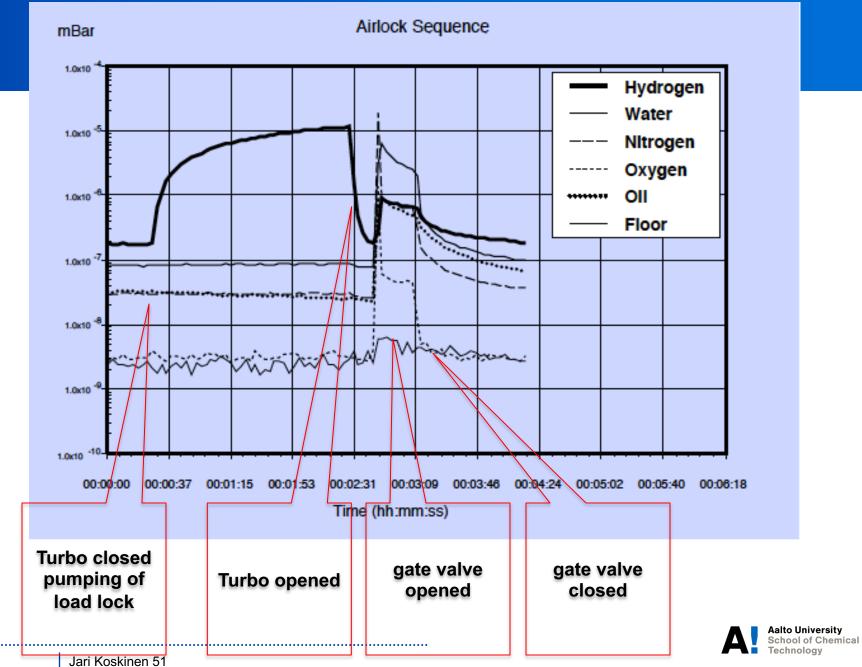

Case NiTi


- RGA control in UHV vacuum
- Before baking H₂, H₂O, CO₂ and CO
- By baking H₂O, CO₂ and CO gases were kept below 10⁻⁸ Torr
- Sputtering with Ar partial pressure of 2 mtorr during film growth
- Stoichimetry and transition temperature as in bulk NiTi
- without careful ambient control transition temperature changes radically. (Oxygen detection al low contents difficult in metallic thin films)

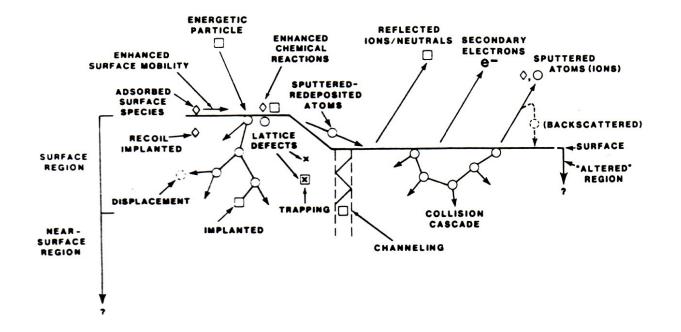
Vacuum systems and sample loading


Handbook of Physical Vapor Deposition (PVD) Processing

Planar Load Lock Assemblies

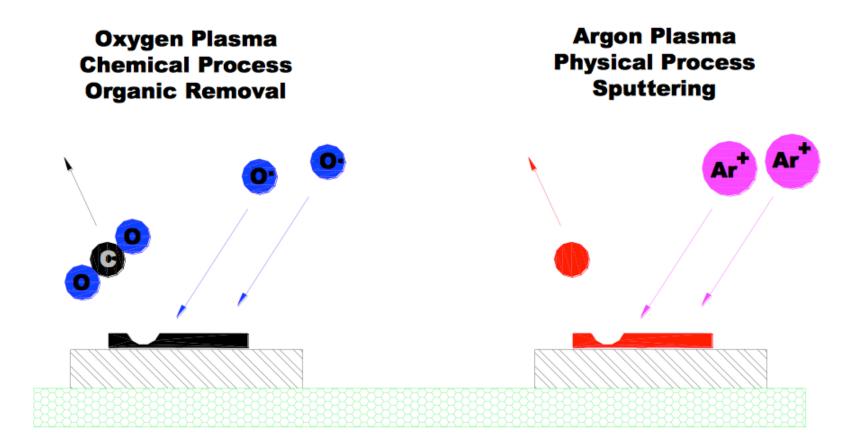


ENLARGE

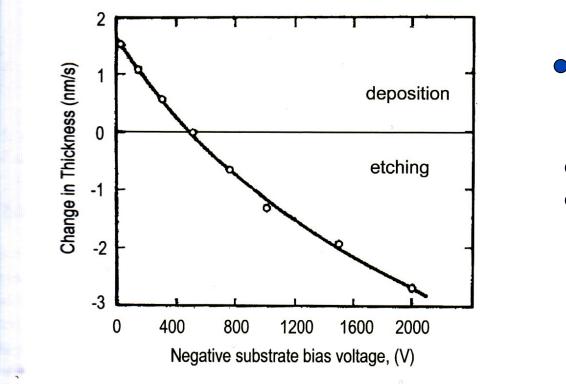


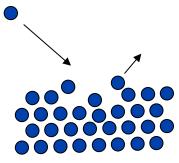
- Connected to main chamber via gate valve
- transferring samples
- its volume can be pumped and vented without disturbing the main chamber pressure
- chamber clean from water vapor or other contaminant's
- increased sample throughput.
- Components
- viewport
- o-ringed door
- ports for pumping and gauging

Sputter cleaning effect

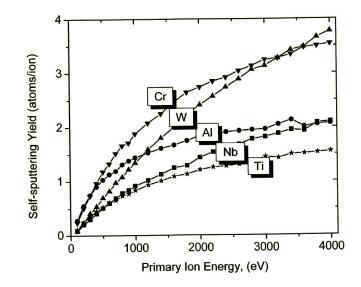

Figure 3.5. Schematic depiction of the energetic particle bombardment effects on surfaces and growing films.

Jari Koskinen 52


52


⁵ ³ Sputter cleaning using oxgen plasma or Ar-plasma

Self-sputtering of Ni ions



7. Rate of deposition or etching as a function of bias voltage for aluminum arc (Adapted from [67])

Self sputtering of selected metals Yield of self-sputtering

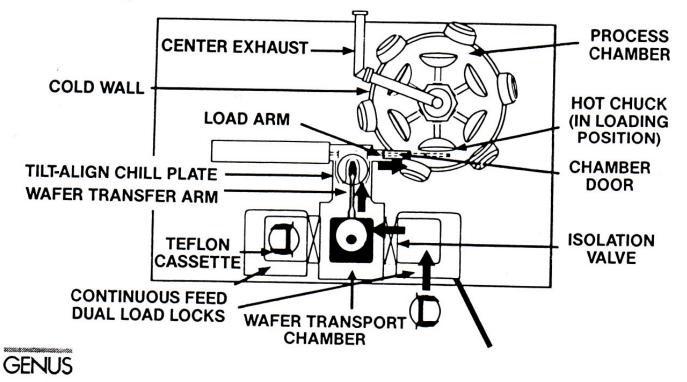


Fig. 8.16. Self-sputtering yield for selected metals as a function of ion energy (calculated by T-DYN Monte Carlo code; the apparent scatter is due to the statistics). The energy scale of up to 4 keV is quite appropriate considering the typical bias of 1 kV and the presence of multiply charged ions

8700 CONTINUOUS FEED LOAD LOCK

Isolated Chamber Layout and Backside/Edge Wafer Transfer System

275-B7

A

⁵ 7 In-situ fabrication and characterization

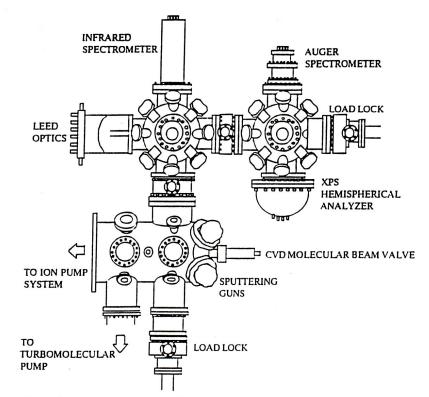
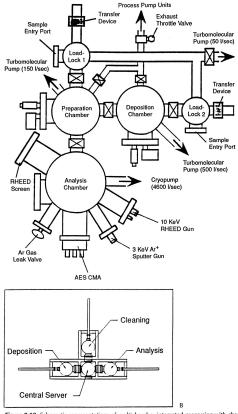



Figure 8.11. Top view of special dual-chamber system for in-situ fabrication and characterization. Courtesy of A. Kaloyeros, SUNY, Albany, NY.

1 · · · · · · · ·

.

А

Figure 8.12. Schematic representations of multichamber integrated processing with chambers for substrate cleaning, remote PECVD deposition, and analysis (AES and RHEED or LEED). Both systems provide for substrate introduction into load-lock chambers. From Lucovsky et al [21].

.....

⁵ Schematic of in-situ UHV processing system

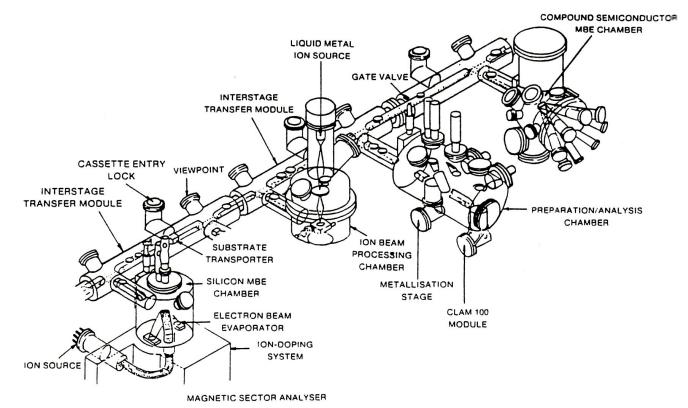


Figure 8.13. A schematic drawing of possible all-UHV in-situ processing system.

6 0 MBE system

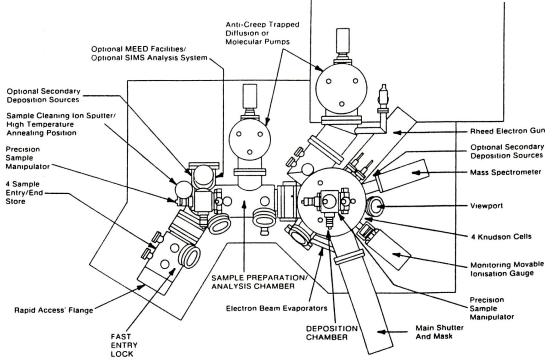


Figure 8.14. A typical sophisticated MBE system.

.....

Vacuum system design

- Access—how large and heavy are the parts and fixturing?
- Do the parts need to have *in-situ* processing? e.g. outgassing, heating, plasma treatments, etc.
- System cleaning—is there a lot of debris generated in the process? Does the debris fall into critical areas such as valve sealing surfaces? How often will system cleaning be necessary?
- Cycle time for the system—production rate.
- How often do fixtures and tooling need to be changed?
- Is the processing sensitive to the processing environment?
- Sophistication of the operators—operator training.
- Maintenance.
- Safety aspects—high voltage, interlocks.
- Fail safe design—short or long power outages, water failure.
- Environmental concerns exhaust to the atmosphere, traps.

