Lecture 9 Fermi liquid theory

Literature: T. Giamarchi, Quantum Physics in One Dimension, Oxford Science
Publications, Chapter 1.1., G.D. Mahan, Many-Particle Physics, Kluwer, Chapter
11.2.1, E.M. Lifshitz and L.P. Pitaevskii, Landau and Lifshitz Course of Theoretical
Physics, Statistical Physics Part 2, Chapters 1 and 2

Learning goals

e To learn the concept of a quasi-particle, to understand why there can be
well-defined quasiparticles close to the Fermi level.

e To learn what is a Fermi liquid.

e Fermi liquid theory will be continued in Lecture 10. So you can achieve the
above learning goals only after that lecture.

17 Basic concepts for Fermions

Describing interacting Fermions, in real-life situations, is often difficult. For instance
for an electron gas (the conduction electrons in a metal), the Coulomb interactions
are of long-range type, and they can be in magnitude of the same order as the kinetic
energy: in such a situation, one cannot do perturbation theory using the interaction
(or kinetic) energy as the small quantity. However, Lev Landau suggested in 1957 a
simple but powerful theory to describe interacting Fermions. It is called Fermi liquid
theory (sometimes Landau’s Fermi liquid theory). It is based on the assumption
that elementary low-energy excitations of the systems can be described as so-called
quasiparticles. Important properties such as thermodynamic quantities can then
be calculated by considering the quasiparticles and simple interactions between
them. You have also perhaps learned the free electron model in some previous
lecture course. Why can one actually treat electrons as free even when they interact
pretty strongly with other electrons via the Coulomb interaction? In this lecture
we will learn the basics of why it is actually reasonable to use the concept of a
quasiparticle to describe, e.g., metals, and based on the quasiparticle concept, the
approximation of a free electron becomes more plausible as well.

Quasiparticles are not the same as the actual particles of the system, except
for the non-interacting case where the quasiparticle reduces to the actual particle.
One can imagine quasiparticle motion to be, for instance, something like the motion
of an electron influenced by the electrons around it. For instance, the electron could
move slower due to the Coulomb interaction with the other electrons, and thus one
could describe it as a quasiparticle with a bigger effective mass. One can say that the
particle is ”dressed” by the other particles around it. Furthermore, the quasiparticle
typically has a finite lifetime 7 (in other words, a finite decay rate I'); a usual
particle in a non-interacting system will maintain its momentum indefinitely, but a
quasiparticle excitation of a certain momentum will eventually decay. However, the
lifetime has to be long enough in order to the quasi-particle to be well-defined. The
figure below illustrates the concept.
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Note that this is a just a vague hand-waving picture of what a quasiparticle is. The
more exact definition will be given below. But first we have to learn some basics
about non-interacting Fermions.

Important concepts:

Fermi level, Fermi sea, Fermi sphere, Fermi energy, Fermi wave vector (explained
in the pictures below).
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The chemical potential p in case of fermionic particles is also called the Fermi
level. At zero temperature and for non-interacting particles, it coincides with the
Fermi energy E'r which is the highest energy level occupied by the non-interacting
particles at T' = 0, as depicted in the above picture. In presense of interactions and
at finite temperature the Fermi level deviates from this. It still tells, in an overall
manner, about the energies that are occupied by the fermions, but for instance at
finite temperature there is some population also at states above the Fermi level.
In general, u deviates from Ep due to interactions and temperature, although in
practise they can be close to each other in some systems.

We should also learn the concept of a spectral function A(k, E). It tells
about the available states in the system for each value of the momentum k and the
energy E. For non-interacting particles it is simply A(k, F) = 6(E — £(k)) where
£(k) = e(k) — p and e(k) is the kinetic energy, for instance e(k) = h%k?/(2m).
For the non-interacting case, the spectral function is thus extremely sharp, see the
picture below. In contrast, for a state of the system that has a finite lifetime, the
spectral function is broadened, see below.

71



k=fixed
A(k,E)

-

AKE)=5(E-¢) E
A(k,E) is broadened
due to finite lifetime.

Now, let us proceed towards the Fermi liquid.

18 A simple example as an introduction to the Fermi liquid

Let us look at a minisystem of one or two fermions that can occupy different mo-
mentum states in one dimension, and let us state that they interact depending on
which momentum state they are, in the following way:

H= kaclck + Uc{c%czcl — UcJ{cgc;»,cl + UCIC;EC;;Cl — UC;C;;C?,CQ. (18.1)
k

In the below picture, the energies corresponding to different choices of momenta
for the two particles are given for the non-interacting and interacting case. In the
non-interacting case, the energies for the two-particle case can be given as simple
sums of the single particle energies. Note that different choices of momenta for the
two particles, for instance 1 and 4 or 2 and 3, may give the same total energy: the
many-particle energy levels are degenerate. You may imagine that such a degeneracy
can be much bigger for a system with more particles and in a higher dimension
where several choices of direction of momentum can lead to the same energy. In
the interacting case, the degeneracy is broken. In our toy example, the interaction
energy is U for the momentum choice 1 and 4, and —U for the choice 2 and 3: this
splits the corresponding many-body energy level. Such lifting of degeneracy happens
in real-world large systems as well, whenever the interaction energy has a non-trivial
momentum dependence. And it usually does: the interaction energy in position space
typically has a certain non-trivial form, for instance it is a contact interaction, or the
Coulomb interaction with 1/r decay, or an interaction potential with a minimum
like the Van der Waals interaction. Consequently, the Fourier transform of the
interaction energy, that is, the momentum dependence of the interaction, will also
be non-trivial. This leads to the splitting of the degenerate non-interacting many-
body energy levels into a multitude of different new eigenstates of the interacting
many-body system.
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The exact eigenstates of an interacting many-body state can be always found,
in principle (in practise often not!), but there are in general exponentially many of
them. The idea behind quasiparticles in the Fermi liquid theory is to assume that the
large number of many-body eigenstates can be lumped around the non-interacting
energies a bit like in our example above. Then these lumps are effectively forming
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the quasiparticles, see the picture below, thus, the number of quasiparticles will
not be exponentially large. Sometimes the formation of a Fermi liquid is described
in the following way: one starts from the non-interacting case, and adiabatically
turns on the interactions. In this process the non-interacting states deform into the
quasiparticle states. Our example and the pictures above and below are helpful in
imagining what this may mean.
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The set of exact eigenstates around the non-interacting energy is assumed to
approximately form a band that gives the quasiparticle decay rate I' (finite lifetime
7). In other words, the effect of interactions will be expressed as the finite width of
the spectral function. Furthermore, the quasiparticle may have other properties that
deviate from the non-interacting particle, like the effective mass. And, importantly,
the quasiparticles are assumed to (weakly) interact with each other: these residual
interactions give the so-called Landau parameters which determine for instance
the thermodynamics of the system.

In Lecture 10, we will proceed to discuss the Fermi liquid theory more rig-
orously.

QUIZ

19 Scattering close to the Fermi level and the quasiparticle
lifetime

We are now convinced that entities like quasiparticles might exist. Let us say they
have an energy F(k); at the moment we do not know its value. Close to the Fermi
surface, one can linearize this dispersion in powers of k — kr (here we use the
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notation |k —kp| =k — kp)

kg

*

E(k) ~ E(kp) + (k—kp). (19.1)
This is how the effective mass m* of the quasiparticle is defined. One can also
immediately check that for the non-interacting system this becomes (note that
E(k) includes the chemical potential, that is, E(kr) = h?k%/2m — u = 0)
h%k
B(k) ~ —E(k — kp). (19.2)
m
As we already learned, the quasiparticles must have a finite life-time 7, due to the
interactions. The wavefunction of the quasiparticle with energy F(k) and lifetime

7 would evolve according to '
e_ZE(k)t/he_t/T. (193)

Such a time-dependence corresponds to a Lorentzian lineshape for the spectral
function A(k,w). In case the lifetime 7 was a constant, the system would become
overdamped when approaching the Fermi level, i.e. the damping time 7 would be
smaller than the period f/E(k) since E(k) approaches zero close to the Fermi level.
However, 7 in general is not a constant but depends on the interactions, that is, on
the scatterings between the particles. Well above the Fermi surface, the particles can
scatter freely. But close to the Fermi level, the phase space for scattering
is limited since the states below the Fermi level are already occupied.
Landau has shown that in three dimensions, the lifetime diverges as
7 ~ 1/E(k)?. Since the period of the wavefunction oscillation diverges only as
~ 1/E(k), the growth of the lifetime is always stronger, and the quasiparticles at the
Fermi level become very long-lived compared to the inverse of their energy. In other
words, the quasiparticles close to the Fermi level are indeed well-defined
quasiparticles. This non-availability of phase space for scattering in a
Fermi system is basically the reason why the simple Fermi liquid theory
with quasiparticles is often a reasonably good description of the complex
system. Actually, the lifetimes close to the Fermi surface are so long that the
damping is often neglected and quasiparticle spectral functions are approximated
by delta-functions. The free electron model that you may have learned previously
is hopefully more intuitive now!

This discussion has also a further implication: the concept of a quasiparticle
is not good when one is too far away from the Fermi level. Temperature has the
effect of broadening the Fermi level: the particles are located in energy in a region
around the Fermi surface that is characterized by k7. The phase space argument
of scattering, based on Pauli blocking, is partly removed from this area. Thus for
the quasiparticles to be well-defined (long-lived), one should have the temperature
smaller than the Fermi energy. For metals, the Fermi energy is about 10 000 K,
so one can be sure that that quasiparticles at room temperature (of the order
100 K) are well defined. The Fermi liquid theory sometimes works also when the
temperature difference is not so huge.

The spectral functions of the non-interacting (left) and the interacting (right)
system are shown in the figure below. While in the former the spectral functions
are delta-functions, in the latter the width of the spectral function is finite but
approaches zero when going closer to the Fermi energy.
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Also the momentum distributions n(k) are shown in the above figure. For a non-
interacting system, the momentum states are filled up to the Fermi level. Then
there is a sharp drop in the momentum distribution. The existence of such a drop
is equivalent to saying that there exists a Fermi surface. For an interacting system
in a Fermi liquid state, there are still well defined, long-lived quasiparticle excita-
tions close to the Fermi surface: therefore one sees a sharp drop in the momentum
distribution. However, the drop is smaller than in the non-interacting case: the
smoothening of the Fermi surface is due to the fact that not all of the liquid can be
described as quasiparticles, only the area close to the Fermi energy. The proportion
of the "sharp drop” compared to the size of the drop in the non-interacting case
(which is one, obviously) is called the quasiparticle weight and often denoted Z. It
tells how big proportion of the liquid can actually thought to be described as free
quasiparticles.

QUIZ
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