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We are familiar with thermal phase transitions: there the internal energy of the system (for 
instance caused by interactions, such as spin-spin interaction in the Ising model) competes 
with entropy, and at a certain temperature one wins over the other. A quantum phase 
transition is something conceptually clearly different. There the competition is between two 
types of energies in the system, thus, it can happen also at zero temperature. You may think 
that some parameter affects which energy is more dominant, and thus by tuning the 
parameter, one can see an quantum phase transition from one phase to another. 
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In this lecture, we will learn an important example of a quantum phase transition: the 
superfluid – Mott insulator transistion. It has been observed in ultracold atoms and is one of 
the landmark observations within the field. 

We will study this question in the context of the Bose-Hubbard model. The Hubbard model, 
especially the Fermi-Hubbard model, is extremely well known and important condensed 
matter theory concept. It combines a lattice potential, usually described at the nearest 
neighbour hopping level, with interactions, often at the on-site level. The physics of this 
simple model is extremely rich. The fermionic version is proposed to explain important 
phenomena, such as high-temperature superconductivity. However, despite apparent 
simplicity, there are no general exact solutions of the Hubbard model for large systems, 
even numerical ones. Therefore, it is quite interesting that ultracold gases can very 
accurately realize the Hubbard model experimentally. It may therefore be possible to use 
ultracold gases as a “quantum simulator” where the experiments “simulate” a model that is 
impossible to solve by usual computers.  

Let us look at the Hamiltonian. In the second quantized form, it is familiar to us. Now let us 
expand the field operators in the basis of single lattice site wave functions (the Wannier 
functions); this was done in Exercise 3, Task 4. This produces the Hamiltonian on the 
second line, when we assume that the overlap of the Wannier functions is non-negligible 
only between nearest neighbours (the so-called tight binding limit), which leads to the first 
term, nearest neighbour hopping. The magnitude of this kinetic energy term is given by the 
band width J. Interactions are on-site, resulting from the contact-interaction and the tight 
localization of the Wannier functions. In the grand canonical ensemble, we add the chemical 



potential. 
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A non-interacting particle in the lattice would like to have a momentum that corresponds to 
the bottom of the band. In real space, this corresponds to a wave-function that is located in 
all the lattice sites. This minimizes the kinetic energy, i.e. is favoured by the hopping term 
proportional to J. However, the interactions represented by the term proportional to U might 
favour some totally different type of wavefunction. There is actually a competition between 
the kinetic and the interaction energy within the Hubbard model, so we might expect 
quantum phase transitions! But to understand the nature of those, let us first consider a 
simple example of the double well, with one or two particles. Note that there cannot be real 
phase transitions in such small (finite) systems, but this example will give us intuition.
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One particle in a double well is governed by the hopping (tunneling) term between the 
wells. The solutions of the problem are the well known symmetric (lowest) and 
antisymmetric (second lowest) states of the well. 
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If we have two non-interacting bosons in the double well, they both go to the ground state 
(the symmetric one) of the double well. 
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If the two bosons in the double well interact, we have to solve the above Hamiltonian which 
also has an interaction terms. A suitable basis for representing the Hamiltonian are: one 
particle in both wells, two particles in the left well, two particles in the right well. No more 
states are needed since the two particles are indistinguishable and we are using the second 
quantization formalism where the states only have occupations and the boson statistics are 
taken care by the commutation relations for a. 
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The Hamiltonian is easy to diagonalize. Let us look at the lowest energy eigenvalue (the 
middle one). The corresponding eigenstate is a superposition of the basis states. However, 
whether it is mostly the state with one particle in each well, or a state that may contain also 
two particles in the same well, depends on relative values of U and J. For U>>J, the 
eigenstate (when normalized) becomes practically the one where the particles are only in 
separate wells. That is, for strong repulsive interactions, the particles do not like to overlap 
and they go to separate wells, even when the hopping term does not favour this. In contrast, 
if J>>U, the eigenstate is a more or less equal superposition of all the basis states, which is a 
result of having a case very close to the non-interacting one, i.e., both particles are in both 
wells simultaneously. By changing the U/J ratio, one can go from one extreme to another! 
This is the simple idea behind the Mott insulator (separate wells) – superfluid (all particles 
in all wells) transition. Of course, in the double well, the change from one case to another is 
continuous and one cannot talk about ”phases”. In a large system, however, the change will 
be abrupt and there are clearly separate phases of matter. The concept of Mott insulator was 
invented by Sir N. Mott to explain an unexpected insulating behaviour of certain metals. 
Indeed, strong interactions can cause particles (electrons) to be localized at sites, even in the 
presense of finite hopping.
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We will now go to the quantum phase transition in the large system. We look at it by using 
the simplest possible mean-field theory in this context: the Gutzwiller ansatz. The 
superfluid phase has a wavefunction which roughly resembles one with N particles that are 
all in a superposition of being at all sites. In the Mott phase, each site has a definite number 
of bosons, and all sites are uncorrelated, that is, the wave function is a product state of the 
wave functions of individual sites. The Gutzwiller ansatz includes both of these limits, and 
can describe some intermediate solutions as well. Remember, however, that it will give just 
a mean-field type, approximate solution, not the exact solution in general.
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Here are some hints how to apply the Gutzwiller ansatz: useful for the exercises! Taking the 
Gutzwiller ansatz as a variational ansatz, we wish to minimize the expectation value of the 
Hamiltonian (the energy) in this state. For this, matrix elements of the Hamiltonian with the 
state are needed. Here is an example of the result when the hopping operator applies to the 
state.



12

… then continue to calculate the matrix element. 
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This is a very important picture: it shows the phases produced by the Gutzwiller theory –
these have also been observed experimentally. There are lobes of Mott insulator phases with 
integer number of particles per site, embedded in the superfluid phase. The BEC (the SF) 
phase is characterized by the non-zero superfluid order parameter, <a>. That this quantity is 
non-zero at a site means that there are particle number fluctuations. In the BEC, the 
correlators between different sites are non-zero, since there is coherence over the whole 
system. 

In the Mott insulator phase, particle number fluctuations are nearly zero. There are no 
correlations between distant sites. 
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In ultracold gases, one has a direct access to the momentum distribution of the gas via the 
time-of-flight imaging. Note that such a straightforward way of learning about the system is 
not possible in conventional solid state systems! Basically, when the trap that is holding the 
gas together is switched off, the particles start to fly with the momentum they had in their 
initial state. The higher the momentum, the farther they reach during a time-of-flight; also 
the direction of the momentum is mapped on the position. This is the same that in optics, in 
the far field we see the Fourier image, i.e., the momentum distribution of the source. 
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In a lattice, the situation is somewhat complicated, as the interference patterns we saw 
earlier suggested. Let us consider here the eigenfunction of a momentum (q) state in a 
lattice. It has the plane wave part, and the Bloch function part which follows the lattice 
periodicity. The Bloch function can be Fourier decomposed. Effectively, then, the 
wavefunction becomes a superposition of many Fourier components: q, and multiples of 2 
Pi/d. When doing adiabatic release of the atoms (the trapping potential is switched off very 
slowly), the on-site parts of the Bloch function (in other words, the on-site Wannier 
functions) become gradually flat, so that they contain very few or practically no Fourier 
components n 2 Pi/d. In this case, the atom is left with the momentum q only, and this is 
what one sees in the experiment. In this way, one can observe the momenta in a certain 
band. Now, what happens if the lattice potential is switched off very fast, that is, non-
adiabatically? 
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With fast release of the lattice, the atom is in a superposition that contains also the Fourier 
components from the Bloch functions: multiple peaks are observed!
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In the famous BEC – Mott insulator experiment, this was utilized: fast release of the atoms 
should produce multiple peaks, if all the atoms are in the same state and phase coherent (a 
BEC). Indeed, this was observed. The equation above expresses the same in another 
language; in the schematic picture in the lower right corner, one can now understand that the 
particles at different sites can have different momenta due to the Fourier components and 
thus interfere at specific points. Now, what do you expect in the Mott insulator state?
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In the Mott insulator, no peaks are seen, because the atoms at different sites are not 
correlated/coherent: any interferences average out. In other words, the state of the system is 
very far from the example of a momentum eigenstate in a lattice. The wave functions at 
individual sites can still be Fourier decomposed of course, but they do not have any fixed 
phase relation between separate sites. Note that one of the early experiments on Bose-
Einstein condensates – actually the one that deserved W. Ketterle the Nobel price – was to 
interfere two Bose condensates to show that they have a well-defined macroscopic phase (a 
property of BEC).
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The quantum gas microscope is a major breakthrough in the field of ultracold gases. The 
microscope resolves single atoms in a lattice. It takes a snapshot of one single realization of 
the quantum state of the gas. The gas can be initialized in exactly the same way several 
times, and each measurement gives a picture of the particle number in one preparation of 
the gas. Averaging these results, one obtains the expectation values of quantities in the 
system. But not only that: from the different realizations one can also extract all kinds of 
fluctuations and correlations in the state! These are often the crucial characteristics of the 
many-body states. For instance, the difference in the particle number fluctuations in the 
BEC and Mott insulator states has been now observed directly with single-site resolution! 
Which one do you think you see in the picture: a BEC or a Mott insulator?
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