
Lecture 10 Fermi liquid continued, and the BCS theory of
superconductivity

Literature for Fermi liquid: T. Giamarchi, Quantum Physics in One Dimension,
Oxford Science Publications, Chapter 1.1., G.D. Mahan, Many-Particle Physics,
Kluwer, Chapter 11.2.1, E.M. Lifshitz and L.P. Pitaevskii, Landau and Lifshitz
Course of Theoretical Physics, Statistical Physics Part 2, Chapters 1 and 2
Literature for the BCS theory: A.L. Fetter and J.D. Walecka, Quantum theory of
many-particle systems, Dover, Chapters 36-37; P.G. De Gennes, Superconductivity
of metals and alloys, Westview Press, Chapters 4-5

Learning goals

• To learn the concept of a quasi-particle, to understand why there can be
well-defined quasiparticles close to the Fermi level.

• To learn what is a Fermi liquid.
• To know what is Cooper instability.
• To understand how the mean-field approximation is done in the BCS theory
of superconductivity.

• To be able to diagonalize the BCS Hamiltonian using the Bogoliubov trans-
formation: to understand the character of the obtained quasiparticles and
the energy gap.

19 Scattering close to the Fermi level and the quasiparticle
lifetime

We are now convinced that entities like quasiparticles might exist. Let us say they
have an energy E(k); at the moment we do not know its value. Close to the Fermi
surface, one can linearize this dispersion in powers of k � kF (here we use the
notation |k� kF | ⌘ k � kF )

E(k) ' E(kF ) +
~2kF
m⇤ (k � kF ). (19.1)

This is how the e↵ective mass m⇤ of the quasiparticle is defined. One can also
immediately check that for the non-interacting system this becomes (note that
E(k) includes the chemical potential, that is, E(kF ) = ~2k2F /2m� µ = 0)

E(k) ' ~2kF
m

(k � kF ). (19.2)

As we already learned, the quasiparticles must have a finite life-time ⌧ , due to the
interactions. The wavefunction of the quasiparticle with energy E(k) and lifetime
⌧ would evolve according to

e�iE(k)t/~e�t/⌧ . (19.3)

Such a time-dependence corresponds to a Lorentzian lineshape for the spectral
function A(k,!). In case the lifetime ⌧ was a constant, the system would become
overdamped when approaching the Fermi level, i.e. the damping time ⌧ would be
smaller than the period ~/E(k) since E(k) approaches zero close to the Fermi level.
However, ⌧ in general is not a constant but depends on the interactions, that is, on
the scatterings between the particles. Well above the Fermi surface, the particles can
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is equivalent to saying that there exists a Fermi surface. For an interacting system
in a Fermi liquid state, there are still well defined, long-lived quasiparticle excita-
tions close to the Fermi surface: therefore one sees a sharp drop in the momentum
distribution. However, the drop is smaller than in the non-interacting case: the
smoothening of the Fermi surface is due to the fact that not all of the liquid can be
described as quasiparticles, only the area close to the Fermi energy. The proportion
of the ”sharp drop” compared to the size of the drop in the non-interacting case
(which is one, obviously) is called the quasiparticle weight and often denoted Z. It
tells how big proportion of the liquid can actually thought to be described as free
quasiparticles.

QUIZ

20 Interactions between the quasiparticles

Now we go to the truly non-trivial part of the Fermi liquid theory, namely the
residual interactions between the quasiparticles. First, let us assume that in the
ground state the quasiparticles follow, approximately and at least close to the Fermi
level, the standard Fermi distribution given by

n0

k = nF (Ek � µ) =
1

e�(Ek�µ) + 1
. (20.1)

The corresponding ground state energy would be

Eg = E0 +
X

k�

Ekn
0

k. (20.2)

Here E0 is the energy when all quasiparticles would be at k = 0, and � is the
spin index. Again, this is only approximately valid, since quasiparticles are not real
particles. However, this does not matter much since what we are interested here is
how the distribution is changed when there are excitations in the system. In that
case, we have some other distribution nk. Now, what we will actually consider is
just the di↵erence between nk and n0

k, namely �nk = nk � n0

k. One can show that
the free energy becomes (Exercise Set 10)

F = E � µN = Eg � µN0 +
X

k�

(Ek � µ)�nk ⌘ F0 +
X

k�

(Ek � µ)�nk. (20.3)

Here N is the total number of particles and N0 the number of particles in the ground
state. In this form, no interactions between the quasiparticles were included. It is
assumed that the interactions are described by some functional F (�nk), and it is
su�cient to expand the functional for small �nk and include terms of the second
order in it. The free energy becomes (here V is the volume)

F = F0 +
X

k�

(Ek � µ)�nk +
1

2V

X

kk0��0

fk�k0�0�nk��nk0�0 . (20.4)
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scatter freely. But close to the Fermi level, the phase space for scattering
is limited since the states below the Fermi level are already occupied.
Landau has shown that in three dimensions, the lifetime diverges as
⌧ ⇠ 1/E(k)2. Since the period of the wavefunction oscillation diverges only as
⇠ 1/E(k), the growth of the lifetime is always stronger, and the quasiparticles at the
Fermi level become very long-lived compared to the inverse of their energy. In other
words, the quasiparticles close to the Fermi level are indeed well-defined
quasiparticles. This non-availability of phase space for scattering in a
Fermi system is basically the reason why the simple Fermi liquid theory
with quasiparticles is often a reasonably good description of the complex
system. Actually, the lifetimes close to the Fermi surface are so long that the
damping is often neglected and quasiparticle spectral functions are approximated
by delta-functions. The free electron model that you may have learned previously
is hopefully more intuitive now!

This discussion has also a further implication: the concept of a quasiparticle
is not good when one is too far away from the Fermi level. Temperature has the
e↵ect of broadening the Fermi level: the particles are located in energy in a region
around the Fermi surface that is characterized by kBT . The phase space argument
of scattering, based on Pauli blocking, is partly removed from this area. Thus for
the quasiparticles to be well-defined (long-lived), one should have the temperature
smaller than the Fermi energy. For metals, the Fermi energy is about 10 000 K,
so one can be sure that that quasiparticles at room temperature (of the order
100 K) are well defined. The Fermi liquid theory sometimes works also when the
temperature di↵erence is not so huge.

The spectral functions of the non-interacting (left) and the interacting (right)
system are shown in the figure below. While in the former the spectral functions
are delta-functions, in the latter the width of the spectral function is finite but
approaches zero when going closer to the Fermi energy.
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Also the momentum distributions n(k) are shown in the above figure. For a non-
interacting system, the momentum states are filled up to the Fermi level. Then
there is a sharp drop in the momentum distribution. The existence of such a drop
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Here the interaction coe�cient fk�k0�0 is the second order expansion coe�cient
of F (�nk). The interaction coe�cient can be divided into spin symmetric (s) and
antisymmetric (a) contributions, and those can be expanded in terms of Legendre
polynomials as

fs,a
kk0 =

1

NF

1X

l=0

F s,a
l Pl(cos✓), (20.5)

where NF = m⇤kF /⇡2~3 is the density of states at the Fermi level (for the non-
interacting case, NF0 is the same, just with the mass m).

The coe�cients F s,a
l are important: they are so-called Landau parameters.

They can be estimated, or measured, for specific physical systems. From the free
energy one can calculate various quantities, and it turns out that they are in sim-
ple ways given by the Landau parameters. The low lying excitations that can be
obtained from the Fermi liquid theory are 1) particle-hole excitations which
are excitations of single quasiparticles: a quasiparticle is created above the Fermi
level and a hole is left below it, 2) density oscillations which are the plasmons for
a charged electron gas and sound waves for a neutral Fermi liquid, 3) damped
spin waves, called paramagnons. Here 1) are single quasiparticle excitations, and
2) and 3) can be viewed as collective excitations of interacting quasiparticles. The
Landau parameters determine the quantities of interest: for instance, the specific
heat, compressibility, sound velocity and the spin susceptibility are given in the
following way.
Specific heat
Non-interacting (free particles)

CV 0 =
⇡2

3
k2BTNF0 (20.6)

Fermi liquid theory
CV

CV 0

=
m⇤

m
= 1 +

1

3
F s
1

(20.7)

Compressibility
Non-interacting (free particles)

1

Kf
=

n2

0

NF0

(20.8)

Fermi liquid theory
K

Kf
=

1 + F s
0

1 + F s
1
/3

(20.9)

Sound velocity
Non-interacting (free particles)

c2
0
=

n0

mNF0

=
v2F
3

(20.10)

Fermi liquid theory ✓
c

c0

◆2

=
K

Kf
(20.11)
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Spin susceptibility
Non-interacting (free particles)

�0 = µ2

0
NF0 (20.12)

Fermi liquid theory
�

�0

=
1 + F a

1
/3

1 + F a
0

(20.13)

21 Concluding remarks

After all the vagueness of the derivation in this lecture, it is perhaps di�cult to
imagine that the Fermi liquid theory is able to describe anything. But it actu-
ally is: it gives a good description for instance of the He quantum liquid, as well
as predicts many basic features of metals. However, there are important states of
fermionic matter that cannot be described by the Fermi liquid theory. For instance
superconductivity/superfluidity that will be discussed in the following cannot be
explained using the Fermi liquid theory. The concept of a quasiparticle will be used
also there, but its meaning is di↵erent from the Fermi liquid context. Furthermore,
in one-dimensional systems the Fermi liquid theory always fails. There, a somewhat
analogous description is given by the Luttinger liquid theory. Fermi liquid theory
can be considered as the ”default”, basic description that one should try to apply
for an interacting fermion system to start with. Often it applies pretty well; if not,
one probably has a highly interesting and non-trivial many-body system at hand.

QUIZ

The BCS theory of superconductivity

22 Fermi sea and the possibility of condensation for
fermions

Now we will learn the basic description of superconductivity/superfluidity of Fermionic
interacting particles. Due to the Pauli exclusion principle, identical fermions occupy
the energy levels of the system until the Fermi level. In Lecture 9 we discussed the
concepts of Fermi level µ, Fermi energy EF , Fermi wave vector kF (EF and kF are
given by the non-interacting, T = 0 case), and Fermi sphere. Note also the relation
between the density n = N/V and Fermi wave vector kF for spin 1/2 particles,
where N is the number of particles and V is the volume:

n =
N

V
= 2

4⇡k3F
3

1

(2⇡)3
=

k3F
3⇡2

. (22.1)

Fermi sea refers to the particles (for instance electrons) that are below the
Fermi level. The concept is used often when we wish to remind that the presense of
many other particles in di↵erent energy states a↵ects the behaviour of what happens
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to one particle, or to two particles in a scattering process. The existence of the Fermi
sea turned out to be essential in explaining the phenomenon of superconductivity,
as we will learn in this lecture.

Condensation is by definition a phenomenon where one single quantum state
(e.g. the ground state) becomes occupied by a macroscopic number of particles: it
cannot happen for noninteracting fermions due to the Pauli exclusion principle.

However, if there is a system with two di↵erent types of (non-identical, dis-
tinguishable) Fermions, they can via interactions form e↵ective bosons which may
then form a Bose-Einstein condensate (BEC). This is essentially what happens, e.g.,
in superconductivity in metals and in superfluidity in ultracold Fermi gases.

In metals, the electrons have repulsive interactions due to the Coulomb force.
However, the electrons interact also with the lattice and this can cause e↵ective at-
tractive interactions between the electrons. Consequently, a spin up and a spin down
electron can form a so-called Cooper pair which is e↵ectively a boson. Supercon-
ductivity is the condensation of these Cooper pairs. In ultracold Fermi gases, the
interactions between atoms can be attractive as such, and Cooper pairs of atoms in
di↵erent hyperfine states may form and condense.

23 Cooper instability

L.N. Cooper presented the following calculation:
Consider
- the scattering of two particles
- which have an attractive interaction
- in the presence of a Fermi sea (restricting the possible momenta where the particles
can scatter).

Based on this, he showed that even for arbitrarily small interactions,
pairs (later named as Cooper pairs) will be formed in the system. This is referred
to as instability of the Fermi sea: pair formation happens for any non-zero,
attractive interaction. Thus it is enough to consider only two-particle scattering
(i.e. not many-body physics), added with the constraint of the Fermi sea (which is
a many-body e↵ect), to predict that there will be pairing. It is interesting to note
that also here the simple existence of the Fermi sea and its ability to restrict the
phase space for scattering is crucial; remember above where the restriction of the
phase space for scattering was essential to the existence of well-defined (long-lived)
quasiparticles in the Fermi liquid.

Condensation and superfluidity are essentially many-body e↵ects, and to
predict and describe them one needs a many-body description. We will learn be-
low the BCS (Bardeen-Cooper-Schrie↵er) mean-field description of superconductiv-
ity/superfluidity.

24 The BCS theory

Let us consider a system of two types of Fermions. We label them spin up and spin
down as in metals, however, in ultracold gases this labeling could mean just atoms
in two di↵erent hyperfine states. The Hamiltonian, using field operators, is

H =

Z
dr
X

�=",#
 †
� (r)

✓
�~2r2

2m�
� µ�

◆
 � (r)+
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+
1

2

X

↵,�=",#,↵ 6=�

Z
dr

Z
dr0V"# (r, r

0) †
↵ (r) †

� (r
0) � (r

0) ↵ (r) . (24.1)

We set here
µ" = µ#, m" = m#. (24.2)

To simplify the description, let us assume that the interaction is a contact interaction
(in ultracold gases, this is often also a good approximation):

V"# (r, r
0) = V0� (r� r0) . (24.3)

The Hamiltonian becomes

H =

Z
dr
X

�=",#
 †
� (r)

✓
�~2r2

2m
� µ

◆
 � (r)+

+V0

Z
dr †

" (r) 
†
# (r) # (r) " (r) . (24.4)

24.1 The mean-field approximation

It is usually extremely di�cult or practically impossible to solve exactly a quantum
many-body system with a large number of particles. One of the most used approx-
imations to make the problems tractable is the mean-field approximation. This
means basically that we replace some of the operators in the Hamiltonian by their
mean values (which are just complex numbers, not operators), assuming that the
deviations from the mean values are small.

Let us consider the example of operators A and B and their product AB.
Let us write the operators A and B as their mean values and the deviation from
the mean value (no approximation made at this point, just rewriting), and then
calculate AB:

A = hAi+ �A (24.5)

B = hBi+ �B (24.6)

)

AB = hAi hBi+ hAi �B + hBi �A+ �A�B. (24.7)

Assuming that the fluctuations around the mean values are small, one can neglect
the last term which is quadratic in the fluctuations, i.e.

�A�B ⇡ 0 (24.8)

Then insert �A = A� hAi, �B = B � hBi in (24.7)

)

AB = hAiB + hBiA� hAi hBi . (24.9)
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One can generalize this kind of consideration for products of more than two opera-
tors (Wick’s theorem).

Now we do the BCS mean-field approximation to the interaction term of the
Hamiltonian, leading to Hartree-fields and pairing-fields (Fock-fields are zero in the
BCS theory). Let us denote  � (r) ⌘  �. Terms of the form hi hi are neglected here
(they are just numbers, not operators, and thus will cause only a constant shift in
the energy; note, however, that they can be important sometimes, for instance if
one is interested in the absolute energy of the state e.g. compared to some other
state).

Note that here we organize the operators in pairs and then take the expecta-
tion values, unlike in the example above where we had expectation values of single
operators A and B. This is done because in a Fermi system which is expected to
show pairing correlations, this is a good choice: expectation values of single fermion
operators are zero in this case. In general, when doing a mean-field approximation,
some pre-knowledge or an educated guess/argument about the relevant non-zero
expectation values and correlations are needed. When organizing the fermion op-
erators in pairs, one has to sometimes move them with respect to each other. This
may give minus signs due to the Fermi statistics, and one has to keep track on them.
To understand these things more deeply, you may search more information on the
topic ”Wick’s theorem”.

 †
" 

†
# # " = h # "i †

" 
†
# +

D
 †
" 

†
#

E
 # " +

D
 †
" "

E
 †
# # +

D
 †
# #

E
 †
" "

�
⇣D
 †
" #

E
 †
# " +

D
 †
# "

E
 †
" #

⌘
(24.10)

Pairing fields h # "i †
" 

†
#,
D
 †
" 

†
#

E
 # "

Hartree fields
D
 †
" "

E
 †
# #,

D
 †
# #

E
 †
" "

The Fock fields
D
 †
" #

E
=
D
 †
# "

E
= 0 here, so the corresponding terms in (24.10)

are zero.
Note that h # "i 6= 0, c.f. hai 6= 0 for BEC.

The order parameter of the BCS theory turns out to be given by the
pairing fields in the following way:

� (r) = V0 h # (r) " (r)i . (24.11)

This quantity will also be the energy gap in the excitation spectrum of the BCS
theory, as we will see later. One can also assume that it does not depend on the
spatial coordinate, this is a good assumption for a homogeneous system within the
usual BCS theory:

� (r) = � = �⇤. (24.12)

We also insert the Hartree fields within redefined chemical potentials. De-
noting

⌦
 †
� �

↵
= n�, we get

�µ †
" " + V0n# 

†
" " = �µ̃ †

" " (24.13)

µ̃ = µ� V0n#. (24.14)
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The Hamiltonian becomes now (terms of the form hi hi are neglected here)

H =

Z
dr
X

�=",#
 †
� (r)

✓
�~2r2

2m
� µ̃

◆
 � (r)+

+

Z
dr
⇣
� †

" (r) 
†
# (r) +� # (r) " (r)

⌘
. (24.15)

Now, let us expand the field operators using the annihilation operators for
momentum states

 � (r) =
1p
V

X

k

eikrck�. (24.16)

The Hamiltonian is then (calculated in Exercise Set 10):

H =
X

k

⇠kc
†
k"ck" + ⇠kc

†
k#ck# +�c†k"c

†
�k# +�c�k#ck", (24.17)

where

⇠k =
~2k2

2m
� µ̃. (24.18)

QUIZ
QUIZ
QUIZ

24.2 Diagonalizing the Hamiltonian: the Bogoliubov transformation

When describing a quantum system, the first thing to do is find the eigenvalues and
eigenfunctions of the Hamiltonian. Since we have done the mean-field approxima-
tion, the Hamiltonian has transformed into the above simple quadratic form which
in fact can be written in matrix form and diagonalized, leading to results that give a
lot of insight into the system. The Hamiltonian in the matrix form is (the coe�cient
A is calculated in Exercise Set 10):

H = A+
X

k

⇣
c†k" c�k#

⌘✓ ⇠k �
� �⇠k

◆✓
ck"
c†�k#

◆
. (24.19)

The Hamiltonian is hermitian, so there exists a unitary transformation that diago-
nalizes it:
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H = A+
X

k

⇣
c†k" c�k#

⌘
UU†

✓
⇠k �
� �⇠k

◆
UU†

✓
ck"
c†�k#

◆
= (24.20)

= A+
X

k

⇣
�†k" ��k#

⌘✓ E"k 0
0 �E#k

◆✓
�k"
�†�k#

◆
. (24.21)

The minus sign in the second eigenvalue is chosen for convenience. The eigenvalues
and the eigenvectors (elements of the unitary transformation) can be calculated
from the eigenvalue equation

✓
⇠k �
� �⇠k

◆✓
ujk

vjk

◆
= �jk

✓
ujk

vjk

◆
(24.22)

)

✓
⇠k � �jk �

� �⇠k � �jk

◆✓
ujk

vjk

◆
= 0 (24.23)

det

✓
⇠k � �jk �

� �⇠k � �jk

◆
= 0 (24.24)

)

E"k = �"k =
q
⇠2k +�2 (24.25)

E#k = ��#k =
q
⇠2k +�2. (24.26)

Eigenvectors:

⇠ku
2

jk +�ujkvjk = �jku
2

jk (24.27)

�⇠kv2jk +�ujkvjk = �jkv
2

jk (24.28)

and u2

jk + v2jk = 1 from unitarity
)

uk = u"k = v#k =

vuut1

2

 
1 +

⇠kp
⇠2k +�2

!
(24.29)

vk = v"k = �u#k =

vuut1

2

 
1� ⇠kp

⇠2k +�2

!
(24.30)

)
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ukvk =
1

2

�p
⇠2k +�2

. (24.31)

The unitary transformation above is called the Bogoliubov transformation.
It defines the relations between the original annihilation operators and the operators
corresponding to the diagonalized Hamiltonian:

U

✓
�k"
�†�k#

◆
=

✓
ck"
c†�k#

◆
. (24.32)

⇣
c†k" c�k#

⌘
=
⇣
�†k" ��k#

⌘
U† (24.33)

Thus

ck" = uk�k" � vk�
†
�k# (24.34)

c†�k# = vk�k" + uk�
†
�k# (24.35)

and

�k" = ukck" + vkc
†
�k# (24.36)

�†�k# = vkck" � ukc
†
�k#. (24.37)

The �’s are called quasiparticle annihilation (creation) operators. They fulfill the
same fermionic anticommutation relations than the original operators, thus they are
well-defined fermionic quasiparticles. A quasiparticle is, in general, an excitation of
an interacting system, characterized e.g. by its energy, e↵ective mass, life time, etc.
Compare to Lecture 9 where the concept of a quasiparticle was introduced:

Non-interacting: Interacting:

v ,m v , m,

+

+

+

+

-

-

In the BCS theory, the quasiparticles are linear combinations of annihilation and
creation operators of opposite spins, so it is not easy to make an intuitive picture
about them. They are superpositions of a particle, and a hole of opposite spin and
momentum. In the Fermi liquid, the quasiparticles could be understood, roughly, as
the original particles ”dressed” by the presence of and interactions with the other
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particles. Here the quasiparticles are somewhat di↵erent, they are superpositions of
particles and holes and thus describe the pairing correlations present in the BCS
state.

The nature of the quasiparticles is described in the below picture. In the
BCS state, one either has, with some probability, both k and �k states occupied,
or both empty. An excitation means that one of these states can be occupied while
the other one is empty. As the picture shows, there are two routes for forming such
an excitation: to destroy one particle, or to create another. The quasiparticle is a
superposition of these possibilities.

𝛾𝑘↑
+ = 𝑢𝑘 𝑐𝑘↑

+ + 𝑣𝑘 𝑐−𝑘↓ 𝛾−𝑘↓
+ = 𝑣𝑘 𝑐𝑘↑ − 𝑢𝑘 𝑐−𝑘↓

+

BCS

Excitation

Obtained by

𝑘 ↑ −𝑘 ↓ 𝑘 ↑ −𝑘 ↓

𝑘 ↑ −𝑘 ↓ 𝑘 ↑ −𝑘 ↓
OR

𝑘 ↑ −𝑘 ↓

𝑘 ↑ −𝑘 ↓

𝑘 ↑ −𝑘 ↓
OR

𝑘 ↑ −𝑘 ↓
𝑐𝑘↑
+

𝑐−𝑘↓

𝑐−𝑘↓
+

𝑐𝑘↑

OR

OR

At zero temperature, there are no quasiparticles in the BCS description.
This is easy to see: the Hamiltonian is diagonal when expressed with the quasipar-
ticle operators. This means that the quasiparticles are non-interacting (remember
that in the Fermi liquid theory, the residual interactions between the quasiparticles
were essential), and we can directly apply the statistical physics of non-interacting
fermionic particles. For instance, the occupation number of the quasiparticles is
simply given by the Fermi distribution:

D
�†k��k�

E
=

1

e
E�

kT + 1
⌘ f (E�, T ) . � =", # (24.38)

Note also that D
�†k"�k#

E
=
D
�†k"�

†
k#

E
= 0. (24.39)

The eigenvalues are always positive, thus in the limit T = 0 the occupation
numbers go to zero. Therefore, in the ground state there are no quasiparticles. By
giving energy to the system, one may create excitations, that is, quasiparticles.
Breaking a Cooper pair is equivalent to creating two quasiparticles. To create two
quasiparticles, the energy of 2Ek is needed:

E"k + E#k =
q
⇠2k +�2 +

q
⇠2k +�2. (24.40)

The minimum of ⇠2k =
⇣

~2k2

2m � µ̃
⌘2

is zero, thus

[E"k + E#k]min
= 2�. (24.41)

This means that the order parameter defines the energy gap for creating ex-
citations. The existence of an energy gap is behind many important properties: one
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cannot make single particle excitations to the system if one tries to give or take an
amount of energy that is less than the value of the energy gap. In other words, dissi-
pation is restricted. This is basically why supercurrents can flow without resistance.
However, to really prove the existence of supercurrents and superflows one has to
describe the dynamics of the system in a way that goes beyond this lecture. To de-
scribe collective modes of the superfluid, one has to introduce interactions between
the quasiparticles (this can be conveniently done, e.g. with the so-called generalized
random phase approximation (GRPA)), just like in the case of the Fermi liquid.
However, in case of the BCS theory, one can predict many important phenomena,
such as the existence of an energy gap, even without considering quasiparticle in-
teractions.
QUIZ
QUIZ
QUIZ

24.3 The gap equation

Now, let us see how does one actually calculate the value of the order parame-
ter. Using the Bogoliubov transformation, the order parameter becomes (shown in
Exercise Set 10):
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This is the so-called gap equation. Because we assumed a contact interaction,
this equation is actually divergent. This unphysical divergence can be avoided by
renormalization, for instance, by simply removing the diverging part
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where ✏k = ~2k2

2m , and the two-body T-matrix T 2B = 4⇡as~2

m describes the scattering
for two particles.

Usually the gap equation is written in the continuum
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From this form, the order parameter� can be solved numerically, at a given temper-
ature T and for a given interaction strength and a chemical potential. If the order
parameter � has a finite value, one generally has a superconducting/superfluid
ground state (i.e. a condensate of Cooper pairs). If it is zero, the ground state is
simply a normal state. Thus one can obtain the critical temperature where the
condensation happens by setting � = 0 in the gap equation and then solving the
temperature T from the equation. This can be done analytically (with some ap-
proximations) and leads to

Tc =
8EF

kB⇡
e��2 exp

✓
� ⇡

2kF |as|

◆
, (24.47)

where � is Euler’s constant.
One can see from the above that the critical temperature cannot be developed

into a Taylor series with respect to the scattering length (interaction strength) aS .
This means that one cannot predict superconductivity from the ideal gas (aS = 0)
by perturbation theory!
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