
Lecture 12 Basics of quantum geometry and topology

Literature: R. Resta, The insulating state of matter: a geometrical theory, The Eu-
ropean Physical Journal B 79, 121 (2011); B.A. Bernevig and T.L. Hughes, Topolog-
ical Insulators and Topological Superconductors, Princeton University Press (2013)
(available as an electronic book at Aalto library https://aalto.finna.fi/Record/alli.775616).

Learning goals

• To know what are Berry connection, Berry phase, Berry curvature, Chern
number and quantum metric, and how they are connected with each other.

• To have some idea about the importance of these concepts in physics.

A key question in quantum physics is how to classify, in a conceptually el-
egant and e�cient way, the various states of matter that have been observed in
nature, and which nowadays can be created by artificial quantum systems and sim-
ulators. The band structure theory for electrons in solids has been quite powerful
in this: we know that electrons in periodic potentials (i.e., lattices, formed for ex-
ample by the crystal of nuclei) may have a band structure. If the Fermi level of
the system is within the band gap, we have an insulator. If the band-gap is small,
the system is semiconducting. If the Fermi level is in the conduction band, we have
a metal. However, there are also concepts like the Mott insulator that you have
learned in this course: there the insulating behaviour is not explained by the simple
band theory, but requires taking into account the strong interactions (correlations)
in the system. Another example of an insulator not explained by band theory is
the Anderson insulator, where disorder felt by the electrons is the underlying cause
of non-conductance of current. In recent years, the concept of a topological insula-

tor has become extremely important. There the insulating behaviour results from
quantum geometric and topological properties of the system. An interesting feature
of topological insulators is that, even when the bulk material is insulating, there can
be transport (current) on the surface of the material. This current is robust against
perturbations (such as scattering from a material defect) due to the topological
properties. In practice, for instance, backscattering of electrons from a defect can
be forbidden due to topological properties.

In recent times, it has become more and more clear that a key underlying
concept for classifying di↵erent states of matter are the localization properties of
wavefunctions that describe the system. The eigenfunctions of a periodic system are
the Bloch functions (as discussed for instance in Lecture 9), parametrized by the
lattice wavevector (also called crystal quasimomentum) k which is a good quantum
number in a perfectly periodic system:

 k(r) = eik·ruk(r), (26.18)

where uk(r) is periodic with the lattice period. One can transform the Bloch func-
tions to define so-called Wannier functions

wR(r) =
1p
N

X

k2BZ

e�ik·R k(r), (26.19)

where N is the number of lattice sites, the k summation is over the first Brillouin
zone (BZ), and R a vector of the Bravais lattice (that is, the position of one lattice
site; since in an infinite lattice they are all equal, it does not matter which one
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we choose). The Wannier function characterizes how the particle (e.g., electron)
is spread around the position R (a useful discussion on Wannier functions can be
found for instance in Marzari et al., Rev. Mod. Phys. 84, 1419 (2012)). Whether
the Wannier functions are delocalized, or localized over some finite range of lattice
sites, whether they overlap, etc. has turned out to be a crucial feature determining
the state of the system. It is easy to understand that totally localized and discon-
nected Wannier functions lead to an insulating state while completely delocalized
functions help carry current. Localized but overlapping functions are an interesting
intermediate case. The story of course becomes more complicated when the particles
interact with each other.

The properties of Wannier functions naturally depend on the Bloch function.
The key properties turn out to be those related to the quantum geometry and
topology of the system. The basic concepts of quantum geometry and topology, such
as Berry phase, Berry connection, Berry curvature, Chern number and quantum
metric have become important basic building blocks of modern quantum physics.
In this lecture, you will learn these basic concepts. But we will not have time to
discuss in detail how properties of quantum states and phases can be explained
using them. You can read about the topic independently. Or, perhaps, you will
learn about it in your own future research!

26.7 Geometry in quantum mechanics: phase and distance

Let us consider quantum states that are eigenstates of the Schrödinger equation

H(k)| (k)i = Ek| (k)i. (26.20)

Here k is a parameter (real number); for instance in a lattice system it could be
the lattice wavevector, but the discussion here is completely general and it can
be something else. The set of wavevectors | (k)i that fulfil the equation (26.20)
form a sub-manifold of the Hilbert space. In the lattice case they would be the
Bloch functions of the di↵erent energy bands of the lattices. Interesting quantum
geometrical or topological e↵ects usually require a multi-band (multi-component)
system, where the bands (components) can come for instance from lattice geometry,
e↵ective finite lattice unit cell size (caused, e.g., by an e↵ective or real magnetic
field), or existence of two spin components and spin-orbit coupling.

In classical physics, the definition of distance between two points is quite
straightforward: draw the shortest possible line between them and measure it. Of
course, this is more tricky if the geometry is non-trivial: for instance, on the surface
of a sphere the distance between two points is defined di↵erently, as function of the
coordinates, than on a flat surface. Curved space-time geometries appear also in the
context of general relativity. The quantity that takes into account the geometry of
the system in defining the distance is called metric.

Now, we may ask whether it is possible to define the distance between quan-
tum states on a given manifold (for instance the sub-manifold defined by Equation
(26.20)). We use the Bures distance (there are other definitions too, for instance
the standard definition of distance in a Hilbert space has a factor of two di↵erence
to the Bures distance):

D12 =
p

1� |h (k1)| (k2)i|2. (26.21)

As one can easily see, the distance is zero for equal states, and one for orthogonal
ones. Since the definition contains square of the inner product, we obviously loose
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any information related to phase of the inner product. Indeed one can define also
the concept of phase di↵erence:

e�i�'12 =
h (k1)| (k2)i
|h (k1)| (k2i|

(26.22)

�'12 = �Im logh (k1)| (k2)i. (26.23)

You have probably learned in earlier quantum mechanics courses that one can al-
ways add an arbitrary phase factor to a quantum state and it does not change
any observable quantity. In another language, multiplying a quantum state by an
arbitrary phase factor is a so-called gauge transformation, and the overall phase of
the wavefunction is a gauge-dependent quantity. Gauge-dependent quantities are
not physical properties of the system, in the sense that they cannot be observed.
The phase di↵erence defined above is gauge-dependent, and therefore does not as
such have a physical meaning. This relation holds also the other way round: if one
can show that some quantity is gauge independent, it is physically meaningful and
can (at least in principle) be measured. The Bures distance is an example of such
gauge-independent, measurable quantity.

<latexit sha1_base64="fLS4dG6GKfWRJ+YDn/uvcRSVOUA=">AAAB/3icbVBNS8NAEN3Ur1q/oh48eFksQr2URAQVPBS8eKxgbKEJYbOdtEs3m7C7EUrsxb/ixYOKV/+GN/+N24+Dtj4YeLw3w8y8KONMacf5tkpLyyura+X1ysbm1vaOvbt3r9JcUvBoylPZjogCzgR4mmkO7UwCSSIOrWhwPfZbDyAVS8WdHmYQJKQnWMwo0UYK7YNHv6lYrfCjGA9Cd3TiSyJ6HEK76tSdCfAicWekimZohvaX301pnoDQlBOlOq6T6aAgUjPKYVTxcwUZoQPSg46hgiSggmLywAgfG6WL41SaEhpP1N8TBUmUGiaR6UyI7qt5byz+53VyHV8EBRNZrkHQ6aI451ineJwG7jIJVPOhIYRKZm7FtE8kodpkVjEhuPMvLxLvtH5Zd2/Pqo2rWRpldIiOUA256Bw10A1qIg9RNELP6BW9WU/Wi/VufUxbS9ZsZh/9gfX5A0p4lcA=</latexit><latexit sha1_base64="fLS4dG6GKfWRJ+YDn/uvcRSVOUA=">AAAB/3icbVBNS8NAEN3Ur1q/oh48eFksQr2URAQVPBS8eKxgbKEJYbOdtEs3m7C7EUrsxb/ixYOKV/+GN/+N24+Dtj4YeLw3w8y8KONMacf5tkpLyyura+X1ysbm1vaOvbt3r9JcUvBoylPZjogCzgR4mmkO7UwCSSIOrWhwPfZbDyAVS8WdHmYQJKQnWMwo0UYK7YNHv6lYrfCjGA9Cd3TiSyJ6HEK76tSdCfAicWekimZohvaX301pnoDQlBOlOq6T6aAgUjPKYVTxcwUZoQPSg46hgiSggmLywAgfG6WL41SaEhpP1N8TBUmUGiaR6UyI7qt5byz+53VyHV8EBRNZrkHQ6aI451ineJwG7jIJVPOhIYRKZm7FtE8kodpkVjEhuPMvLxLvtH5Zd2/Pqo2rWRpldIiOUA256Bw10A1qIg9RNELP6BW9WU/Wi/VufUxbS9ZsZh/9gfX5A0p4lcA=</latexit><latexit sha1_base64="fLS4dG6GKfWRJ+YDn/uvcRSVOUA=">AAAB/3icbVBNS8NAEN3Ur1q/oh48eFksQr2URAQVPBS8eKxgbKEJYbOdtEs3m7C7EUrsxb/ixYOKV/+GN/+N24+Dtj4YeLw3w8y8KONMacf5tkpLyyura+X1ysbm1vaOvbt3r9JcUvBoylPZjogCzgR4mmkO7UwCSSIOrWhwPfZbDyAVS8WdHmYQJKQnWMwo0UYK7YNHv6lYrfCjGA9Cd3TiSyJ6HEK76tSdCfAicWekimZohvaX301pnoDQlBOlOq6T6aAgUjPKYVTxcwUZoQPSg46hgiSggmLywAgfG6WL41SaEhpP1N8TBUmUGiaR6UyI7qt5byz+53VyHV8EBRNZrkHQ6aI451ineJwG7jIJVPOhIYRKZm7FtE8kodpkVjEhuPMvLxLvtH5Zd2/Pqo2rWRpldIiOUA256Bw10A1qIg9RNELP6BW9WU/Wi/VufUxbS9ZsZh/9gfX5A0p4lcA=</latexit>

<latexit sha1_base64="R7Pm0r4H2ONOwAb2Bx7yAmuaDY4=">AAAB/3icbVC7SgNBFL3rM8ZX1MJCi8EgxCbsplHBImBjGcGYQHZZZiezyZDZ2WVmVghrGn8gH2FjoWJr6yfY+SH2Th6FJh64cDjnXu69J0g4U9q2v6yFxaXlldXcWn59Y3Nru7Cze6viVBJaJzGPZTPAinImaF0zzWkzkRRHAaeNoHc58ht3VCoWixvdT6gX4Y5gISNYG8kv7N+7NcVKmRuEqOdXBieuxKLDqV8o2mV7DDRPnCkpVg+Hbun7Y1jzC59uOyZpRIUmHCvVcuxEexmWmhFOB3k3VTTBpIc7tGWowBFVXjZ+YICOjdJGYSxNCY3G6u+JDEdK9aPAdEZYd9WsNxL/81qpDs+8jIkk1VSQyaIw5UjHaJQGajNJieZ9QzCRzNyKSBdLTLTJLG9CcGZfnif1Svm87FybMC5gghwcwBGUwIFTqMIV1KAOBAbwCM/wYj1YT9ar9TZpXbCmM3vwB9b7D0E6mXI=</latexit><latexit sha1_base64="R7Pm0r4H2ONOwAb2Bx7yAmuaDY4=">AAAB/3icbVC7SgNBFL3rM8ZX1MJCi8EgxCbsplHBImBjGcGYQHZZZiezyZDZ2WVmVghrGn8gH2FjoWJr6yfY+SH2Th6FJh64cDjnXu69J0g4U9q2v6yFxaXlldXcWn59Y3Nru7Cze6viVBJaJzGPZTPAinImaF0zzWkzkRRHAaeNoHc58ht3VCoWixvdT6gX4Y5gISNYG8kv7N+7NcVKmRuEqOdXBieuxKLDqV8o2mV7DDRPnCkpVg+Hbun7Y1jzC59uOyZpRIUmHCvVcuxEexmWmhFOB3k3VTTBpIc7tGWowBFVXjZ+YICOjdJGYSxNCY3G6u+JDEdK9aPAdEZYd9WsNxL/81qpDs+8jIkk1VSQyaIw5UjHaJQGajNJieZ9QzCRzNyKSBdLTLTJLG9CcGZfnif1Svm87FybMC5gghwcwBGUwIFTqMIV1KAOBAbwCM/wYj1YT9ar9TZpXbCmM3vwB9b7D0E6mXI=</latexit><latexit sha1_base64="70VvQjmcIVDrxGmfMwPJYsO4jDs=">AAAB/3icbVBNS8NAEN3Ur1q/qh48eFksQr2UpBcVPBS8eKxgbaEJYbOdtEs3m7C7EUrMxb/ixYOKV/+GN/+N2zYHbX0w8Hhvhpl5QcKZ0rb9bZVWVtfWN8qbla3tnd296v7BvYpTSaFDYx7LXkAUcCago5nm0EskkCjg0A3G11O/+wBSsVjc6UkCXkSGgoWMEm0kv3r06LYVq2duEOKx38zPXEnEkINfrdkNewa8TJyC1FCBtl/9cgcxTSMQmnKiVN+xE+1lRGpGOeQVN1WQEDomQ+gbKkgEystmD+T41CgDHMbSlNB4pv6eyEik1CQKTGdE9EgtelPxP6+f6vDCy5hIUg2CzheFKcc6xtM08IBJoJpPDCFUMnMrpiMiCdUms4oJwVl8eZl0mo3LhnNr11pXRRpldIxOUB056By10A1qow6iKEfP6BW9WU/Wi/VufcxbS1Yxc4j+wPr8AUrElb0=</latexit>

<latexit sha1_base64="6kxIq4r3NZz0ukXzBuv4el/IMM4=">AAAB/3icbVC7SgNBFL3rM8bXqoWFFoNBiE3Y1UIFi4CNZQTXBLIhzE5mkyGzs8vMrBDWNP5APsLGQsXW1k+w80PsnTwKTTxw4XDOvdx7T5BwprTjfFlz8wuLS8u5lfzq2vrGpr21faviVBLqkZjHshZgRTkT1NNMc1pLJMVRwGk16F4O/eodlYrF4kb3EtqIcFuwkBGsjdS0d+/9imLFzA9C1G2e9I98iUWb06ZdcErOCGiWuBNSKO8P/OL3x6DStD/9VkzSiApNOFaq7jqJbmRYakY47ef9VNEEky5u07qhAkdUNbLRA310aJQWCmNpSmg0Un9PZDhSqhcFpjPCuqOmvaH4n1dPdXjWyJhIUk0FGS8KU450jIZpoBaTlGjeMwQTycytiHSwxESbzPImBHf65VniHZfOS+61CeMCxsjBHhxAEVw4hTJcQQU8INCHR3iGF+vBerJerbdx65w1mdmBP7DefwBCxplz</latexit><latexit sha1_base64="6kxIq4r3NZz0ukXzBuv4el/IMM4=">AAAB/3icbVC7SgNBFL3rM8bXqoWFFoNBiE3Y1UIFi4CNZQTXBLIhzE5mkyGzs8vMrBDWNP5APsLGQsXW1k+w80PsnTwKTTxw4XDOvdx7T5BwprTjfFlz8wuLS8u5lfzq2vrGpr21faviVBLqkZjHshZgRTkT1NNMc1pLJMVRwGk16F4O/eodlYrF4kb3EtqIcFuwkBGsjdS0d+/9imLFzA9C1G2e9I98iUWb06ZdcErOCGiWuBNSKO8P/OL3x6DStD/9VkzSiApNOFaq7jqJbmRYakY47ef9VNEEky5u07qhAkdUNbLRA310aJQWCmNpSmg0Un9PZDhSqhcFpjPCuqOmvaH4n1dPdXjWyJhIUk0FGS8KU450jIZpoBaTlGjeMwQTycytiHSwxESbzPImBHf65VniHZfOS+61CeMCxsjBHhxAEVw4hTJcQQU8INCHR3iGF+vBerJerbdx65w1mdmBP7DefwBCxplz</latexit><latexit sha1_base64="7AfzpvkKwP5VkFCOTLGITINbcpU=">AAAB/3icbVBNS8NAEN3Ur1q/oh48eFksQr2URA8qeCh48VjB2EITwmY7aZduNmF3I5TYi3/FiwcVr/4Nb/4btx8HbX0w8Hhvhpl5UcaZ0o7zbZWWlldW18rrlY3Nre0de3fvXqW5pODRlKeyHREFnAnwNNMc2pkEkkQcWtHgeuy3HkAqloo7PcwgSEhPsJhRoo0U2gePflOxWuFHMR6EZ6MTXxLR4xDaVafuTIAXiTsjVTRDM7S//G5K8wSEppwo1XGdTAcFkZpRDqOKnyvICB2QHnQMFSQBFRSTB0b42ChdHKfSlNB4ov6eKEii1DCJTGdCdF/Ne2PxP6+T6/giKJjIcg2CThfFOcc6xeM0cJdJoJoPDSFUMnMrpn0iCdUms4oJwZ1/eZF4p/XLunvrVBtXszTK6BAdoRpy0TlqoBvURB6iaISe0St6s56sF+vd+pi2lqzZzD76A+vzB0xQlb4=</latexit>

<latexit sha1_base64="dil8pWGt4dMhjZ5StZ+7oxlaRF0=">AAAB/3icbVC7SgNBFL3rM8bXqoWFFoNBiE3YFUEFi4CNZQTXBLIhzE5mkyGzs8vMrBDWNP5APsLGQsXW1k+w80PsnTwKTTxw4XDOvdx7T5BwprTjfFlz8wuLS8u5lfzq2vrGpr21faviVBLqkZjHshZgRTkT1NNMc1pLJMVRwGk16F4O/eodlYrF4kb3EtqIcFuwkBGsjdS0d+/9imLFzA9C1G2e9I98iUWb06ZdcErOCGiWuBNSKO8P/OL3x6DStD/9VkzSiApNOFaq7jqJbmRYakY47ef9VNEEky5u07qhAkdUNbLRA310aJQWCmNpSmg0Un9PZDhSqhcFpjPCuqOmvaH4n1dPdXjWyJhIUk0FGS8KU450jIZpoBaTlGjeMwQTycytiHSwxESbzPImBHf65VniHZfOS+61CeMCxsjBHhxAEVw4hTJcQQU8INCHR3iGF+vBerJerbdx65w1mdmBP7DefwBEUpl0</latexit><latexit sha1_base64="dil8pWGt4dMhjZ5StZ+7oxlaRF0=">AAAB/3icbVC7SgNBFL3rM8bXqoWFFoNBiE3YFUEFi4CNZQTXBLIhzE5mkyGzs8vMrBDWNP5APsLGQsXW1k+w80PsnTwKTTxw4XDOvdx7T5BwprTjfFlz8wuLS8u5lfzq2vrGpr21faviVBLqkZjHshZgRTkT1NNMc1pLJMVRwGk16F4O/eodlYrF4kb3EtqIcFuwkBGsjdS0d+/9imLFzA9C1G2e9I98iUWb06ZdcErOCGiWuBNSKO8P/OL3x6DStD/9VkzSiApNOFaq7jqJbmRYakY47ef9VNEEky5u07qhAkdUNbLRA310aJQWCmNpSmg0Un9PZDhSqhcFpjPCuqOmvaH4n1dPdXjWyJhIUk0FGS8KU450jIZpoBaTlGjeMwQTycytiHSwxESbzPImBHf65VniHZfOS+61CeMCxsjBHhxAEVw4hTJcQQU8INCHR3iGF+vBerJerbdx65w1mdmBP7DefwBEUpl0</latexit><latexit sha1_base64="dJDNyDRYLhowr8ABs53RG7kXhz0=">AAAB/3icbVBNS8NAEN3Ur1q/oh48eFksQr2URAQVPBS8eKxgbKEJYbOdtEs3m7C7EUrsxb/ixYOKV/+GN/+N24+Dtj4YeLw3w8y8KONMacf5tkpLyyura+X1ysbm1vaOvbt3r9JcUvBoylPZjogCzgR4mmkO7UwCSSIOrWhwPfZbDyAVS8WdHmYQJKQnWMwo0UYK7YNHv6lYrfCjGA/Cs9GJL4nocQjtqlN3JsCLxJ2RKpqhGdpffjeleQJCU06U6rhOpoOCSM0oh1HFzxVkhA5IDzqGCpKACorJAyN8bJQujlNpSmg8UX9PFCRRaphEpjMhuq/mvbH4n9fJdXwRFExkuQZBp4vinGOd4nEauMskUM2HhhAqmbkV0z6RhGqTWcWE4M6/vEi80/pl3b11qo2rWRpldIiOUA256Bw10A1qIg9RNELP6BW9WU/Wi/VufUxbS9ZsZh/9gfX5A03clb8=</latexit>

Figure 20: A closed path that connects four states in the k space.

So why are we still interested in the phase di↵erence? Well, let us see what
we get if we try to measure the total phase di↵erence when we make a closed loop
between a set of states, see Figure 20, that is, calculate the phase di↵erence between
states 1 and 2, then 2 and 3, 3 and 4, and finally between 4 and 1, and sum them.
The total phase di↵erence becomes

� = �'12 +�'23 +�'34 +�'41 (26.24)

= �Im logh (k1)| (k2)ih (k2)| (k3)ih (k3)| (k4)ih (k4)| (k1)i.
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Now all gauge-arbitrary phases cancel. Example: if for instance | (k1)i = |1i+ei�|2i
where |1i, |2i are some orthogonal basis states, then the state ei✓| (k1)i = ei✓(|1i+
ei�|2i) is a physically equivalent state and the gauge-arbitrary phase ✓ cancels away.
However, the phase � is physically meaningful and a↵ects the value of the inner
products with | (k2)i and | (k4)i, if those states contain |2i.

As a gauge invariant quantity, the total phase di↵erence (26.24) is potentially
an observable quantity! Let us now consider, instead of four states, a smooth curve
in the parameter space k, and discretize it. The phase di↵erence between two points
in the curve separated by a small distance �k is

e�i�' =
h (k)| (k+�k)i
|h (k)| (k+�ki| (26.25)

�' = �Im logh (k)| (k+�k)i. (26.26)

If the phase varies in a di↵erentiable way, then (take a Taylor series of the above
and keep terms up to the order �k)

i�' ' h (k)|rk (k)i ·�k. (26.27)

If the set of points in the path becomes dense, that is, �k is infinitesimally small,
we can write the discrete sum of distances from point 1 to point M as an integral
over the corresponding smooth curve C from 1 to M :

� =
MX

s=1

�'s,s+1 �! � =

Z

C
A · dk. (26.28)

Here the vector A is called the Berry connection:

A = ih (k)|rk (k)i. (26.29)

The state vectors are assumed to be normalized at any k which means that the
Berry connection is real (just take the derivative, using the chain rule, of both sides
of h | i2 = 1). Therefore one can also write

A = �Imh (k)|rk (k)i. (26.30)

The integral � is called the Berry phase. It has already been observed in numerous
physical systems and has become an important concept of modern quantum (and
classical optical) physics.

26.7.1 Berry curvature

If the curl of the Berry connection is well-defined on a surface ⌃ whose boundary
is the curve C (notation C = @⌃), then one can use Stokes theorem to write the
Berry phase in an alternative way

� =

Z

@⌃
A · dk =

Z

⌃

⌦ · nd�. (26.31)

Stokes theorem transforms a line integral to an integral over an area, with the
integrand replaced by its curl. Here n is a vector normal to the surface that is
integrated over. The quantity ⌦ is the Berry curvature

⌦ = rk ⇥A (26.32)

= �Imhrk (k)|⇥ |rk (k)i (26.33)

= ihrk (k)|⇥ |rk (k)i. (26.34)
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In dimensions other than three the Berry curvature can be written component-wise
((↵, �) denote Cartesian coordinates and @↵ ⌘ @/@k↵) as

⌦↵�(k) = �2Imh@↵ (k)|@� (k)i. (26.35)

The Berry curvature is a gauge-invariant quantity, and naturally then also the Berry
phase calculated from it. Indeed, both can (and have been) observed. The Berry
connection and Berry curvature play a similar role as the vector potential A and
the magnetic field B = r⇥A, respectively, in elementary magnetostatics. As you
remember from earlier this course, the vector potential is gauge-dependent and one
can choose the gauge (for instance the Coulomb gauge by r · A = 0), while the
magnetic field is a gauge-independent, physical quantity that can be measured.

26.7.2 Chern number

We discussed above the Berry phase defined for a certain path C, and via Stokes
theorem, for a surface ⌃ that the path C is a boundary for. But one can define such
a phase also for a closed surface ⌃. Naturally, the path C is then vanishing. Think
about a part of a sphere being the surface: that can be circulated by a finite path.
But if the whole sphere is the surface, then the ”path” is vanishing. It can be shown
that the integral of the Berry curvature over such a closed surface is quantized:

Z

⌃

⌦ · nd� = 2⇡C1. (26.36)

Here C1 is an integer, called Chern number of the first class (or often just Chern
number). The closed surface can be, for example, the first Brillouin zone in a lattice
system. We will not go through the proof for Equation (26.36), but if you are
interested, you can find it from Section 2.4 of the article by Resta mentioned in
Literature, or Chapter 3.6 of Bernevig’s book. The system is said to be topologically
trivial if C1 = 0, and topologically non-trivial if C1 is some finite integer. It can
be shown that in order to have non-zero Chern number, the Berry connection must
have singularities somewhere on the surface (i.e. somewhere in the Brillouin zone
in a lattice system).

The Chern number is a topological invariant. It stays invariant between
two topological spaces that are connected by a homeomorphism. Sounds abstract,
but just go to https://en.wikipedia.org/wiki/Homeomorphism to see a movie about
how a co↵ee cup transforms continuously to a donut which shows that they are
homeomorphic. The topological invariant in that case is the number of holes in the
object. Of course in quantum physics things are more abstract: we are now talking
about topological properties and invariants of the eigenstates of a certain system.
Analogously to the number of holes in a cup and a donut, the topological invariant
of a quantum system does not necessarily change due to small changes in the system
Hamiltonian. The fact that the topological invariant is insensitive to small changes
and perturbations can potentially be used, for instance for robust quantum com-
puting, or protected uni-directional currents. See Figure (21) for illustration of this
point. In the previous section we discussed the analogue between Berry curvature
and the magnetic field. Within this analogy, a non-zero Chern number corresponds
to having a magnetic monopole. This gives some intuition to why the Chern number
must be quantized and it why it is a topological invariant.

A famous example of the significance of the Chern number is the quantum
Hall e↵ect. There the conductance of the system is quantized, that is, it changes
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Figure 21: Arrows on a Möbius stripe. The existence of the twist in the Möbius
stripe means that the arrows change direction when you go around the loop. The
change of the direction cannot be eliminated just by deformations of the stripe,
without cutting it. Analogously, certain properties of quantum states are robust to
small perturbations, when those properties are caused by the quantum geometry
and topology related to the system’s eigenstates. Image from plus.maths.org.

in steps when a magnetic field that penetrates the sample is changed, see Figure
(22). It was shown in 1982 by Thouless, Kohmoto, Nightingale and den Nijs that
the conductance is given by the Chern number and thereby topological properties
of the system are the origin of the quantum Hall e↵ect. Thouless got the Nobel
prize 2016 for this and his other theoretical work on topological physics. There
are also other types of topological invariants than the Chern number. Topological
quantum physics has become an extremely important and fast growing field of
research, inspired by the experimental observation of topological insulators and by
the concept of a topological superconductor.

26.7.3 Quantum metric

Based on the definition of the Bures distance, Equation (26.21), one can calculate
the infinitesimal distance. Start from

D2

12
= 1� |h (k)| (k+ dk)i|2 (26.37)

and use the Taylor expansion to second order

| (k+ dk)i ' | (k)i+
X

↵

|@↵ (k)idk↵ +
1

2

X

↵,�

|@�@↵ (k)idk↵dk� . (26.38)

In the calculation it is good to remember which quantity is imaginary, and separate
the real and imaginary parts. Higher than second order terms are neglected. The
result becomes

D2

k,k+dk =
dX

↵,�=1

g↵�(k)dk↵dk� , (26.39)
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Figure 22: Quantum Hall e↵ect. Magnetic field penetrates the sample and quantized
conductance as function of the magnetic field emerges. Image on the right from
Research Gate.

where we have the quantum metric tensor (this tensor is also called the Fubini-
Study metric)

g↵�(k) = Re (h@↵ (k)|@� (k)i � h@↵ (k)| (k)ih (k)|@� (k)i) . (26.40)

One can express it also using the projector Q(k) = 1� | (k)ih (k)|

g↵�(k) = Reh@↵ (k)|Q(k)|@� (k)i. (26.41)

Now let us recall the definition of the Berry curvature:

⌦↵�(k) = �2Imh@↵ (k)|@� (k)i. (26.42)

We can insert the projectorQ(k) into this definition, because as said above, h@↵ (k)| (k)i
is imaginary, and thus the product h@↵ (k)| (k)ih (k)|@� (k)i real. We have

⌦↵�(k) = �2Imh@↵ (k)|Q(k)|@� (k)i. (26.43)

We see that (apart from the factor of two di↵erence which is trivial) the quan-
tum metric and the Berry curvature are the real and imaginary parts of the same
quantity. This quantity is called quantum geometric tensor:

⌘↵� = h@↵ (k)|Q(k)|@� (k)i. (26.44)

In summary, the quantum geometric tensor has a real part, the symmetric tensor
called quantum metric describing the amplitude distance between quantum states,
and an imaginary part, the antisymmetric tensor called Berry curvature which is
related to the phase distance between two states. The quantum metric, Berry cur-
vature and the quantum geometric tensor are all gauge-invariant, measurable quan-
tities.

The Berry phase has been observed in a multitude of systems, and also Berry
curvature has been measured. The first direct measurements of the quantum metric
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were published in 2019, and it is a concept whose significance in physics is emerg-
ing right now. It has been predicted to appear in a few contexts, one of them is
superconductivity. The Quantum Dynamics group at Aalto University has shown
that the quantum metric of the system a↵ects superfluidity and superconductivity.
In particular, its non-zero value guarantees that supercurrent exists even in a situ-
ation where the group velocities of non-interacting electrons are zero (so called flat
energy bands). The quantum metric is part of the quantum geometric tensor, which
contains the Berry curvature and thereby relates to topological invariants like the
Chern number; therefore the findings of the Quantum Dynamics group have made
a new connection between quantum geometry, topology and superfluid transport
(supercurrents).

Finally, let us come back to where this lecture started. It was mentioned that
localization properties of the Wannier functions are crucial in describing properties
of quantum phases of matter. As you have learned above, the quantum metric and
Berry curvature depend on derivatives of the eigenfunctions, in a lattice system
this would mean derivatives of the Bloch functions. Via this, there is a connection
between the localization properties of Wannier functions (which are combinations
of Bloch functions) and quantum geometry.

The understanding of all the consequences of quantum geometry, especially
in interacting many-body systems, is only in the beginning.
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