ECON-C4100 - Capstone: Econometrics I
 Lecture 2B: Statistics recap

Otto Toivanen

Learning outcomes: conditional descriptive statistics

- After this lecture you understand

1 the meaning of central concepts for conditional descriptive statistics of a variable,

2 how to characterize the conditional distributions,
3 how to characterize distributions of more than one variable more generally, and

4 why conditional descriptive statistics are a first step towards causal analysis.

Learning outcomes: random sampling and estimation of

 the mean- By the end of the lecture, you

5 know what random sampling means.
6 appreciate the difference between population and sample.
7 understand the concept of independently and identically distributed.

8 understand why the sample mean is (almost) never equal to the population mean, but is correct on average.

9 know what an estimator is.
10 know what an estimate is.
11 understand the concepts of bias, consistency and efficiency of an estimator.

12 understand that an estimator is a random variable.
13 why the sample mean is BLUE.

2. What are conditional descriptive statistics?

- Conditional descriptive statistics are characterized by the researcher conditioning the information on Y on another variable X.
- Simple but important example: conditional mean.

$$
\mathbb{E}[Y \mid X=x]
$$

- Conditional descriptive statistics build on the joint distribution of two or more variables.
- We will work with the case of two variables.

From joint density to individual density

- How might we get the density function of X in the case of a observing two (discrete) variables X and Y ?

$$
\begin{equation*}
f_{X}(x)=\sum_{y} f_{X, Y}(x, y) \tag{1}
\end{equation*}
$$

- Such a density function is called the marginal distribution (of X).
- Notice that the marginal distribution takes into account all values of X irrespective of what value Y takes (or, for all values of Y).

From marginal to conditional distribution

- What if we are interested in what values Y gets, conditional on a given value x of X ?
- Then we are interested in a conditional distribution, or some function of it.
- The conditional distribution of Y given $X=x$ is defined as:

$$
\begin{equation*}
f_{Y \mid X}(y \mid x)=\frac{f_{X, Y}(x, y)}{f_{X}(x)} \tag{2}
\end{equation*}
$$

- The conditional distribution is not defined when $f_{X}(x)=0$.

Visualizing a joint distribution

- How to visualize your data consisting of two variables?
- A scatter-plot allows you to display all of your data.
- Example: our FLEED analysis sample.
- Let's add age to our analysis.
- FLEED contains variable syntyv $=$ YoB.

Visualizing a joint distribution

- Let's draw a scatter plot of income as a function of age.

Stata code

```
twoway scatter income age if year == 15 & income != . || ///
Ifit income age if year = 15 & income != . , ///
xtitle("age") ///
graphregion(fcolor(white))
graph export "income-age_line.pdf", replace
```

Scatterplot of income and age, analysis sample

Conditional distributions

- How do the distributions of income at two different ages compare?
- Let's start by comparing two density plots.

Stata code

```
twoway kdensity income if year = 15 & income != . & age = 27 || ///
kdensity income if year = 15 & income != . & age = 55 , ///
xtitle("income") ///
legend(label(1 "age = 27") label(2 "age = 55")) ///
graphregion(fcolor(white))
graph export "income_distr_age27_age55.pdf", replace
```


Density plot of income for age $=27$, age $=55$

What about the cdfs?

- Just like in the univariate case, the density plot is informative in its own way, the cdf in another way.

Stata code

```
gen young = .
replace young = 0 if age =27
replace young = 1 if age = 55
cdfplot income if year = 15 & income != . & young != ., by(young) ///
xtitle("income") ///
legend(label (1 "age = 27") label (2 "age = 55")) ///
graphregion(fcolor(white))
graph export "income_cdf_age27_age55.pdf", replace
```


Cdf's of income for age $=27$, age $=55$

Cdf's of income for age $=27$, age $=55$, income >40000

Conditional means

(1) A key concept in empirical economics is the conditional mean

$$
\mathbb{E}[Y \mid X=x]
$$

(2) What would these look like in the analysis data on income, if X is age?

Stata code
1 tabstat income if year = 15 \& income ! = . stat (mean) by(age)

Income conditional on age

age	mean income
15	411
20	8346
27	23565
30	24011
40	31430
50	30082
55	27411
60	26407
70	19344
Total	23297

Income conditional on age

- How does income develop with age?
- How much does age increase income in expectation, going from 30 to 40 years?
- Why might the mean income of $50+$ be lower than that of those aged 40?
- Aside: at what level of accuracy should we report mean incomes (1 euro, 1000 euros, ...)?

Income conditional on age

- Imagine you wanted to study the causal effect of X on Y.

Conditional means allow you to study the correlation of them, forming a first step towards causal analysis.

- Showing a table for all ages in the data leads to a very large table.
- How else could one display the incomes conditional on age?

Stata code

```
bysort age: egen income_age_m = mean(income) if year =15 & income !=
scatter income_age_m age if year = 15 & income != . & income_age_m != . , ///
xtitle("age") ytitle("income") ///
graphregion(fcolor(white)) \linebreak
graph export "income_age_condmean.pdf", replace
```


Mean income conditional on age

Correlation

- The best known descriptive statistic to characterize how two variables' values are aligned is correlation.
- To get to correlation, we need to first define the covariance.
- The covariance of Y and X is defined as

$$
\begin{array}{r}
\operatorname{Cov}(X, Y)=\mathbb{E}[X-\mathbb{E}(X)] \mathbb{E}[Y-\mathbb{E}(Y)] \\
=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)\left(y_{i}-\frac{1}{n} \sum_{i=1}^{n} y_{i}\right), \tag{3}
\end{array}
$$

- And the correlation of Y and X as

$$
\begin{equation*}
\operatorname{Cor}(X, Y)=\operatorname{cov}(X, Y) /[s d(X) s d(Y)] \tag{4}
\end{equation*}
$$

2. Random sampling and estimation of the mean

- Example of random sampling: Finland conducted an experiment on basic income in 2017-2018. (see Verho, J., Hämäläinen, K. \& Kanninen, O. (2022). Removing welfare traps: Employment responses in the finnish basic income experiment. American Economic Journal: Economic Policy, 14, 501-522).
- For the purposes of the basic income study, a random sample from the target population was drawn.
- The important numbers for the random sampling were:
(1) 175000 individuals in the (target) population.
(2) 2000 individuals drawn from this population into the treatment group.

Population and sample

- Population $=$ those units that we are interested in (N).
- Sample $=$ those units that we select out of the population, i.e., a subset of the population (n).

Random sampling

- Random sampling = each object in the population has the same probability of being selected into the sample.
- Two key requirements: Each subject is
(1) Independently distributed $=$ any two objects are not informative about each other.
- Y and X are independent iff $F_{X, Y}(x, y)=F_{X}(x) F_{Y}(y)$.
(2) Identically distributed $=$ before being chosen, each object is equal in expectation.
- Y and X are identically distributed iff $F_{X}(x)=F_{Y}(x)$.
- Random variable $=$ numerical summary of a random outcome.

Random sampling - class room experiment

- We collected data on the height and gender of the students of this course.
- I treat those students who answered as the population and take random samples from it.
- Questions to be solved prior to commencing:
(1) How many students to include in the sample?
(2) How to choose them?

Random sampling - class room experiment

- In our data $N=73$.
- I chose $n=3,6,12,24$.
- In standard random sampling, I would have chosen n once and selected one random sample of size n.
- Now I draw as many samples of size n as I can as long as I only sample each individual only once.

Random sampling - class room experiment

- Let's first have a look at the population data.
- Notice that in usual circumstances we would not have access to these data.
- It is the mean of the population height that we try to estimate through our random sample(s).

Mean	sd	Median
176.12	9.79	178

Estimating the mean of a population

- Estimator $=$ some function of sample data.
- Estimate $=$ the numerical value of the estimator, given a particular sample.
- Notice that the sample mean $(=\bar{Y})$ is not the same as the population mean, but a natural estimator of it.
- Consequently, 176.12 is not our estimate of the sample mean (it is the population mean, i.e., the target of our estimation); we are about to study several such estimates.

Estimating the mean of a population

- Two questions.
(1) What are the properties of \bar{Y} ?
(2) Why use \bar{Y} instead of some other estimator?

Properties of \bar{Y}

- \bar{Y} is a random variable.
- Its properties are determined by the sampling distribution.
- The individual observations used to calculate \bar{Y} were chosen (iid) randomly.
- What happens to \bar{Y} if you take another random sample (of size n)?
- The sampling distribution $=$ the distribution of \bar{Y} over all possible samples of size n.
- Example: All possible samples of size 6 (=all possible combinations of 6 students) from the population of students that submitted their height information.

Estimates of \bar{Y} based on $n=6$: population mean $=176.12$

Group										
1	2	3	4	5	6	7	8	9	10	11
173	181.5	172.25	176.83	173.92	180.67	176.83	178.5	169.33	171.67	179.67

Properties of \bar{Y}

- Sampling distribution:
(1) all the values \bar{Y} can take
(2) the probability of each of these values.
- The mean and variance of \bar{Y} are the mean and variance of its sampling distribution.

Properties of an estimator of μ_{Y}

- NOTE: at the risk of confusion, I use the more general notation of $\hat{\mu}_{Y}$ for the estimator on this slide, not \bar{Y}.
- The reason is that these properties apply generally.
- Let $\hat{\mu}_{Y}$ be an estimator of μ_{Y}.
(1) The bias of $\hat{\mu}_{Y}=\mathbb{E}\left(\hat{\mu}_{Y}\right)-\mu_{Y}$.
(2) $\hat{\mu}_{Y}$ is an unbiased estimator of μ_{Y} if $\mathbb{E}\left[\hat{\mu}_{Y}\right]=\mu_{Y}$.
(3) $\hat{\mu}_{Y}$ is a consistent estimate of μ_{Y} if $\hat{\mu}_{Y} \rightarrow \mu_{Y}$ when $n \rightarrow \infty$.
(4) let $\tilde{\mu}_{Y}$ be another unbiased estimator of μ_{Y}. Then $\hat{\mu}_{Y}$ is more efficient than $\tilde{\mu}_{Y}$ if $\operatorname{var}\left(\hat{\mu}_{Y}\right)<\operatorname{var}\left(\tilde{\mu}_{Y}\right)$.
- These properties of an estimator are generic, i.e., they apply to any estimator.

Properties of \bar{Y}

- Due to the Law of Large Numbers, \bar{Y} is both unbiased and consistent.
- LLN requires that the sample is iid.

Estimating the mean - class room experiment

- Let's demonstrate consistency and the effect of sample size with our height data.
- On the next slide are graphs of the distributions of our estimates of \bar{Y} using different n.
- The vertical red line is the "truth", i.e., the population mean of 176.12.

Estimating the mean - class room experiment

Estimating the mean - class room experiment: actual data

- In each graph, each estimate is unbiased ($=$ on average, they are correct).
- As we increase the sample size from the upper left graph $(n=3)$ to the lower right corner $(n=24)$ the \bar{Y} - estimates get closer to the population mean.
- This is what consistency means.

Estimating the mean - class room experiment: actual data \& student estimates

Properties of \bar{Y}

- How precise is \bar{Y}, and how does this depend on n ?
- In other words, how large is the variance of \bar{Y} ?
- The Central Limit Theorem gives the answer.
- Hint: look at how close the estimates \bar{Y} are to the population mean as we vary sample size n in the graph above.

Central Limit Theorem

- The CLT
(1) is about the distribution of the estimate of the mean.
(2) applies no matter what the distribution of the underlying variable Y is.
- Examples: coin tosses (binary), age (only positive/integer)

How the mean becomes normally distributed with large enough samples

- Example: Draws from a Poisson distribution with an increasing n.
- Demonstration of how the distribution develops courtesy of Richard Hennigan.

Properties of \bar{Y}

- The CLT shows that the following hold:
- Suppose
(1) the sample is iid.
(2) $\mathbb{E}[Y]=\mu_{Y}$.
(3) $\operatorname{var}(Y)=\sigma_{Y}^{2}<\infty$

Properties of \bar{Y}

- Then, as $n \rightarrow \infty$, the distribution of \bar{Y} becomes arbitrarily well approximated by the normal distribution $N\left(\mu_{Y}, \sigma_{\bar{Y}}^{2}\right)$.

Notice that the variance of this normal distribution is decreasing in n.

- Then, as $n \rightarrow \infty$, the distribution of

$$
\frac{\bar{Y}-\mu_{Y}}{\sigma_{Y}^{2}}
$$

becomes arbitrarily well approximated by the standard normal distribution $N(0,1)$.

- \bar{Y} minimizes the sum of squared residuals:

$$
\begin{equation*}
\min _{m} \sum_{i=1}^{N}\left(y_{i}-m\right)^{2} \tag{5}
\end{equation*}
$$

- \bar{Y} has smaller variance than all other unbiased linear estimators.
- $\rightarrow \bar{Y}$ is more efficient than other (linear) estimators.
- \bar{Y} is Best Linear Unbiased Estimator (BLUE).

Testing the mean

- Imagine you want to test whether the \bar{Y} you estimated is different from some value Y_{0}.
- The t-statistic is given by

$$
\begin{equation*}
t=\left(\bar{Y}-Y_{0}\right) / \hat{\sigma}_{Y} \tag{6}
\end{equation*}
$$

where $\hat{\sigma}_{Y}=s_{Y} / \sqrt{n}$ is the estimated standard error of \bar{Y}.

- The distribution of t is appr. standard normal (why?).
- Notice how the denominator depends on n.
- This is the reason why a larger sample is beneficial in terms of testing hypotheses, i.e., statistical significance.

