ECON-C4100 - Capstone: Econometrics I Lecture 2B: Statistics recap

Otto Toivanen

Learning outcomes: conditional descriptive statistics

- After this lecture you understand
 - 1 the meaning of central concepts for conditional descriptive statistics of a variable,
 - 2 how to characterize the conditional distributions,
 - 3 how to characterize distributions of more than one variable more generally, and
 - 4 why conditional descriptive statistics are a first step towards causal analysis.

Learning outcomes: random sampling and estimation of the mean

- By the end of the lecture, you
 - 5 know what random sampling means.
 - 6 appreciate the difference between **population** and **sample**.
 - 7 understand the concept of **independently and identically distributed**.
 - 8 understand why the sample mean is (almost) never equal to the population mean, but is correct on average.
 - 9 know what an estimator is.
 - 10 know what an estimate is.
 - 11 understand the concepts of **bias**, **consistency** and **efficiency** of an estimator.
 - 12 understand that an estimator is a random variable.
 - 13 why the sample mean is BLUE.

Toivanen ECON-C4100 Lecture 2B 3 / 44

2. What are conditional descriptive statistics?

- Conditional descriptive statistics are characterized by the researcher conditioning the information on Y on another variable X.
- Simple but important example: conditional mean.

$$\mathbb{E}[Y|X=x]$$

- Conditional descriptive statistics build on the *joint distribution* of two or more variables.
- We will work with the case of two variables.

From joint density to individual density

 How might we get the density function of X in the case of a observing two (discrete) variables X and Y?

$$f_X(x) = \sum_{y} f_{X,Y}(x,y) \tag{1}$$

- Such a density function is called the marginal distribution (of X).
- Notice that the marginal distribution takes into account all values of X irrespective of what value Y takes (or, for all values of Y).

From marginal to conditional distribution

- What if we are interested in what values Y gets, conditional on a given value x of X?
- Then we are interested in a conditional distribution, or some function of it.
- The conditional distribution of Y given X = x is defined as:

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}.$$
 (2)

• The conditional distribution is not defined when $f_X(x) = 0$.

Visualizing a joint distribution

- How to visualize your data consisting of two variables?
- A scatter-plot allows you to display all of your data.
- Example: our FLEED analysis sample.
- Let's add age to our analysis.
- FLEED contains variable syntyv = YoB.

Visualizing a joint distribution

Let's draw a scatter plot of income as a function of age.

Stata code

```
twoway scatter income age if year == 15 & income != . || ///
lfit income age if year == 15 & income != . , ///
xtitle("age") ///
graphregion(fcolor(white))
graph export "income_age_line.pdf", replace
```

Scatterplot of income and age, analysis sample

Conditional distributions

- How do the distributions of income at two different ages compare?
- Let's start by comparing two density plots.

Stata code

```
twoway kdensity income if year = 15 & income != . & age = 27 || ///
kdensity income if year = 15 & income != . & age = 55 , ///

xtitle("income") ///
legend(label(1 "age = 27") label(2 "age = 55")) ///
graphregion(fcolor(white))
graph export "income_distr_age27_age55.pdf", replace
```

Density plot of income for age = 27, age = 55

What about the cdfs?

 Just like in the univariate case, the density plot is informative in its own way, the cdf in another way.

Stata code

```
gen young = .

replace young = 0 if age == 27

replace young = 1 if age == 55

defolot income if year == 15 & income != . & young != ., by(young) ///

xtitle("income") ///
legend(label(1 "age = 27") label(2 "age = 55")) ///
graphregion(fcolor(white))
graph export "income_cdf_age27_age55.pdf", replace
```

Cdf's of income for age = 27, age = 55

Cdf's of income for age = 27, age = 55, income > 40~000

Conditional means

1 A key concept in empirical economics is the conditional mean

$$\mathbb{E}[Y|X=x]$$

What would these look like in the analysis data on income, if X is age?

Stata code

```
1 tabstat income if year == 15 & income != ., stat(mean) by(age)
```

Income conditional on age

age	mean income					
15	411					
20	8 346					
27	23 565					
30	24 011					
40	31 430					
50	30 082					
55	27 411					
60	26 407					
70	19 344					
Total	23 297					

Income conditional on age

- How does income develop with age?
- How much does age increase income in expectation, going from 30 to 40 years?
- Why might the mean income of 50+ be lower than that of those aged 40?
- Aside: at what level of accuracy should we report mean incomes (1 euro, 1 000 euros, ...)?

Income conditional on age

- Imagine you wanted to study the causal effect of X on Y.
 Conditional means allow you to study the correlation of them, forming a first step towards causal analysis.
- Showing a table for all ages in the data leads to a very large table.
- How else could one display the incomes conditional on age?

Stata code

```
bysort age: egen income_age_m = mean(income) if year == 15 & income != .

catter income_age_m age if year == 15 & income != . & income_age_m != . , ///

xtitle("age") ytitle("income") ///
graphregion(fcolor(white)) \linebreak
graph export "income_age_condmean.pdf", replace
```

Mean income conditional on age

Correlation

- The best known descriptive statistic to characterize how two variables' values are aligned is correlation.
- To get to correlation, we need to first define the *covariance*.
- The covariance of Y and X is defined as

$$Cov(X, Y) = \mathbb{E}[X - \mathbb{E}(X)] \mathbb{E}[Y - \mathbb{E}(Y)]$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_i - \frac{1}{n} \sum_{i=1}^{n} x_i) (y_i - \frac{1}{n} \sum_{i=1}^{n} y_i),$$
(3)

And the correlation of Y and X as

$$Cor(X,Y) = cov(X,Y)/[sd(X)sd(Y)].$$
 (4)

Toivanen ECON-C4100 Lecture 2B 20 / 44

2. Random sampling and estimation of the mean

- Example of random sampling: Finland conducted an experiment on basic income in 2017 - 2018. (see Verho, J., Hämäläinen, K. & Kanninen, O. (2022). Removing welfare traps: Employment responses in the finnish basic income experiment. American Economic Journal: Economic Policy, 14, 501-522).
- For the purposes of the basic income study, a random sample from the target population was drawn.
- The important numbers for the random sampling were:
 - 175 000 individuals in the (target) population.
 - 2 000 individuals drawn from this population into the treatment group.

Toivanen Lecture 2B 21 / 44

Population and sample

- Population = those units that we are interested in (N).
- Sample = those units that we select out of the population, i.e., a subset of the population (n).

Random sampling

- Random sampling = each object in the population has the same probability of being selected into the sample.
- Two key requirements: Each subject is
 - Independently distributed = any two objects are not informative about each other.
 - Y and X are independent iff $F_{X,Y}(x,y) = F_X(x)F_Y(y)$.
 - Identically distributed = before being chosen, each object is equal in expectation.
 - Y and X are identically distributed iff $F_X(x) = F_Y(x)$.
- Random variable = numerical summary of a random outcome.

Random sampling - class room experiment

- We collected data on the height and gender of the students of this course.
- I treat those students who answered as the *population* and take random samples from it.
- Questions to be solved prior to commencing:
 - 1 How many students to include in the sample?
 - 2 How to choose them?

Random sampling - class room experiment

- In our data N=73.
- I chose n = 3, 6, 12, 24.
- In standard random sampling, I would have chosen n once and selected one random sample of size n.
- Now I draw as many samples of size n as I can as long as I only sample each individual only once.

Random sampling - class room experiment

- Let's first have a look at the population data.
- Notice that in usual circumstances we would not have access to these data.
- It is the mean of the population height that we try to estimate through our random sample(s).

Mean	sd	Median			
176.12	9.79	178			

Estimating the mean of a population

- Estimator = some function of sample data.
- Estimate = the numerical value of the estimator, given a particular sample.
- Notice that the sample mean $(=\bar{Y})$ is not the same as the population mean, but a natural *estimator* of it.
- Consequently, 176.12 is not our estimate of the sample mean (it is
 the population mean, i.e., the target of our estimation); we are about
 to study several such estimates.

Estimating the mean of a population

- Two questions.
 - **1** What are the properties of \bar{Y} ?
 - 2 Why use \bar{Y} instead of some other estimator?

Properties of \bar{Y}

- \bar{Y} is a random variable.
- Its properties are determined by the sampling distribution.
- The individual observations used to calculate \bar{Y} were chosen (iid) randomly.
- What happens to \bar{Y} if you take another random sample (of size n)?
- The sampling distribution = the distribution of \bar{Y} over all possible samples of size n.
- Example: All possible samples of size 6 (=all possible combinations of 6 students) from the population of students that submitted their height information.

Estimates of \bar{Y} based on n=6: population mean =176.12

	Group										
1	2	3	4	5	6	7	8	9	10	11	12
173	181.5	172.25	176.83	173.92	180.67	176.83	178.5	169.33	171.67	179.67	177.33

Properties of \bar{Y}

- Sampling distribution:
 - 1 all the values \bar{Y} can take
 - 2 the probability of each of these values.
- The mean and variance of \bar{Y} are the mean and variance of its sampling distribution.

Properties of an estimator of μ_V

- NOTE: at the risk of confusion, I use the more general notation of $\hat{\mu}_Y$ for the estimator on this slide, not Y.
- The reason is that these properties apply generally.
- Let $\hat{\mu}_{Y}$ be an estimator of μ_{Y} .
 - 1 The bias of $\hat{\mu}_Y = \mathbb{E}(\hat{\mu}_Y) \mu_Y$.
 - 2 $\hat{\mu}_Y$ is an **unbiased estimator** of μ_Y if $\mathbb{E}[\hat{\mu}_Y] = \mu_Y$.
 - **3** $\hat{\mu}_Y$ is a **consistent** estimate of μ_Y if $\hat{\mu}_Y \to \mu_Y$ when $n \to \infty$.
 - 4 let $\tilde{\mu}_Y$ be another unbiased estimator of μ_Y . Then $\hat{\mu}_Y$ is more **efficient** than $\tilde{\mu}_Y$ if $var(\hat{\mu}_Y) < var(\tilde{\mu}_Y)$.
- These properties of an estimator are **generic**, i.e., they apply to any estimator.

Properties of \bar{Y}

- Due to the Law of Large Numbers, \bar{Y} is both unbiased and consistent.
- LLN requires that the sample is iid.

Estimating the mean - class room experiment

- Let's demonstrate consistency and the effect of sample size with our height data.
- On the next slide are graphs of the distributions of our estimates of \bar{Y} using different n.
- The vertical red line is the "truth", i.e., the population mean of 176.12.

Estimating the mean - class room experiment

Estimating the mean - class room experiment: actual data

- In each graph, each estimate is unbiased (= on average, they are correct).
- As we increase the sample size from the upper left graph (n=3) to the lower right corner (n=24) the \bar{Y} estimates get closer to the population mean.
- This is what consistency means.

Estimating the mean - class room experiment: actual data & student estimates

Properties of \bar{Y}

- How precise is \bar{Y} , and how does this depend on n?
- In other words, how large is the variance of \bar{Y} ?
- The Central Limit Theorem gives the answer.
- Hint: look at how close the estimates \bar{Y} are to the population mean as we vary sample size n in the graph above.

Central Limit Theorem

- The CLT
 - 1 is about the distribution of the *estimate* of the mean.
 - $oldsymbol{2}$ applies no matter what the distribution of the underlying variable Y is.
- Examples: coin tosses (binary), age (only positive/integer)

How the mean becomes normally distributed with large enough samples

- Example: Draws from a Poisson distribution with an increasing n.
- Demonstration of how the distribution develops courtesy of Richard Hennigan.

Properties of \bar{Y}

- The CLT shows that the following hold:
- Suppose
 - 1 the sample is iid.
 - **2** $\mathbb{E}[Y] = \mu_Y$.
 - 3 $var(Y) = \sigma_Y^2 < \infty$

Properties of \bar{Y}

• Then, as $n \to \infty$, the distribution of \bar{Y} becomes arbitrarily well approximated by the normal distribution $N(\mu_Y, \sigma_{\bar{Y}}^2)$.

Notice that the variance of this normal distribution is decreasing in n.

• Then, as $n \to \infty$, the distribution of

$$\frac{\bar{Y} - \mu_Y}{\sigma_Y^2}$$

becomes arbitrarily well approximated by the standard normal distribution N(0,1).

$ar{Y}$ as a least squares estimator

ullet $ar{Y}$ minimizes the sum of squared residuals:

$$min_m \sum_{i=1}^{N} (y_i - m)^2$$
 (5)

- \bar{Y} has smaller variance than all other unbiased linear estimators.
- ullet o $ar{Y}$ is more efficient than other (linear) estimators.
- \bar{Y} is **B**est **L**inear **U**nbiased **E**stimator (BLUE).

Testing the mean

- Imagine you want to test whether the \bar{Y} you estimated is different from some value Y_0 .
- The *t-statistic* is given by

$$t = (\bar{Y} - Y_0)/\hat{\sigma}_Y \tag{6}$$

where $\hat{\sigma}_Y = s_Y / \sqrt{n}$ is the estimated standard error of \bar{Y} .

- The distribution of t is appr. standard normal (why?).
- Notice how the denominator depends on *n*.
- This is the reason why a larger sample is beneficial in terms of testing hypotheses, i.e., statistical significance.