ECON-C4100 - Capstone: Econometrics I Lecture 3: Univariate regression

Otto Toivanen

Learning outcomes

- At the end of lectures 3 5, you
- 1 understand what one learns from a (univariate) regression analysis.
- 2 understand how to carry out a regression analysis.
- 3 appreciate the assumptions made in standard regression analysis.
- 4 are aware of the most common pitfalls in regression analysis.

The effect of X on Y

- At the end of lectures 3 5, you have an idea how to approach answering question such as the following:
- Does having a PhD (in science) help to innovate?
- Is website design A better than design B in terms of sales? By how much?
- Are branded pharmaceuticals more expensive than generic products?
- Are promotions of substitute products of the same firm at the same time effective?

Modeling

- Q1: what is the object you want to model ("explain")?
- Let's call this Y.
- Q2: what is the object whose effect on Y you want to understand?
- Let's call this X.

Modeling

- Where do these (decisions) come from?
- Theory.
- What is theory?
 - Mathematical model.
 - Conseptualization of existing **qualitative** knowledge.
 - Conseptualization of existing **quantitative** knowledge.

Let's look at the relationship between income and age

- Variables
 - 1 income = income in euros
 - 2 age = age in years
- We use the same FLEED data as in lecture 2, i.e., it comes from one year.
- These data are an example of **cross-section** data where each observation unit is observed only once and there is no (meaningful) time (second) dimension to the data besides the individuals.

Descriptive statistics

Descriptive statistics						
variable	mean	sd	median			
income	23 297	17 163	21 000			
age	41.87	16.29	43			

• For brevity, I do not show conditional descriptive statistics as we have already seen them in lecture 2.

Modeling the relationship between *income* and *age*

$$Y = f(X) \tag{1}$$

- What do we know about f(X)?
- How can we learn about it?

Quick aside - correlation

$$corr(Y, X) = \frac{cov(Y, X)}{\sqrt{var(X)}\sqrt{var(Y)}}$$

(2)

More structure - linear

$$Y = \beta_0 + \beta_1 X \tag{3}$$

- This is the so called population regression line. (**populaatio** regressio).
- Y is called the **dependent variable** or **endogenous variable** (vastemuuttuja).
- X is called the independent or the exogenous variable or regressor (selittävä muuttuja).
- β_0 , β_1 are the **parameters** of the model ((malli)parametrit).

More structure - linear

$$Y = \beta_0 + \beta_1 X \tag{4}$$

•
$$\beta_0, \ \beta_1$$
 interpretation?

- Intercept, slope.
- What is now assumed about what can influence Y?

How to allow for other factors?

$$Y = f(X, u) = \beta_0 + \beta_1 X + u \tag{5}$$

• *u* is called the **error term** or **residual** (**virhetermi**). Why such a name?

How to allow for other factors?

$$Y = f(X, u) = \beta_0 + \beta_1 X + u \tag{5}$$

- *u* is called the **error term** or **residual** (**virhetermi**). Why such a name?
- 1 It shows how much our model misses in terms of determining Y.

How to allow for other factors?

$$Y = f(X, u) = \beta_0 + \beta_1 X + u \tag{5}$$

- *u* is called the **error term** or **residual** (**virhetermi**). Why such a name?
- **1** It shows how much our model misses in terms of determining Y.
- **2** It measures those things that 1) affect Y and 2) we don't observe.

What is known about u?

- How large should the error be on average?
- Zero. Why?

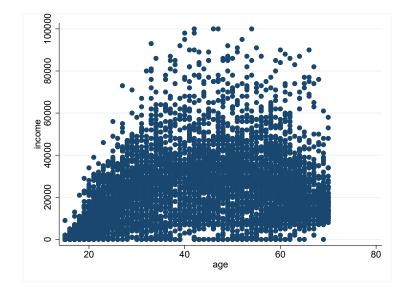
$$\rightarrow E[u|X] = 0$$

```
How to get \beta_0, \beta_1?
```

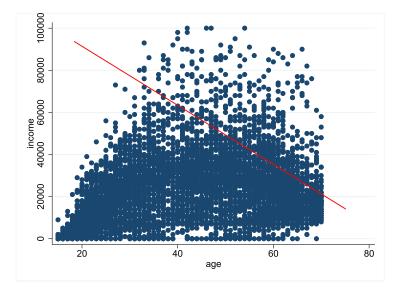
Stata code

```
1 scatter income age if year == 15 & income != . , ///
2 xtitle("age") ///
3 ytitle("income") ///
4 graphregion(fcolor(white))
```

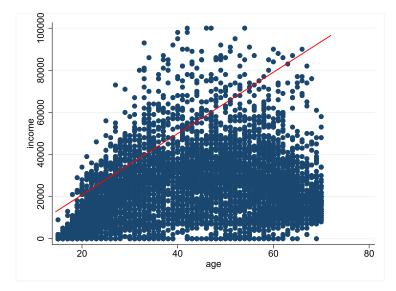
How to get β_0 , β_1 ?



How to get β_0 , β_1 ?



How to get β_0 , β_1 ?



• Ordinary Least Squares.

$$\boldsymbol{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \cdot \\ \cdot \\ \cdot \\ Y_n \end{pmatrix}, \quad \boldsymbol{U} = \begin{pmatrix} u_1 \\ u_2 \\ \cdot \\ \cdot \\ \cdot \\ u_n \end{pmatrix}, \quad \boldsymbol{X} = \begin{pmatrix} 1 & X_1 \\ 1 & X_2 \\ \cdot \\ \cdot \\ \cdot \\ 1 & X_n \end{pmatrix} = \begin{pmatrix} \boldsymbol{X}'_1 \\ \boldsymbol{X}'_2 \\ \cdot \\ \cdot \\ \cdot \\ \boldsymbol{X}'_n \end{pmatrix} ,$$

and $\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix}$.

(6)

.

• Ordinary Least Squares.

$$Y_{i} = \beta_{0} + \beta_{1}X_{i} + u = X_{i}^{\prime}\beta + u_{i}$$

$$Y = X\beta + U$$
(8)

$$\mathbb{E}[Y - (\beta_0 + \beta_1 X)] = \mathbb{E}[u|X] = \mathbb{E}[Y - \mathbf{X}'_i \beta] = 0$$
⁽⁹⁾

$$\mathbb{E}[\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}] = \mathbb{E}[\boldsymbol{U}|\boldsymbol{X}] = 0$$
⁽¹⁰⁾

(7)

(10)

$$min_{\beta_0,\beta_1} \sum_{i=1}^{n} [Y_i - (\beta_0 + \beta_1 X_i)]^2$$

$$min_{\beta} (\boldsymbol{Y} - \boldsymbol{X}\beta)' (\boldsymbol{Y} - \boldsymbol{X}\beta)$$
(11)

 Suggestion: Do the derivation w/out using matrix algebra. It helps you understand the formula for β₁.

• Notice link to estimation of mean and set $\beta_1 = 0$.

$$\sum_{i=1}^{n} [Y - (\beta_0)]^2$$
(13)

• Now $\beta_0 = m = \mathbb{E}[\mu_Y]$.

$$\hat{\beta}_1 = \frac{\frac{1}{n} \sum_{i=1}^n XY - \bar{X}\bar{Y}}{\frac{1}{n} \sum_{i=1}^n XX - \bar{X}\bar{X}} = \frac{\operatorname{cov}(Y, X)}{\operatorname{var}(X)} = \frac{\operatorname{cov}(Y, X)}{\sqrt{\operatorname{var}(X)}\sqrt{\operatorname{var}(X)}}$$
(14)

Note: compare to the formula for correlation.

$$\hat{\beta}_{0} = \bar{Y} - \frac{\frac{1}{n} \sum_{i=1}^{n} XY - \bar{X}\bar{Y}}{\frac{1}{n} \sum_{i=1}^{n} XX - \bar{X}\bar{X}} \bar{X} = \bar{Y} - \hat{\beta}_{1}\bar{X}$$
(15)

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}' \boldsymbol{X})^{-1} (\boldsymbol{X}' \boldsymbol{Y})$$
 (16)

Predicted value (ennuste): $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ or $\hat{Y} = \hat{\beta} X$. Prediction error (ennustevirhe): $\hat{u}_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$ or $\hat{U} = Y - \hat{\beta} X$.

• NOTE: $\hat{u}_i \neq u_i$

Back to income and age...

```
• So let's run the regression:
```

Stata code

```
label var age "Age"
1
   reg income age if year == 15 & income != .
2
   estimates store lin_est
 3
   estimates table lin_est, b(\%7.3f) se(\%7.3f) p(\%7.3f) stat(r2)
 4
   esttab, scalar(F) r2 label ///
5
6
     title(Regression of income on age) ///
7
     nonumbers mtitles ("Model A") ///
8
     addnote("Data: teaching FLEED, Statistics Finland")
9
   esttab using income_age.tex, scalar(F) r2 label replace booktabs ///
      alignment (D\{.\}\{.\}\{-1\}) width (0.8 \ hsize)
10
11
      title(Income and age\label{tab1})
```

Regular Stata output table

Source	SS	df	MS	Numbe	r of obs	=	5,973 493.91
Model Residual	1.3441e+11 1.6249e+12	1 5,971	1.3441e+11 27212868	l Prob 7 R-squ	> F ared	=	493.91 0.0000 0.0764 0.0762
Total	1.7593e+12	5,972	294589468		-squared MSE	=	16496
income	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
age _cons	296.7539 10654.7	13.35276 607.5672	22.22 17.54	0.000 0.000	270.577 9463.64		322.9301 11845.75

Coefficients / economic significance

Source	SS	df	MS		er of obs	=	5,973
Model Residual	1.3441e+11 1.6249e+12	1 5,971	1.3441e+1 27212868	1 Prob 7 R - sq	5971) > F lared R-squared	=	493.91 0.0000 0.0764 0.0762
Total	1.7593e+12	5,972	29458946	2	-	=	16496
income	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
age _cons		13.35276 607.5672	22.22 17.54	0.000 0.000	270.57 9463.6		322.9301 11845.75

Standard errors etc., statistical significance of individual parameters

		ber of obs		MS	df	SS	Source
0.0000	=	, 5971) b > F quared	1 Prok	1.3441e+1	1 5,971	1.3441e+11 1.6249e+12	Model Residual
0.0762		R - squared t MSE	- Adj	29458946	5,972	1.7593e+12	Total
						I	
Interval]	onf.	[95% C	P> t	t	Std. Err.	Coef.	income
322.9301	76	270.57	0.000	22.22	13.35276	296.753	age
11845.75	44	9463.6	0.000	17.54	607.5672	10654.7	cons

Regression level statistical measures

				~				
Source	SS	df	MS	Numbe	er of obs	=	5,973	
				- F(1,	5971)	=	493.91	
Model	1.3441e+11	1	1.3441e+1	1 Prob	> F	=	0.0000	
Residual	1.6249e+12	5,971	27212868	7 R - squ	lared	=	0.0764	
				🚽 Adj H	R-squared	=	0.0762	
Total	1.7593e+12	5,972	29458946	8 Root	MSE	=	16496	
income	Coef.	Std. Err.	t	P> t	[95% Co:	nf.	[Interval]	
age	296.7539	13.35276	22.22	0.000	270.577	6	322.9301	
cons	10654.7	607.5672	17.54	0.000	9463.64	4	11845.75	
-								

A formatted version with the requested information only

. estimates store lin_est

. estimates table lin_est, b(%7.3f) se(%7.3f) p(%7.3f) stat(r2

lin_est
296.754 13.353 0.000 1.1e+04 607.567 0.000
0.076

legend: b/se/p

A LATEXversion of the same table

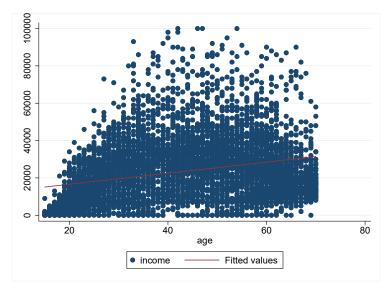
Table:	Income	${\rm and}$	age
--------	--------	-------------	-----

	(1) income
Age	296.8*** (22.22)
Constant	10654.7*** (17.54)
Observations R ² F	5973 0.076 493.9

t statistics in parentheses

st
 $p < 0.05$, $^{st st}$ $p < 0.01$, $^{st st}$ $p < 0.001$

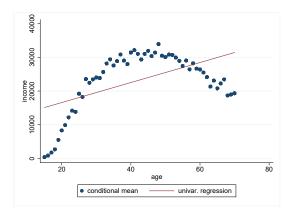
• What do β_0 and β_1 mean?



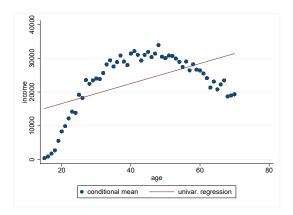
- $\beta_0 =$ the intercept.
- $\beta_1 =$ the slope of the regression line.

$$\mathbb{E}[Y|X=x] = \beta_0 + \beta_1 x \tag{17}$$

- Regression allows you to study the (changes in) the **conditional mean**.
- Thus, β_1 is the derivative of Y wrt. X.



• Why are the two conditional mean presentations in the figure different?



- Why are the two conditional mean presentations in the figure different?
- The regression "forces" the relationship to be linear, i.e., we chose the relationship to be linear.

- How good is the model's fit? How much does it explain?
- Of what..? Answer: of the variation in Y.

Explained sum of squares (ESS): $\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$. Total sum of squares (TSS): $\sum_{i=1}^{n} (Y_i - \bar{Y})^2$.

Residual sum of squares (RSS): $\sum_{i=1}^{n} (u_i)^2$.

$$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS} \in [0, 1]$$
(18)

- R² "close to one" = "almost all" variation in Y captured by the model (= variation in X).
- R² "close to zero" = "almost no" variation in Y captured by the model (= variation in X).
- Note #1: R^2 has no effect on the interpretation of β .
- Note #2: R^2 will have an effect on whether we reject the model or not, on statistical grounds.