ECON-C4100 - Capstone: Econometrics I

Lecture 7: Multiple regression #2: estimation

Otto Toivanen

Learning outcomes

- At the end of this lecture, you
- 1 understand what how multivariate regression differs from univariate regression.
- 2 understand how and why to carry out a multivariate regression analysis.
- 3 appreciate the assumptions made in multivariate regression analysis.
- are aware of the most common pitfalls in regression analysis.

Issues?

- How do the individual coefficients compare to univariate results?
- 2 What explains the difference(s)?
- What about statistical significance of individual coefficients?
- What about several / all coefficients?
- **6** What about R^2 ?

Toivanen Lecture 7 3/65

Issues?

- 6 What is the interpretation of individual coefficients?
- (under what assumptions) Does OLS work?
- 8 How to choose which explanatory variables to include / exclude?
- What if the world is more complicated than linear?
- What all can go wrong, and how would I know / find out?

Toivanen Lecture 7 4 / 65

Q6 What is the interpretation of individual coefficients?

• Our estimation equation is:

$$Income = \beta_0 + \beta_{AgeMV} Age + \beta_{GMV} G + u_{MV}$$
 (1)

Toivanen ECON-C4100 Lecture 7 5/65

Interpretation of individual coefficients

 Regression yields the conditional expectation of the dependent variable Y:

$$\mathbb{E}[Y|X = x] = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$$
 (2)

$$\mathbb{E}[Income_i | \mathbf{X} = \mathbf{x}] = \beta_0 + \beta_{AgeMV} Age_i + \beta_{GMV} G_i$$
 (3)

 By plugging into the regression those values of X that we are interested we get the conditional expectation of Y.

Toivanen ECON-C4100 Lecture 7 6 / 65

Interpretation of individual coefficients

Example: the expected income of a woman of 35 years of age is:

$$\mathbb{E}[\mathit{Income}_i | \textbf{X} = 35, 1] = 12819.2 + 298.55 \times 35 - 4545.02 \times 1 = 18723.4$$

Example: the expected income of a man of 55 years of age is:

$$\mathbb{E}[\textit{Income}_i|\textbf{X}=55,0]=$$
 12819.2 + 298.55 × 55 - 4545.02 × 0 = 29239.45

Toivanen ECON-C4100 Lecture 7 7/65

Interpretation of individual coefficients

• Coefficients as partial derivatives:

$$\frac{\partial \mathbb{E}[Income_i|\mathbf{X}]}{\partial X_k} = \beta_k \tag{4}$$

 With discrete explanatory variables cannot take derivatives, so a coefficient measures the change in Y from a one unit change in X_k:

$$\beta_k = \mathbb{E}[Income_i | \boldsymbol{X}, X_k = m] - \mathbb{E}[Income_i | \boldsymbol{X}, X_k = m - 1]$$
 (5)

- Notice that in both, we fix all other variables (their effect on Y).
- So β_G is the effect of gender on income, **keeping the effect of** Age **constant**.

Toivanen ECON-C4100 Lecture 7 8 / 65

Q7 What are the OLS assumptions?

- **1** Strict exogeneity: $\mathbb{E}(u|\mathbf{X}) = 0$.
- **2** (X_i, Y) , i = 1, ..., n are independent and identically distributed across observations.
- 3 X_i and Y_i (u_i) have finite fourth moments.
- 4 No perfect multicollinearity (X has full column rank).
- **5** Auxiliary: u_i is homoskedastic.

Perfect multicollinearity

- Analog: To solve a system of equations, you need as many equations as you have unknowns.
- Two variables are perfectly (multi)collinear if one is a perfect linear function of the other.
- Example: Think of a phenomenon with two mutually exclusive and **exhaustive** outcomes, A and B.
- A dummy taking value 1 if A is true and 0 otherwise: $D_A = 1 D_{B_A}$ where D_B is the dummy taking value 1 if B is true and 0 otherwise ("dummy variable trap)".
- Perfect collinearity = correlation +/-1.

Collinearity of two variables

- Recall from previous lecture the two-variable model (App 6.2. in S&W).
- 2 explanatory variables and homosk. errors, $\rho_{X_1,X_2} \neq 0$. Then

$$\sigma_{\beta_1}^2 = \frac{1}{n} \frac{1}{1 - \rho_{X_1, X_2}^2} \frac{\sigma_u^2}{\sigma_{X_1}^2}$$

Collinearity of two variables

- Notice what happens when $\rho_{X_1,X_2} \to 1$.
- Collinearity (= "high" ρ_{X_1,X_2}) increases the standard error(s) of the other coefficient(s).
- Correlation between the Xs is a two-edged sword:
 - 1 It removes omitted variable bias.
 - 2 It reduces the efficiency gains from introducing a further explanatory variable.

Collinearity vs. multicollinearity

- Collinearity refers to the (high) correlation between two variables.
- Multicollinearity is a characteristic of a matrix (vector) X.
- While the pair-wise correlations between elements of X may be "not so high", the aggregate effect of them may lead to inflated standard errors.

- Too few explanatory variables \rightarrow possible omitted variable bias.
- Too many variables may lead to multicollinearity and inflated se's.
- Note: "too many" requires correlation among explanatory variables.
- Can one test one's way out of this?
- No, but tests do help.

- There are tests of individual and of joint significance. Why cannot I run these on autopilot?
- Case #1: start from a small model, add variables according to some (statistical) criterion.
- Case #2: start from a large model, drop variables according to some (statistical) criterion.
- Case #3: use machine learning methods (for later). Designed especially for the case where number of variables > number of observations.

- What goes wrong?
 - **1** Statistical significance \neq economic significance.
 - 2 Statistical significance \neq economic relevance.
 - 3 You may end up with variables that are highly correlated with Y, but have no real connection to it.
 - 4 Multiple testing leads to wrong (too good) test results.

- The principled approach:
 - 1 Before touching your data, write down a protocol.
 - 2 Base explanatory (control) variables on theory and existing knowledge.
 - 3 Specify a testing protocol.
 - 4 Execute.

- The practical approach:
 - 1) Try to be as close to the principled approach as possible.
 - 2 Learning allowed and encouraged \rightarrow new/respecification.
 - 3 Robustness testing.

- Robustness testing:
 - 1 It is rarely the case that there is a "right model" that you can (re)cover.
 - 2 Ask: are your results sensitive to small, well-justified changes to your model?
 - 1 Adding (meaningful) variables.
 - 2 Deleting variables.
 - 3 Changing functional form.
 - 4 Changing assumptions about the error term.

- Well, nothing prevents us from making our model nonlinear.
 - 1 Keep the \boldsymbol{X} base-variables the same, but make the function $f(\boldsymbol{X})$ more complicated.
 - 2 Transform the variables.
- Let's start by making f(X) more complicated.
- Let's remind ourselves of what the income age graph looks like.
- But before that let's remind ourselves of what polynomial functions are.

Polynomial of order k (of one variable):

$$p(X) = \sum_{i=0}^{k} \alpha_i X^k$$
$$= \alpha_0 + \alpha_1 X + \alpha_2 X^2 + \dots + \alpha_k X^k$$

Polynomials may consist of several variables.

 The figure suggests that an inverted - U shaped function could be a good fit.

Toivanen ECON-C4100 Lecture 7 22 / 65

- The figure suggests that an inverted U shaped function could be a good fit.
- Let's try a quadratic function of age.

Table: Polynomial income regressions

	(1)	(2)
	income	income
Age	296.8***	2958.2***
	(13.35)	(74.84)
Age2		-31.48***
		(0.874)
Constant	10654.7***	-37549.0***
	(607.6)	(1446.6)
Observations	5973	5973
r2	0.0764	0.241
F	493.9	949.9

Standard errors in parentheses

*
$$p < 0.05$$
, ** $p < 0.01$, *** $p < 0.001$

- How to test for the order of the polynomial?
 - 1 Start from an order that is a reasonable (high) one, such as 3 or 4.
 - 2 Test down, i.e., whether the high(er) order term(s) are (jointly) significant.
- Notice: here you have a prior plan.
- Notice #2: a more modern version of this would involve a semi- or non-parametric approach (for later courses).
- Let's test whether a second order polynomial is sufficient by adding a third order term.
- Notice that for pedagogical purposes I am doing things in the wrong order.

Table: Polynomial income regressions

	(1)	(2)	(3)
	income	income	income
Age	296.8***	2958.2***	4685.0***
	(13.35)	(74.84)	(317.0)
Age2		-31.48***	-75.69***
		(0.874)	(7.934)
Age3			0.346***
			(0.0618)
Constant	10654.7***	-37549.0***	-57597.8***
	(607.6)	(1446.6)	(3856.7)
Observations	5973	5973	5973
r2	0.0764	0.241	0.245
F	493.9	949.9	646.9

Standard errors in parentheses p < 0.05, ** p < 0.01, *** p < 0.001

- Can you do more than use polynomials?
- Yes... though polynomials give very good approximations.

$$Y = f(X) + u$$

- Give f(X) any shape you like.
- We will skip this for now (semi- and nonparametric estimation).

Q9 Interactions

- What if there is reason to believe that the effect of X_1 depends on the value of X_2 ?
- Examples:
 - 1 Returns to experience (=age) and/or education different by gender.
 - 2 Effect of R&D subsidies different by firm size.

Example: Effect of age on income depends on gender

Income =
$$f(Age, G, u) = \beta_0 + \beta_{Age} \times Age + \beta_G \times G + u$$

Income = $f(Age, G, u) = \beta_0 + \beta_{Age} \times Age + \beta_g \times G$
 $+ \beta_{AgeG} \times Age \times G + u$

- What is now the expected income | gender?
- What is now the expected income | age?
- Make sure you understand how to calculate conditional expectations such as those above.

Toivanen Lecture 7 30 / 65

Q9 Example: Effect of age on income depends on gender

- How to calculate the effect of age on income?
- Now depends on the value of G directly.
- Notice
 - 1 without the interaction $Age \times G$ the effect of age on income independent of G (= the same no matter what value G takes).
 - 2 not true any more with the interaction.
- **Note:** if you add an interaction, make sure to have the original variables in the specification as well.

Toivanen ECON-C4100 Lecture 7 31 / 65

Table: Polynomial income regressions

	(1)	(2)
	income	income
Age	298.5***	333.5***
	(13.23)	(18.80)
Gender	-4545.0***	-1598.7
	(422.9)	(1203.3)
$Age_{-}G$		-69.16**
		(26.44)
Constant	12819.2***	11336.3***
	(634.6)	(850.8)
Observations	5973	5973
r2	0.0939	0.0950
F	309.4	208.8

Standard errors in parentheses p < 0.05, ** p < 0.01, *** p < 0.001

Q9 Transformations of variables

- What is a transformation of a variable?
- Use some g(X) instead of X.
- Most often use (natural) log of X.
- Sometimes $\frac{1}{X}$.
- Always use a monotonic transformation!

Which variable to transform?

- *Y*, *X*, or both (all)?
- Using logs smooths the data, i.e., decreases the differences across different values that the variable takes.
- Taking logs allows negative values for a non-negative variable (if value < 1)
- On the other hand, cannot take logs if < 0.

Log approximation to % change

$$\ln(Y + \Delta Y) - \ln(Y) \cong \frac{\Delta Y}{Y}$$

Which variable to transform?

1. Only *Y*

In Income =
$$\beta_0 + \beta_{Age} \times Age + \beta_G \times G + u$$

Income = $e^{\beta_0 + \beta_{Age} \times Age + \beta_G \times G + u}$
= $e^{\beta_0} e^{\beta_{Age} \times Age} e^{\beta_G \times G} e^u$

- Interpretation of β_{Age} ?
- A 1 unit increase in Age is associated with at β_{Age} percentage change in income.
- β_{Age} is a semi-elasticity.

Toivanen Lecture 7 36 / 65

Which variable to transform?

2. Only *X*

$$Income = \beta_0 + \beta_{ln Age} \times ln Age + \beta_G \times G + u$$

- Interpretation of $\beta_{\ln Age}$?
- A 1% increase in Age is associated with at $0.01 \times \beta_{\ln Age}$ change in income.

Toivanen Lecture 7 37 / 65

Log approximation to % change

38 / 65

Which variable to transform?

3. Both Y and X

$$In Income = \beta_0 + \beta_{In Age} \times In Age + \beta_G \times G + u$$

- Interpretation of $\beta_{\ln Age}$?
- $\beta_{\ln Age} = \%$ -change in income due to a 1% increase in Age.
- In other words, $\beta_{\ln Age}$ is the **age elasticity of income**.

Toivanen Lecture 7 39 / 65

Which variable to transform?

Stata code

```
gen Inincome = In(income)
   gen Inage = In(age)
   regr income age gender if year == 15 & income != . & income_age_m != ., robust
       eststo linear
   regr Inincome age gender if year == 15 & income != . & income_age_m != ., robust
       eststo loglin
   regr income Inage gender if year == 15 & income != . & income_age_m != ., robust
       eststo linlog
   regr Inincome Inage gender if year == 15 & income != . & income_age_m != ., robust
10
       eststo loglog
11
  estout linear loglin linlog loglog, cells(b(star fmt(3)) se(par fmt(2))) ///
12 stats(r2 r2_a F N, fmt(%9.5f %9.5f %9.0g))
```

Log-linear transformations

Table: Log vs linear variables in income regressions

	(1)	(2)	(3)	(4)
	income	Inincome	income	Inincome
age	298.5***	0.0206***		
	(13.23)	(0.000723)		
gender	-4545.0***	-0.143***	-4503.1***	-0.140***
	(422.9)	(0.0226)	(412.7)	(0.0217)
InAge			14059.7***	0.982***
			(486.4)	(0.0269)
Constant	12819.2***	8.970***	-26075.9***	6.236***
	(634.6)	(0.0350)	(1806.8)	(0.100)
Observations	5973	5695	5973	5695
r2	0.0939	0.130	0.137	0.194
F	309.4	425.3	475.3	686.8

Standard errors in parentheses p < 0.05, ** p < 0.01, *** p < 0.001

Interpretations of β_{Age} , $\beta_{\ln Age}$ (mean age = 43)

• Linear: a 1 unit = 1 year ($\approx 2.3\%)$ increase in age increases income by

300€

ullet Log-linear: a 1 unit = 1 year increase in age increases income by

$$2.1\% \to 0.021 \times 23296.67 \in \approx 490 \in$$

• Linear-log: a 1% (note: $\ln(1.01)\approx 0.01$) increase in age (≈ 0.43 years) increases income by

• Log-log: a 1% increase in age increases income by 0.982%. Effect of a 1 year increase

Toivanen ECON-C4100 Lecture 7 42 / 65

Interpretations of β_{Age} , $\beta_{\ln Age}$ (mean age = 43)

- Using the log of the dependent variable \rightarrow coefficient interpretation in **percent**.
- Typically, in economic data, using log of explanatory variable leads to higher R^2 .
- Many economic variables have a lower limit (income cannot be negative), but OLS assumes that the support is the real line.
 - \rightarrow log transformation allows coverage of the real line.
 - \rightarrow log transformation necessitates Y(X) > 0.

Toivanen Lecture 7 43 / 65

Q10 What can go wrong?

- 1 Internal validity.
- 2 External validity.

Internal validity

- 1 Omitted variable bias (= OVB).
- 2 Functional form misspecification (mistake).
- Measurement error in variable(s) (linked to OVB).
- 4 Sample selection (OVB).
- **5** Simultaneous (reverse) causality (OVB).
- 6 Non-homoskedastic errors.

Internal validity 1. - Omitted variable bias

- The relevant condition the one we have already discussed.
- "Judicious" choice of controls.
- Add variables.
- There are further solutions. We will get to these.

Internal validity 2. - Functional form

- How can you be sure?
 - 1 Tests between the functional forms you try.
 - 2 Note: can easily test only those functional forms that are "nested".

Example #1: 1st and 2nd order polynomial **nested** (= one is a restricted version of the other).

Example #2: log-log and linear are non-nested.

 Try out different ones and check robustness of your results (see earlier).

Toivanen ECON-C4100 Lecture 7 47 / 65

• Case #1: Y measured with error, error random.

$$Y_{observed} = Y + error$$

• Let's have a look at our regressions:

Regression we'd like to estimate:

$$Y = \beta_0 + \beta_1 X + u$$

Regression we can estimate:

$$Y_{observed} = Y + error = \beta_0 + \beta_1 X + u + error$$

= $\beta_0 + \beta_1 X + v$

- Measurement error in Y not a big problem (as long as random).
- Leads to higher standard errors, but no bias.

Toivanen ECON-C4100 Lecture 7 49 / 65

• Case #2: X measured with error, error random.

$$X_{observed} = X + error, \ \rho_{X,error} = 0$$

- This is the case of so-called classical errors-in-variables. This case is "well-behaved".
- Let's have a look at our regression:

We would like to estimate

$$Y = \beta_0 + \beta_1 X + u$$

• However we only observe $X_{observed} = X + error$. Hence we need to rewrite

$$Y = \beta_0 + \beta_1 X + u$$

$$= \beta_0 + \beta_1 X_{observed} - \beta_1 (X_{observed} - X) + u$$

$$= \beta_0 + \beta_1 X_{observed} - \beta_1 error + u$$

$$= \beta_0 + \beta_1 X_{observed} + v$$

Toivanen ECON-C4100 Lecture 7 51/65

• One can show (see SW ch. 9.2):

$$\hat{\beta_1} = \frac{\sigma_X^2}{\sigma_X^2 + \sigma_{\textit{error}}^2} \beta_1$$

- $\frac{\sigma_{\chi}^2}{\sigma_{\chi}^2 + \sigma_{error}^2} =$ signal to noise ratio.
- The larger is the role of the error, i.e., the larger is σ^2_{error} relative to σ^2_X , the more biased is $\hat{\beta}_1$.
- This is so-called **Attenuation bias**.

- Solution #1: Get better measures.
- Solution #2: Get a measure of σ_{error}^2 .
- Solution #3: A technical solution (instrumental variables) that we will get to later.

Toivanen Lecture 7 53 / 65

Internal validity 4. - Sample selection

- Your observations are not a random sample of the underlying population.
- Example #1: Estimate the returns to entrepreneurship using 5 year old firms.
- The non-profitable entrants exit.
- Example #2: Estimate the returns to graduating quickly.
- Those who graduate quickly have unobservable skills that make them (un)attractive to employers.

Internal validity 4. - Sample selection

- Example #3: estimate effects of R&D subsidies.
- Firms that get subsidies not avg. firms.
- Rule: think through and understand selection into your sample.
- Model selection into the sample.
- We will discuss this later, but in general is an advanced topic.

Internal validity 4. - Sample selection

- Sample selection can threaten internal validity the parameters you obtain for the population of interest are biased.
- Sample selection can also threated the external validity of your exercise, i.e., even if you get unbiased estimates for the population in question, your results do not generalize.

Internal validity 5. - Simultaneous causality

- Think of the determination of prices and quantities.
- Price affects how much is sold and produced.
- How much is bought and produced affects the price.
 - \rightarrow simultaneous causality.
- We will come back to this.

Internal validity 6. - Heteroskedasticity

- Deviations from homoskedasticity can take different forms depending on the data.
- With sequential observations, maybe also correlation over time (autocorrelation).
- With e.g. geographical data, correlation across observation units (clustering).
- Affects statistical precision (=standard errors) of individual coefficients, nothing else.
- Can be corrected by using robust standard errors (with potential loss of efficiency - but robust se's can be smaller than homosc. se's).
- In data with relevant other dimensions (e.g. geographical locations), clustered se's may be more appropriate than regular robust se's.

Toivanen ECON-C4100 Lecture 7 58 / 65

Internal validity 6. - heteroskedasticity

Stata code

```
regr income age gender if year == 15 & income != . & income_age_m != .
eststo linear
regr income age gender if year == 15 & income != . & income_age_m != ., robust
eststo linear_het
```

Internal validity 6. - heteroskedasticity

Table: Homosk vs heterosk se's in income regressions

(1)	(2)
income	income
298.5***	298.5***
(13.23)	(11.82)
-4545.0***	-4545.0***
(422.9)	(421.6)
12819.2***	12819.2***
(634.6)	(566.5)
5973	5973
0.0939	0.0939
309.4	369.3
	income 298.5*** (13.23) -4545.0*** (422.9) 12819.2*** (634.6) 5973 0.0939

Standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

External validity - Recall from Lecture 1

Econometrics:

A branch of economics in which economic theory and statistical methods are fused in the analysis of numerical and institutional data

Hood, W. & Koopmans, T. (1953). Studies in econometric method. Cowles Commission Monograph no. 14, Wiley

External validity

- External validity = results generalize to other settings than the one studied.
- Any (material) change to any of the components of your study jeopardizes external validity.
- Differences in (applicable) theory.
- Differences in statistical method.
- 3 Differences in data (including in populations).
- Differences in institutions.

External validity

- Example: Do our income age results hold for (an)other year in the FLEFD data?
- Let's compare results from current year 15 to year 10.

External validity: comparison of results from two very similar data

Table: Polynomial income regressions

(1)	(2)
year 15	year 10
298.5***	216.4***
(13.23)	(11.74)
-4545.0***	-4765.7***
(422.9)	(361.7)
12819.2***	12167.0***
(634.6)	(568.5)
5973	5779
0.0939	0.0803
309.4	252.2
	year 15 298.5*** (13.23) -4545.0*** (422.9) 12819.2*** (634.6) 5973 0.0939

Standard errors in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

External validity

- Is any study externally valid?
- Yes and no.
- Best to ensure internal validity, and conduct many studies.