ECON-C4100 - Econometrics I

Lecture 9: Causal parameters part I

Otto Toivanen

Learning outcomes

- At the end of this lecture, you understand
- 1 what causality means in empirical research.
- 2 the benefits of experiments in identifying causal parameters.
- 3 that in the case of experiments, a causal interpretation rests on assumption(s).

Starting point - causality

Wikipedia:

Causality (also referred to as 'causation',^[1] or 'cause and effect') is the agency or efficacy that connects one process (the cause) with another (the effect), where the first is understood to be partly responsible for the second. In general, a process has many causes, which are said to be causal factors for it, and all lie **in its past**. An effect can in turn be a cause of many other effects, which all lie **in its future**.

Wikipedia c'ed

• Necessary causes:

If X is a necessary cause of Y, then the presence of Y necessarily implies the presence of X. The presence of X, however, does not imply that Y will occur.

Sufficient causes:

If X is a sufficient cause of Y, then the presence of X necessarily implies the presence of Y. However, another cause Z may alternatively cause Y. Thus the presence of Y does not imply the presence of X.

Causality in (empirical) science

- X causes Y
 - = a change in X changes the probability of Y happening (or the expected value of Y), keeping everything else the same.
 - = neither necessary nor sufficient.

Causality and timing

- Is it true that the cause always happens before the effect?
- You need to get a virus first for it to infect you.
- When do you take the vaccination?
- ... and why? To avoid getting a disease later.

Causality vs. determinism

- "X causing Y" \neq "X determines Y".
- X determining Y is a (very) strong statement.
- · Causality is best thought in terms of affecting
 - 1 the probability of Y happening (discrete 0/1 Y)
 - $oldsymbol{2}$ the expected value of Y

Crucial distinction I

As a deterministic relationship:

$$Y = f(X)$$

• As a probabilistic relationship:

$$Y = f(X, u)$$

Crucial distinction II

• As a description of the data:

$$Y = f(X, u)$$

• As a causal relationship:

$$Y = f(X, u)$$

9/58

Examples

- Income and age are positively correlated.
- Sales of stilton cheese and children's toys are positively correlated.
- Height and earnings are positively correlated.

Case, A. & Paxson, C. (2008). Height, ability and labor market outcomes. Journal of Political Economy, 116(4), 499-532.



FIG. 1.—Heights across occupations, men. U.S. evidence is based on data from the National Health Interview Survey, and British evidence is based on data from the 1970 British Cohort Study.

TABLE 1 Log Earnings and Height

	N	MEN .	Women		
Dependent Variable	Height Coefficient	Observations	Height Coefficient	Observations	
Log weekly gross earnings	(.026	4,927	(.024	5,033	
Log average hourly gross earnings	(.004)	4,860	.019 (.005)	4,995	

Note.—OLS regression coefficients presented with standard errors in parentheses.

- Height and earnings are positively correlated.
- H1: height increases earning, all else equal.
- H2: all else is not equal, and the positive correlation reflects this.

- (Even identical) twins are of different weight at birth.
- The twin who is heavier at birth
 - 1 is taller as an adult
 - 2 has a higher IQ

Black, S., Devereux, P. & Salvanes, K. (2007). From the cradle to the labor market? the effect of birth weight on adult outcomes. *Quarterly Journal of Economics*, 122(February), 409–439.

Crucial distinction II

• As a description of the data:

$$Y = f(X, u)$$

• As a causal relationship.

$$Y = f(X, u)$$

 $\label{eq:table 6} {\it Log\ Average\ Hourly\ Earnings}, Test\ Scores, and the\ Returns\ to\ Height}$

	Men			WOMEN				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
				A. British Col	hort Study (197	70)		
Height at age 30	(.003)	(.004	(.002)	.000 (.003)	(.004)	(.004)	.008	.003
Tests scores ages 5 and 10 Ftest (p-value)	1.003	31.11 (.000)	(.003)	16.04	(.001)	(.000)	(.001)	21.19
Extended controls F-test (p-value)		(.000)	5.39 (,000)	3.00		(.000)	4.39 (.000)	2.01
Marginal contributions to R ² of: Test scores Extended controls Observations	2,253	2,253	2,253	.274 .322 2,253	2,127	2,127	2,127	.352 .225 2,127

Note.—OLS regression coefficients presented with standard errors in parentheses.

Toivanen ECON-C4100 Lecture 9 16 / 58

- Great to explore the data through descriptive analysis.
- "Conditional distributions".
- To establish causality, need a convincing framework of analysis and data generation.

How to establish causality empirically

First, you need a theory...

How to establish causality empirically

- Mnowing the mechanism light switch and light.
- 2 Laboratory experiment medical research using mice.
- 3 Field experiment agricultural research.
- Matural experiment birth of twins.
- Quasi-natural experiment ties in elections (96-12: 1351 candidates in Finnish municipal elections). Hyytinen, A., Meriläinen, J., Saarimaa, T., Toivanen, O. & Tukiainen, J. (2018). Public employees as politicians: Evidence from close elections. American Political Science Review, 112(1), 68-81.

Toivanen ECON-C4100 Lecture 9 19/58

Widely (though not unanymously) considered the *gold standard* of causal (empirical, statistical) research.

- Genetically enginered mice.
- Same temperature, same humidity, same food, same (kind of) room, same everything.
- One type of treatment (0/1).
- What needs to be done?

- So, in a lab, everything else but the **treatment** is either
 - 1 equal across the groups, or at the very least
 - 2 random

What difference does equal vs. random make? Think of

$$Y = \beta_0 + \beta_1 X + u$$

- The more things are equal as opposed to random, the smaller is σ_u
 - ... therefore the higher is R^2
 - ... and the smaller the standard error of β_1 (and β_0).

- Calculate the mean of Y for the treatment group
- 2 Calculate the mean of Y for the control group
- 3 Test the statistical significance of the difference in means
- You're done

A short sidestep: Power calculations

- What determines whether you can detect a causal effect when one really exists?
- 2 Answer: think back to everything that affects the value of your t-test.
 - 1 The effect size (difference in means between the treatment and control samples)
 - 2 Variation in the outcome (=variance of Y)
 - Sample size
 - 4 Required statistical significance

A short sidestep: Power calculations

- Power calculations are a tool to determine how large a sample size you need, given the other parameters.
- Obviously, one can also ask e.g. what the Minimum Detectable Effect size (MDE) is.
- Power = Pr[HO rejected | H1 true].
- Think of t-test:

$$t = \frac{\bar{Y}_{treated} - \bar{Y}_{control}}{\sigma/\sqrt{N}}$$

- One can find power calculators on the net (for simple cases).
- Example of a power calculator.

Example of a power calculation

mean treated	2	1.5	1.2	1.1	1.05
mean control	1	1	1	1	1
std. error	1	1	1	1	1
significance level	0.05	0.05	0.05	0.05	0.05
power	0.8	0.8	0.8	0.8	0.8
required N	16	63	393	1570	6280
mean treated	2	1.5	1.2	1.1	1.05
	2	1.5 1	1.2 1	1.1	1.05 1
mean treated					
mean treated	1	1	1	1	1
mean treated mean control std. error	1 2	1 2	1 2	1 2	1 2

$$Y = \beta_0 + \beta_1 X + u$$

What does it mean that X is randomly assigned?

$$cov(X, u) = 0$$

$$\rightarrow \mathbb{E}[\hat{\beta}_1] = \beta_1 + \rho_{Xu} \frac{\sigma_u}{\sigma_X} = \beta_1$$

- So, lab experiments are the gold standard.
- You should believe the results of a lab experiment to be causal if...
- ... you **believe** all else but the treatment is random.

All causal results from empirical (statistical) research are based on assumption(s).

- → Crucial acid test:
 - ① What are the assumptions needed to make the result a causal one?
 - 2 Are these assumptions credible ("believable")?

- This may be a tough threshold to cross.
- Sorge & al. (2014). Olfactory exposure to males, including men, causes stress and related analgesia in rodents. *Nature Methods*, 11(6), 629–632.
- Question: Does the gender of the lab experimenter affect the outcome of the experiment?

Laboratory experiment - setup

- Subjects and stimuli. Experimentally naive, adult (6–12 weeks) male and female CD-1 mice (ICR:Crl, Charles River) were used for most experiments (CD-1®IGS Mouse);
- Male and female subjects were tested in separate runs.
- Mice were housed 3–6 per cage in standard shoebox cages with wood-chip bedding, with ad libitum access to food (Harlan Teklad 8604) and tap water, in a light-(14:10 h, lights on at 07:00 h) and temperature-controlled (21 \pm 2 °C) environment.

"Here we assess the most widely used outbred stocks of mice and present guidelines for their use."

Laboratory experiment - setup

- One experiment used naive, adult (12–14 weeks) female C57BL/6J mice (Charles River, Fig. 3d), and one used naive, adult (225–250 g) Wistar rats.
- Most mice were bred in-house; others (in Figs. 2d and 3d) were purchased and acclimated to the vivarium for at least 7 d before testing.
- Husbandry was provided by male staff.
- Animals were used only once and were exposed to only one presentation of one of various stimuli described below.

Laboratory experiment - results

- We found that exposure of mice and rats to male but not female experimenters produces pain inhibition.
- Male-related stimuli induced a robust physiological stress response that results in stress-induced analgesia.
- I.e., male presence caused **physical (biological) reactions**, not only behavioral reactions.

Laboratory experiment - results

- This effect could be replicated with T-shirts worn by men, bedding material from gonadally intact and unfamiliar male mammals, and presentation of compounds secreted from the human axilla (=arm pit).
- Experimenter sex can thus affect apparent baseline responses in behavioral testing.
- Our findings strongly suggest that standard laboratory practice should account for experimenter sex when investigating any phenomenon possibly affected by stress.

Field experiments with humans

- Large and growing literature.
- For example: Latif Jameel Poverty Action Lab, J-PAL.
- J-PAL affiliated researchers have 1166 ongoing and completed randomized evaluations in 95 countries.
- For a look at what type of questions economists are addressing using an RCT let's look at a paper studying cheating on taxes.

Example: cheating on taxes

Kleven, H., Knudsen, M., Thustrup, C., Kreiner, S., Pedersen & Saez, E. (2011). Unwilling or unable to cheat? evidence from a tax audit experiment in denmark. *Econometrica*, 79(3), 651–692.

Toivanen ECON-C4100 Lecture 9 39 / 58

Cheating on taxes

- What affects the degree of tax evasion?
 - Type of income (self-reported vs. third party reported)
 - 2 Stake at play = marginal tax rate
 - (random) auditing.
- Does the possibility to evade taxes generate behavioral responses, e.g., channeling income towards self-reported income?

Set-up

- 42 800 tax payers in a stratified random sample for filing and auditing seasons 2007 and 2008.
 - pp. 660-1. The sample of employees was stratified by tax return complexity, with an over-sampling of filers with high-complexity returns.
- First stage: Random selection into unannounced audits of 2006 income.
- Second stage: Pre-announced audits of 2007 income, with researcher-induced variation.

Toivanen ECON-C4100 Lecture 9 41/58

Set-up

- Second stage included both subjects that were part of the 1st stage audits, and those that were not.
- Three possibilities:
 - Receiving a letter stating that the subject's 2007 income will be audited for sure (in 2008)
 - Receiving a letter stating that the subject's 2007 income will be audited with probability 0.5 (in 2008)
 - 3 No letter.

Set-up

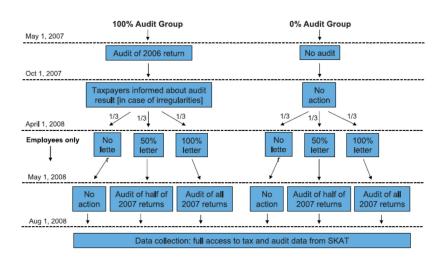
- This set-up is very rich and allows to study:
 - 1 How much tax avoidance there is (the first stage)?
 - What affects the degree of tax avoidance?
 - 3 How past audits affect future tax reporting?
 - 4 How the threat of an audit affects tax reporting?

Danish taxes

TABLE I

DANISH INDIVIDUAL INCOME TAX IN 2006

A. Income Concepts			
Income Concept	Definition		
1. Labor income	Salary, wages, honoraria, fe earnings	es, bonuses, fringe benefi	ts, business
2. Personal income	Labor income (1) + social t alimony – payroll tax, and		
Capital income	Interest income, rental inco on debt (mortgage, bank lo	me, business capital incon	ne – interest
4. Deductions	Commuting costs, union fee work related expenditures,	es, unemployment contrib	utions, other
5. Taxable income	= Personal income (2) + ca		
6. Stock income	Dividends and realized cap		
B. Tax Rates and Tax Bases			
Tax Type ^a	Tax Base	Bracket (DKK) ^b	Tax Rate
Pavroll tax	Labor income	All income	8.0%
,		38,500-265,500	5.5%
National income tax	Personal income +	265,500-318,700	11.5%
	max(capital income, 0)	318,700-	26.5%°
Regional income tax	Taxable income	38,500-	32.6%d
Stock income tax	Stock income	0-44,400	28.0%
		44,400-	43.0%


^aThe national and regional income taxes are based on individual income (not family income). The stock income tax is based on family income with brackets for married tax filers twice as large as those reported in the table.

44 / 58

^bAll amounts are given in Danish kroner: U.S. \$1 = 5.2 DKK as of January 2010.

 $^{^{}c}$ The top rate is reduced so that the combined national and regional income top marginal tax rate never exceeds 59%. The top marginal tax rate on labor income including the payroll tax is therefore 0.08+0.92*0.59=62.3%.

Experimental design

Worries re experimental set-up

- Spillovers between treated and control individuals?
 - 1 No media coverage
 - 2 Taxpayers did not know there was an experiment
 - 3 Taxpayers would need to talk about their treatment by SKAT. (456 individuals whose spouse also in the sample)

Did randomization succeed?

- If randomization works well, then...
 - All observables but those the researcher has decided to vary across groups should not differ across groups
 - 2 This is something that to greater or lesser extent can be checked

2 differences statistically significant out of 39.

TABLE A.I

of 39.			PANDOM	IIZATION C	HECKS: A	UDIT AN	D LETTER EX	PERIMENT:	S ^a				
		A. Audit	Randomization		B. Letter Randomization			\rightarrow	C. Within Letter Randomization				
	_	100%		Difference	_	_		Difference	50%	1000%		Differenc	
	0% Audit	Audit	Difference	Standard	No-Letter	Letter	Difference	Standard	Letter	Letter	Difference	Standard	
	Group	Group	100% - 0%	Error	Group	Group	Col. 6 - Col. 5	Error	Group	Group	Col. 10 - Col. 9	Error	
	1	2	3	4	5	6	7	8	9	10	11	12	
Net income	265,209	263,485	-1724	(6047)	239,936	244,477	4541	(3425)	243,878	245,078	1200	(4422)	
lotal tax	100,968	100,460	-508	(3010)	82,443	84,230	1786	(1588)	84,022	84,438	415	(2073)	
ersonal income	216,418	217,426	1007	(2351)	257,022	259,748	2725	(2904)	259,374	260,123	749	(3730)	
Capital income	-13,127	-12,805	323	(1015)	-16,554	-15,485	1068	(534)	-15,613	-15,358	255	(626)	
Deductions	-11,839	-11,976	-138	(160)	-8333	-8304	29	(160)	-8268	-8341	-73	(193)	
stock income	18,141	15,880	-2261	(4928)	7371	8220	849	(1777)	7857	8584	727	(2243)	
ielf-employment	55,616	54,960	-656	(2869)	430	299	-131	(209)	527	70	-457	(268)	
6 with net income	99,55	99.52	-0.03	(0.07)	98.73	98.64	-0.09	(0.15)	98.52	98.76	0.24	(0.19)	
with total tax	96.71	96.61	-0.11	(0.17)	96.64	96.26	-0.38	(0.25)	96.26	96.25	-0.02	(0.31)	
with personal income	94.98	94.85	-0.13	(0.21)	97.29	97.11	-0.18	(0.22)	96.99	97.23	0.25	(0.27)	
6 with capital income	95.67	95.40	-0.27	(0.20)	97.02	96.90	-0.12	(0.23)	96.77	97.03	0.26	(0.28)	
6 with deductions	71.69	71.76	0.07	(0.44)	64.18	64.49	0.31	(0.65)	64.79	64.19	-0.60	(0.77)	
% with stock income	40.30	40.23	-0.07	(0.47)	44.07	43.63	-0.44	(0.67)	43.59	43.68	0.09	(0.80)	
6 with self-employment	40.18	40.37	0.19	(0.47)	0.78	0.79	0.01	(0.12)	0.77	0.82	0.05	(0.14)	
emale (%)	39.93	39.59	-0.33	(0.47)	49.80	50.10	0.30	(0.67)	49.83	50.38	0.55	(0.81)	
Married (%)	58.46	58.13	-0.32	(0.48)	54.54	53.22	-1.32	(0.67)	53.79	52.65	-1.13	(0.80)	
hurch membership (%)	85.83	85.71	-0.12	(0.34)	86.82	86.86	0.04	(0.46)	87,06	86,66	-0.40	(0.54)	
Copenhagen (%)	3.14	3.13	-0.01	(0.17)	3.17	3.33	0.16	(0.24)	3.32	3.34	0.02	(0.29)	
Age	49.28	49.43	0.14	(0.16)	49.09	48.90	-0.19	(0.25)	49.01	48.80	-0.21	(0.30)	
6 filing in 2007	97.08	96.94	-0.14	(0.16)	100.00	100.00	0.00	(0.00)	100.00	100.00	0.00	(0.00)	
Number of observations	23,148	19,630	42,778		9397	15,391	24,788		7706	7685	15,391		

^{*}This table presents randomization checks for the audit experiment (part A, columns 1–4) and the letter experiment (part B, columns 5–8 and part C, columns 5–12), part A compares baseline reported incomes in 2006 (before the audit experiment took place). Columns 1 and 2 present the baseline averages for the treatment group and other properties. Column 3 presents are areas for the treatment group and other contract group. The standard error of the difference between the treatment group and the control group. The standard error of the difference is presented in column 4. Parts B and C are constructed as in part A. In part B, the sample is restricted to tax filters to be registered as kell-engloyed, in the base year as the letter experiment could not be carried out for effect elemptoyed. In part C, the sample is further retrieved to xx filters to be registered as kell-engloyed, and the contract of the columns are sufficiently as the contract of the columns are sufficiently as th

Research question #1: How much tax evasion is there?

• Using 2007 data allows one to establish the level and type of tax evasion going on in 2006 (as reported in 2007).

Toivanen ECON-C4100 Lecture 9 49 / 58

Tax avoidance in 2007

TABLE II

AUDIT ADJUSTMENTS DECOMPOSITION^a

			A. Total Income	Reported		B. Third-Party vs. Self-Reported Income					
		Pre-Audit Income	Audit Adjustment	Under- reporting	Over- reporting	Third-Party Income	Third-Party Under- reporting 6	Self- Reported Income	Self-Reported Under- reporting 8		
I. Net Income	and Total Tax						_				
Net income	Amounts	206,038 (2159)	4532 (494)	4796 (493)	-264 (31)	195,969 (1798)	612 (77)	10,069 (1380)	4183 (486)		
	% Nonzero	98.38 (0.09)	10.74 (0.22)	8.58 (0.20)	2.16 (0.10)	98.57 (0.08)	2.31 (0.11)	38.18 (0.35)	7.39 (0.19)		
Total tax	Amounts	69,940 (1142)	1980 (236)	2071 (235)	-91 (11)	_		_			
	% Nonzero	90.76 (0.21)	10.59 (0.22)	8.41 (0.20)	2.18 (0.10)						
II. Positive and	Negative Incom	e									
Positive income	Amounts	243,984 (2511)	3776 (485)	3943 (485)	-167 (27)	223,882 (1860)	516 (76)	20,102 (1693)	3427 (478)		
	% Nonzero	98.24 (0.09)	5.80 (0.17)	4.78 (0.15)	1.02 (0.07)	98.15 (0.10)	1.60 (0.09)	19.53 (0.28)	3.41 (0.13)		
Negative	Amounts	-37,946 (1014)	756	853 (69)	-97	-27,913 (406)	97	-10,033	756 (68)		
income	% Nonzero	79.09 (0.29)	(71) 6.45 (0.18)	5.13 (0.16)	(14) 1.32 (0.08)	78.21 (0.29)	(12) 0.75 (0.06)	(862) 29.49 (0.33)	4.99 (0.16)		

(Continues)

Tax avoidance in 2007

Note: most common strategy among those earning self-reported income and evading is to evade by 100%.

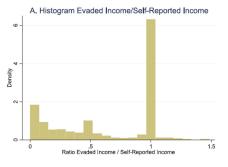


Figure 3.

Tax avoidance in 2007

Note #1: Probability of avoiding jumps immediately when some self-reported income

#2: share of evaded income increasing in share of self-reported income

#3: initially, share of evaded income follows the 45° line, then tapers off

Figure 3B.

Research question #2: What affects the probability of evasion?

- Since the randomization was done well, can either
 - Do t-tests, comparing means of variables, or
 - Use a regression framework.
- Why use regression?
 - 1 Allows testing multiple hypotheses (variables) simultaneously
 - Allows controlling for other observables, reducing thereby the variance of the error term

What affects evasion?

Coefficients (in Percent)	_	A. Ba	isic Variables		
		Social Pactors	Socio- economic Factors	Tax Return Factors	All Factor
		1	2	3	4
Constant		12.72	10.13	1.18	3.72
		(1.06)		(0.25)	(1.01)
Female dummy		-5.56	-4.17		-2.06
		(0.63)			(0.62)
Married dummy		1.22	-0.55		-1.50
		(0.70)	(0.72)		(0.72)
Member of church		-1.59	-2.27		-0.94
	Copenhagen	(0.98) -1.49	(0.97)		(0.92)
Geographical location	dummy	(1.52)	(1.51)		(1.47)
Age	Age > 45	-0.72	-0.63		-0.56
rige	dummy	(0.67)	(0.67)		(0.61)
Home ownership	dummy	(0.07)	5.49	_	0.15
Home ownership			(0.65)	_	(0.66)
Firm size	Firm size < 10	/	5.07	١ ١	3.47
	dummy	((1.26))	(1.05)
Industrial sector	Informal secto	r	4.37		0.27
	dummy	_	(1.15)	_	(0.92)
Self-reported			$\overline{}$	5.58	5.59
income dummy				(0.75)	(0.80)
Self-reported			- (21.68	21.09
income > 20,000 DKK			١.	(1.38)	(1.40)
Self-reported				14.99	14.74
income < -10,000 DKK			_	(1.42)	(1.42)

Coefficients (in Percent)	A.	Basic Variat	les		
eterministic function of bservables	Social Factors	Socio- economic Factors	Tax Return	All Facto	
Auditing flag dummy			13.22	13.07	
Self-employed dummy	· ·		(1.58)	(1.53)	
Capital income dummy				/	
Stock income dummy					
Deduction dummy					
Audit adjustment in 2004 or 2005 dummy					
Income controls					
R-squares	1.16%	2.46%	16.15%	16.53%	
Adjusted R-squares	1.14%	2.42%	16.14%	16.489	

"Phis table reports coefficients of the OLS regression of dummy for underreporting on various chandral errors are reported licenter ones report the designee and algorith of sequence. All celiminates conversations, Standard errors reported in prometheses, in part A columnate—Ly, we helidate a batter conversation, Standard errors reported in prometheses, in part A columnate—Ly, we helidate a batter from an F-lect that the coefficients of those dummins are all equal to core for each category). The sits South Scaland, South Demark, Models festimat, and North Institute. The four age dummins are for a South Scaland, South Demark, Models festimat, and North Institute. The four age dummins are for a south of the Contract of the Cont

Research question #3: How does a past audit change future tax reporting?

- The first thing that was randomized was whether an individual was audited in 2007 (for 2006 income) or not.
- How did that affect reported income in 2008 (for 2007 income)?

Toivanen ECON-C4100 Lecture 9 55 / 58

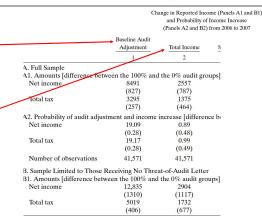

How does a past audit change future tax reporting?

TABLE V

EFFECTS OF RANDOMIZED PRIOR AUDITS ON YEAR TO YEAR INCOME CHANGES^a

The level of tax avoidance detected in 2007

The change in reporting from 2007 to 2008

Toivanen ECON-C4100 Lecture 9 56 / 58

Research question #4: How does the threat of an audit change tax reporting?

0% Audit group = no audit in 2007 100% Audit group = audited in 2007 (for 2006 income)

THREAT-OF-AUDIT LETTER EFFECTS ON INDIVIDUAL UPWARD ADJUSTMENTS TO REPORTED INCOME³

(No Letter)									50% Letter -	100% Letter -
`	Group			Di	fferences Lett	er Group vs. l	No-Letter Gro	oup			No Letter	50% Letter
	Both 0% and											
	100% Audit										Both 0%	and 100%
	Groups	Both 0%	and 100% Au	dit Groups	0%.	Audit Group	Only	100%	Audit Group	Only	Audit	Groups
		Any	Upward	Downward	Any	Upward	Downward	Any	Upward	Downward	Upward	Upward
	Baseline	Adjustment	Adjustment	Adjustment	Adjustment	Adjustment	Adjustment	Adjustment	Adjustment	Adjustment	Adjustment	Adjustment
	1	2	3	4	5	6	7	8	9	10	11	12
A. Average Amour	nts of Individua	l Upward Adj	ustments		$\overline{}$			$\overline{}$				
Net income	-497	94	84	10	74	77	-3	115	92	23	58	52
	(31)	(42)	(22)	(34)	(55)	(29)	(45)	(64)	(35)	(52)	(26)	(26)
Total tax	-322	67	50	17	57	46	11	77	54	23	32	36
	(24)	(32)	(18)	(26)	(43)	(24)	(34)	(49)	(28)	(39)	(21)	(21)
Number of obs.	9397	24,788	24,788	24,788	14,145	14,145	14,145	10,643	10,643	10,643	24,788	24,788
B. Probability of U	pward Adjustm	ents (in perce	nt)									
Net income	13.37	1.63	1.56	0.07	2.29	1.52	0.76	0.98	1.60	-0.62	1.10	0.93
	(0.35)	(0.47)	(0.28)	(0.40)	(0.62)	(0.37)	(0.53)	(0.73)	(0.44)	(0.61)	(0.33)	(0.33)
Total tax	13.69	1.52	1.57	-0.05	2.03	1.65	0.37	1.02	1.49	-0.47	1.03	1.07
	(0.35)	(0.48)	(0.29)	(0.40)	(0.63)	(0.37)	(0.54)	(0.73)	(0.44)	(0.61)	(0.33)	(0.33)
Number of obs.	9397	24,788	24,788	24,788	14,145	14,145	14,145	10,643	10,643	10,643	24,788	24,788

Summary

- 1 Tax evasion is pervasive
- 2 Both past audits and threat of future audits decrease evasion
- 3 Actual audits work better than threat-of-audit letters
- 4 Third-party reporting very effective at curbing evasion