ECON-C4100 - Econometrics I
 Lectures 10\&11: Causal parameters part II - Instrumental variables regression

Otto Toivanen

Learning outcomes

- At the end of these lectures, you understand

1 what simultaneous causality means
2 what is meant by an endogeneity problem
3 why it causes bias in the parameters
4 what an instrumental variable is and why it solves the endogeneity problem

5 what characteristics are required of an instrumental variable
6 what one should pay attention to when using an instrumental variable

Learning outcomes

- At the end of these lectures, you understand

7 what a reduced form equation/parameter is
8 what a structural equation/parameter is
9 how to "manually" estimate a model with simultaneous causality
10 what 2SLS estimation means, how you do it and why it is used

Overview

- Demand experiment, market data analysis.
- Simultaneous causality.
- Instrumental variable ($=\mathrm{IV}$) regression and 2SLS.
- NOTE: Instrumental variables are used in a large variety of contexts.
- We are exploring it in a particular but historically and practically very important setting.
- In Applied Microeconometrics I and II you will learn more about IV, its use and the interpretation of results.

Simultaneous causality

- Your task is to estimate the demand function for a homogeneous good sold at unit price.
- How would you do this in an experiment?

Simultaneous causality

- Your task is to estimate the demand function for a homogeneous good sold at unit price.
- How would you do this in an experiment?
- By changing the price yourself ("at random") and observing how many units are sold at each price.

Experiment

- What does "choosing prices" at random mean?
(1) We offer different randomized prices to individual consumers.
(2) We offer different randomized prices each to a group of consumers.
(3) Think either of geographically separate markets, or a given market over time.

Experiment

- We record quantity sold at different prices.
- We study the outcomes.
- For illustration, I have conducted such an experiment in my computer.
- We will get to the details of how I do it later, but now just imagine I have conducted the experiment in a real market.

Experiment

Experiment

Experiment

Experiment

Experiment

Experiment

- Question: why does sold quantity vary between two experiments where the prices are identical?

Experiment

- Question: why does sold quantity vary between two experiments where the prices are identical?
- Answer: Demand is stochastic from the viewpoint of the econometrician.
- Let's study a simple set-up (the one I used in the experiment) in more detail.

Linear demand

- Demand function

$$
Q_{i}=a-b P_{i}+\epsilon_{i}
$$

- $a=$ average intercept.
- $b=$ slope.
- $\epsilon_{i}=$ market specific deviation from the average intercept.
- $i=$ a particular market realisation.
- Question: Where does this demand function come from?
- Answer: From consumers making utility-maximizing choices.
- Exercise: What does the utility function look like that produces a linear demand function?

Linear demand

- Inverse demand function

$$
P_{i}=\frac{a}{b}-\frac{1}{b} Q_{i}+\frac{1}{b} \epsilon_{i}=\alpha+\beta Q_{i}+\tilde{\epsilon}_{i}
$$

Regression analysis

Source	SS	df	MS	Number of obs F(1, 9998) Prob > F R -squared Adj R-squared Root MSE		$=$$=$$=$$=$$=$$=$	$\begin{array}{r} 10,000 \\ 6935.10 \\ 0.0000 \\ 0.4096 \\ 0.4095 \\ 1.9913 \end{array}$
Model	27500.3163	1	27500.3163				
Residual	39645.8875	9,998	3.96538183				
Total	67146.2038	9,999	6.71529191				
q_exp	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.		Interval]
P_exp	-. 3329958	. 0039986	-83.28	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	-. 340833		$\begin{array}{r} -.3251577 \\ 67.466 \end{array}$
_cons	66.65341	. 4145481	160.79		65.8408		

Robustness analysis

Parameters for inverse demand function

```
. scalar alpha_exp
    = - _b[_cons] / _b[p_exp]
. scalar beta_exp = -1 / _b[p_exp]
. scalar list alpha_exp beta_exp
alpha_exp = 200.16291
beta_exp = 3.003041
```


Market outcomes

- Assume you are an outside observer of a market, say, a prospective buyer of a firm or the competition authority.
\rightarrow you cannot run experiments.
- You would still want to know demand (to calculate e.g. price cost margins, consumer surplus).

Market outcomes

- We collect data from the market.
- We observe pairs $\left(P_{i}, Q_{i}\right), i=$ market.
- Let's think how such pairs are determined, using a simple monopoly model.
- Let's allow a monopolist to choose prices instead in the same market.

Market outcome data

Regression using market data

- regr q p

Source	SS	df	MS	Number of obs	$=$	10,000
				F (1, 9998)	=	135.06
Model	33.3509286	1	33.3509286	Prob > F	$=$	0.0000
Residual	2468.76463	9,998	. 246925848	R -squared	=	0.0133
				Adj R-squared	=	0.0132
Total	2502.11556	9,999	. 250236579	Root MSE	$=$. 49692

| q | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| p | -.0386712 | .0033275 | -11.62 | 0.000 | -.0451938 | -.0321487 |
| - cons | 36.17252 | .3444748 | 105.01 | 0.000 | 35.49728 | 36.84776 |

Parameter comparison for demand and inverse demand functions

```
. scalar alpha_ols
scalar beta_ols
    = -1/_ b[p]
. scalar a_ols
= b [_cons ]
. scalar b_ols
= -_b[p]
. scalar list a_exp b_exp a_ols b_ols
    a_\operatorname{exp}=6\overline{6}.653405
    b_exp = .33299579
    a_ols}=36.17251
    b_ols = .03867121
- scalar list alpha_exp beta_exp alpha_ols beta_ols
alpha_exp = 200.1\overline{6}291
beta_exp = 3.003041
alpha_ols = 935.38611
beta_ols = 25.859029
```


Challenge with market data

- Price quantity pairs are a leading example of simultaneous causality.
- This generalizes to more complicated markets with:
(1) differentiated goods
(2) multiproduct firms
(3) endogenous entry and exit
(4) dynamic considerations (e.g. collusion, durable goods, ...)
(5) advertising
(6)..

Challenge with market data

- Need to address simultaneous causality.
- \rightarrow need to understand and exploit determinants of price and quantity.
- How did the experiment solve the problem?
- By having the researcher shift (=change) prices instead of the firm.

Linear monopoly

- Demand function

$$
Q_{i}=a-b P_{i}+\epsilon_{i}
$$

- $a=$ average intercept.
- $b=$ slope .
- $\epsilon_{i}=$ market specific deviation from the average intercept.
- NOTE: We assume the firm observes all these parameters.
- Question: What if the firm did not observe our "unobservable", i.e., ϵ_{i} ?

Linear monopoly

- Inverse demand function

$$
P_{i}=\frac{a}{b}-\frac{1}{b} Q_{i}+\frac{1}{b} \epsilon_{i}=\alpha+\beta Q_{i}+\tilde{\epsilon}_{i}
$$

How to get the supply function?

- Inverse demand function.
- Need to specify costs of production: constant marginal cost

$$
c_{i}=c_{0}+c_{1} z_{i}+\eta_{i}
$$

- Note: Here one should have an understanding of the production technology.

How to get the supply function?

$$
c_{i}=c_{0}+c_{1} z_{i}+\eta_{i}
$$

- $c_{0}=$ average of marginal cost when $z_{i}=0$.
- $z_{i}=$ a component of marginal cost that varies across markets (cost of raw materials / unit of output, cost of labor / unit of output, .., with c_{1} being the number of units of the input needed to produce one unit of output).
- $\eta_{i}=$ "shock" to average marginal cost / deviation from the avg. This is observed by the firm but not by the econometrician.
- If the firm did not observe η_{i}, how could it take it into account in its decision?

How to get the supply function?

The monopolist's problem:

$$
\max _{P_{i}} \pi_{i}=\left(P_{i}-c_{i}\right) \times Q_{i}
$$

Equilibrium price:

$$
\begin{aligned}
P_{i} & =\frac{a}{2 b}+\frac{1}{2} c_{i}+\frac{1}{2 b} \epsilon_{i} \\
& =\frac{a}{2 b}+\frac{1}{2}\left(c_{0}+c_{1} z_{i}+\eta_{i}\right)+\frac{1}{2 b} \epsilon_{i}
\end{aligned}
$$

How to get the supply function?

Equilibrium quantity

$$
Q_{i}=\frac{a}{2}-\frac{b}{2}\left(c_{0}+c_{1} z_{i}+\eta_{i}\right)+\frac{1}{2} \epsilon_{i}
$$

How to get the supply function?

Equilibrium price and equilibrium quantity are functions of:

How to get the supply function?

Equilibrium price and equilibrium quantity are functions of:
(1) (fixed) demand parameters a and b

How to get the supply function?

Equilibrium price and equilibrium quantity are functions of:
(1) (fixed) demand parameters a and b
(2) (fixed) supply side parameters c_{0} and c_{1}

How to get the supply function?

Equilibrium price and equilibrium quantity are functions of:
(1) (fixed) demand parameters a and b
(2) (fixed) supply side parameters c_{0} and c_{1}
(3) variable cost determinant z_{i}

How to get the supply function?

Equilibrium price and equilibrium quantity are functions of:
(1) (fixed) demand parameters a and b
(2) (fixed) supply side parameters c_{0} and c_{1}
(3) variable cost determinant z_{i}
(4) cost shock η_{i}

How to get the supply function?

Equilibrium price and equilibrium quantity are functions of:
(1) (fixed) demand parameters a and b
(2) (fixed) supply side parameters c_{0} and c_{1}
(3) variable cost determinant z_{i}
(4) cost shock η_{i}
(5) demand shock ϵ_{i}

Market data challenge

- Both eq. price and eq. quantity are functions of:
(1) demand shock ϵ_{i}
(2) supply (cost) shock η_{i}
\rightarrow simultaneous causality.
\rightarrow price is an endogenous variable (ϵ_{i} and η_{i} are the "omitted" variables that affect both price and quantity).

Market data solution

- We want to learn the demand curve.
- Could we mimic the experimental approach with market data?
- Needed: Something that shifts firm's (supply) decision at "random".
- Random $=$ without being affected by demand shock ϵ_{i}.

Experiment \#2

- Imagine the firm still sets the price,
- but we choose (=randomize) $z_{i}=z_{i}^{\text {exp }}$.
- Recall that $c_{i}=c_{0}+c_{1} z_{i}^{e x p}+\eta_{i}$.
\rightarrow we "shift" firm's marginal cost.

Experiment \#2

- Now the firm sets each time the price

$$
P_{i}=\frac{a}{2 b}+\frac{1}{2}\left(c_{0}+c_{1} z_{i}^{\text {exp }}+\eta_{i}\right)+\frac{1}{2 b} \epsilon_{i}
$$

\rightarrow equivalent to running an experiment.

- Change in price due to (known) change in $z_{i}^{\text {exp }}$.

Experiment \#2

- Imagine we raise $z_{i}^{e x p}$ by 1 unit.
- By how much does
(1) marginal cost $c_{i}=c_{0}+c_{1} z_{i}+\eta_{i}$ change? Answer: c_{1}.
(2) price change? Answer: $\frac{1}{2} c_{1}$ (by the equilibrium price equation).
(3) demand change? Answer: $-b \frac{1}{2} c_{1}$ (by the equilibrium quantity equation).

Experiment \#2

- How could we get the slope of the demand function from these changes?
- Yes, by dividing the change in quantity by the change in demand:

$$
-\frac{b \frac{1}{2} c_{1}}{\frac{1}{2} c_{1}}=-b
$$

Experiment \#2

- How could we get those numbers?

1. Regress P_{i} on $z_{i}^{\text {exp }}$ to get $\frac{1}{2} c_{1}$.

$$
\begin{aligned}
P_{i} & =\frac{a}{2 b}+\frac{1}{2}\left(c_{0}+c_{1} z_{i}^{\text {exp }}+\eta_{i}\right)+\frac{1}{2 b} \epsilon_{i} \\
& =\left(\frac{a}{2 b}+\frac{1}{2} c_{0}\right)+\frac{1}{2} c_{1} z_{i}^{\exp }+\left(\frac{1}{2} \eta_{i}+\frac{1}{2 b} \epsilon_{i}\right) \\
& =\gamma_{0}+\gamma_{1} z_{i}+e_{i} \\
\gamma_{1} & =\frac{1}{2} c_{1}, \gamma_{0}=\left(\frac{a}{2 b}+\frac{1}{2} c_{0}\right)
\end{aligned}
$$

Experiment \#2

2. Regress Q_{i} on $z_{i}^{\text {exp }}$ to get $-b \frac{1}{2} c_{1}$.

$$
\begin{aligned}
Q_{i} & =\mu_{0}+\mu_{1} z_{i}+w_{i} \\
\mu_{1} & =-b \frac{1}{2} c_{1}
\end{aligned}
$$

- One can link the Q_{i} equation to the equilibrium Q_{i}-expression just like was done for P_{i} on the previous slide.
- The P_{i} and Q_{i} regression equations on this and previous slide are called reduced form equations.

Experiment \#2

- The regression equations we estimated, i.e.,

$$
P_{i}=\gamma_{0}+\gamma_{1} z_{i}+e_{i}
$$

$$
Q_{i}=\mu_{0}+\mu_{1} z_{i}+w_{i}
$$

- are called reduced form equations.

What are reduced form equations?

- Proper definition: A reduced form equation is an equation whose parameters are functions of the structural parameters.
- In our model, structural parameters are a, b, c_{0} and c_{1}.
(1) They are building blocks of the theory model
(2) They are determined outside our model
(3) They are not functions of any other parameters (or variables) of the model
- The parameters $\left(\gamma_{0}, \gamma_{1}, \mu_{0}, \mu_{1}\right)$ of the two regressions $\left(P_{i}\right.$ on z_{i} and Q_{i} on z_{i}) we ran are functions of the structural parameters ($=$ those in the theoretical model, i.e., $\left.a, b, c_{0}, c_{1}\right)$.

What are reduced form equations?

- Commonly used meaning: A reduced form equation is an equation that is not derived from a theoretical model.
- Examples: The regressions in the papers we have studied, i.e.,
- Bronnenberg et al., 2015.
- Kleven et al., 2011.

Experiment \#2

- When would this work?
(1) $z_{i}^{\text {exp }}$ has to have an impact on the decision of the firm, i.e., have an effect on c_{i}.
$\rightarrow c_{1}$ cannot be (insignificantly different from) zero.
(2) $z_{i}^{\text {exp }}$ may not have an effect on Q_{i} directly, but only via c_{i}.

Let's regress P on z.

- regr p z

- scalar red_1 = _b[z]

Let's regress Q on z.

regr quz
Source
Model
Residual

Let's calculate b.

. scalar b_red $=$ red_2 / red_1

- scalar list b_red
b_red $=-.33853094$

Instrumental variable

- Instrumental variable $=$ a variable that causes variation in explanatory variable X (price) but does not affect dependent variable Y (demand) directly.
- If the variable cost component z_{i} varies "at random", i.e., without affecting demand directly,
\rightarrow market data allows us to use the "experimental approach" indirectly.

Approach \#2

- Could we proceed differently?
(1) Regress P_{i} on z_{i}. Calculate predicted price $\hat{P}_{i}=\hat{\gamma}_{0}+\hat{\gamma}_{1} z_{i}$.
(2) Regress Q_{i} on \hat{P}_{i} to get b (and a).
- Equation $Q_{i}=a-b P_{i}+\epsilon_{i}$ is a structural equation. Why?

Approach \#2

- Could we proceed differently?
(1) Regress P_{i} on z_{i}. Calculate predicted price $\hat{P}_{i}=\hat{\gamma}_{0}+\hat{\gamma}_{1} z_{i}$.
(2) Regress Q_{i} on \hat{P}_{i} to get b (and a).
- Equation $Q_{i}=a-b P_{i}+\epsilon_{i}$ is a structural equation. Why?
- Because it is a function of structural parameters only (+ P_{i} which is determined within the model).

Approach \#2

- The parameters of a structural equation are part of the model primitives, i.e.,
- they are not determined within the model
- they are not functions of other parameters of the model
- Reduced form parameters are functions of structural parameters.

Regress P on z, create predicted values

- regr p z

Source	SS	df	MS
Model	9783.4964	1	9783.4964
Residual	12517.9151	9,998	1.25204192
Total	22301.4115	9,999	2.23036418

Number of obs	$=$	10,000
$\mathrm{~F}(1,9998)$	$=7814.03$	
Prob $>\mathrm{F}$	$=0.0000$	
R-squared	$=0.4387$	
Adj R-squared	$=0.4386$	
Root MSE	$=1.1189$	

| p | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| z | .4986242 | .0056407 | 88.40 | 0.000 | .4875673 | .5096812 |
| $_$cons | 101.0138 | .0304066 | 3322.11 | 0.000 | 100.9542 | 101.0734 |

- predict p_hat
(option $\mathbf{x b}$ assumed; fitted values)

Regress Q on \hat{P}

Why / how do these approaches work?
(1) Regress P_{i} on z_{i} to get $\frac{1}{2} c_{1}=\frac{\operatorname{cov}\left(P_{i}, z_{i}\right)}{\operatorname{var}\left(z_{i}\right)}$.
(2) Regress Q_{i} on z_{i} to get $-b \frac{1}{2} c_{1}=\frac{\operatorname{cov}\left(Q_{i}, z_{i}\right)}{\operatorname{var}\left(z_{i}\right)}$.

$$
\rightarrow-b=\frac{\operatorname{cov}\left(Q_{i}, z_{i}\right)}{\operatorname{cov}\left(P_{i}, z_{i}\right)} .
$$

Regress Q on \hat{P}

$$
\begin{array}{rl}
b & =\frac{\operatorname{cov}\left(Q_{i}, \hat{P}_{i}\right)}{\operatorname{var}\left(\hat{P}_{i}\right)}=\frac{\operatorname{cov}\left(Q_{i}, \hat{\gamma}_{0}+\hat{\gamma}_{1} z_{i}\right)}{\operatorname{var}\left(\hat{\gamma}_{0}+\hat{\gamma}_{1} z_{i}\right)} \\
\rightarrow b & =\frac{\hat{\gamma}_{1} \operatorname{cov}\left(Q_{i}, z_{i}\right)}{\hat{\gamma}_{1}^{2} \operatorname{var}\left(z_{i}\right)}=\frac{1}{\hat{\gamma}_{1}} \frac{\operatorname{cov}\left(Q_{i}, z_{i}\right)}{\operatorname{var}\left(z_{i}\right)} \\
b & b e c a u s e ~ \\
\gamma_{1} & =\frac{\operatorname{cov}\left(P_{i}, z_{i}\right)}{\operatorname{var}\left(z_{i}\right)} \rightarrow \\
b & =\frac{\operatorname{var}\left(z_{i}\right)}{\operatorname{cov}\left(P_{i}, z_{i}\right)} \frac{\operatorname{cov}\left(Q_{i}, z_{i}\right)}{\operatorname{var}\left(z_{i}\right)}=\frac{\operatorname{cov}\left(Q_{i}, z_{i}\right)}{\operatorname{cov}\left(P_{i}, z_{i}\right)}
\end{array}
$$

2SLS / instrumental variables regression

- In practice, want to use the so called Two Stage Least Squares (2SLS) or instrumental variables regression command. In Stata, ivregress or from SSC ivreg2.
- Manual and ivregress command(s) produce same point estimates, but the latter corrects the standard errors.
- This is important, as the manual approach yields too small standard errors: It ignores the uncertainty in the parameters $\hat{\gamma}_{0}$ and $\hat{\gamma}_{1}$ used to calculate \hat{P}_{i}.

2SLS estimation of demand

Instrumented: p
Instruments: \quad z

Requirements for an instrument

- Think of our normal regression $Y=\beta_{0}+\beta_{1} X+u$.
(1) Instrument relevance: The instrument Z has to affect the (endogenous) explanatory variable X of the equation of interest ("2nd stage equation") in the equation

$$
X=\alpha_{0}+\alpha_{1} Z+v .
$$

(2) Instrument exogeneity: The instrument Z may not be correlated with the error term of the equation of interest, i.e.,

$$
\operatorname{cov}(Z, u)=0 .
$$

Instrument relevance / Weak instrument

- Relevance $=$ instrument Z needs to be "correlated enough" with the endogenous explanatory variable X.
- What happens when $\operatorname{cov}(Z, X) \rightarrow 0$?
- β_{1} becomes undefined!

Instrument relevance / Weak instrument

\rightarrow you want to check that your instrument is relevant.
$=$ you don't have a weak instrument.

- Rule of thumb: F-statistic of Z when you regress X on Z (and possible further controls) >10.
- Note: With 1 instrument, F-test is the square of the t-test.
- Notice that the test for weak instruments is stricter than our usual 5\% confidence level (t-stat 2).

2SLS estimation

. estat firststage

First-stage regression summary statistics

Variable	R-sq.	Adjusted R-sq.	Partial R-sq.	$F(1,9998)$	Prob $>F$
p	0.4387	0.4386	0.4387	7814.03	0.0000

Minimum eigenvalue statistic $=7814.03$

Critical Values \# of endogenous regressors: 1
Ho: Instruments are weak \# of excluded instruments: 1

		5%	10% (not available)	20%	
2SLS relative bias		10%	15%	20%	25%
		16.38	8.96	6.66	5.53
2SLS Size of nominal 5\% Wald test					
LIML Size of nominal 5\% Wald test	16.38	8.96	6.66	5.53	

Instrument relevance / Weak instrument

- There are more sophisticated tests.
- There are ways of allowing for weak instruments.
- We leave all that for later courses.
- Good instruments are hard to find...

Instrument correlated with error

= "exogeneity" assumption or exclusion restriction:

$$
\mathbb{E}[u \mid \boldsymbol{X}]=0
$$

If this condition does not hold \rightarrow biased estimate of β_{1}.

- Similar to omitted variable bias.

Instrument correlated with error

- What can be done?
(1) Strong story for why no correlation between instrument and error.
(2) With multiple instruments, may do tests.
(3) There are ways of allowing for (some) correlation to check robustness of your results (for later).

