
Reading guide (first lecture)

 Read the introduction and introductory examples of feedback control from 
slides.

 Learn Matlab and Simulink, especially how to write small m-code 
programs in Matlab and doing simple simulations in Simulink.  
These tools are needed in homeworks.  See Tutorials in the 
MyCourses page of the course.  The first homework is given next 
week.

 Familiarize yourself to the basic dynamic and static models of systems 
(first principles models of physics).  (Dorf:  Chapters 1 and 2.)  

 Note again that the textbook (Dorf and Bishop) contains it all
and much more than covered in this course.  Reading every    
chapter takes much time.  The purpose is to use the textbook
when needed (and personally desired)  for clarifications and   
additional  information.



Dynamic models, differential equations, 
Laplace transformations and block diagram 
algebra



Example.  Dynamical/Static Models

 The system is dynamical when its state is a 
function of an earlier state (the system has 
memory and time-dependency).
 E.g. The effect of external power F on the 

position of the mass position x-derived from 
the force balance (M is mass, K spring 
constant and B attenuation coefficient)

 Static system does not depend on previous 
state (memoryless and inertial system).
 E.g. Temperature T effect pressure p in 

closed, insulated container-derived from ideal 
gas (n is the number of substances, V volume 
and R gas constant at standard conditions)
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Example. Dynamic/Static Models

 Simulations are carried out to change the 
temperature in the external power and gas 
container in the mechanical system. 
 In a dynamic system, the response is 

changing long after the impulse has entered 
in input. 

 In the static system, the input and response 
are changing at the same time, and the 
response can be determined directly by the 
value of the input at the same instant. 



Example of First-principles modelling (modelling by laws of 
physics): Basic components of electrical circuits

 Resistor (resistance)

Coil (inductance)

 Capacitor (capacitance)
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Example.  Electrical circuit

 Making a model for the electrical 
circuit

 The input is v0 (t) and the output 
quantities are the voltages v1 (t) 
and v2 (t).

 Electric currents and resistors can 
be modelled as

 Kirchoff's First Law

 Second Kirchoff law
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Example.  Electrical circuit

 This model has voltages as states (memory elements), so it is advisable 
to eliminate the electrical currents as unnecessary variables from the 
developed equations
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Solutions of Differential Equations

 To understand and map the system under consideration, it is
essential to know how the output y(t) behaves as a function
of time in different conditions and with different control input
u(t).

 Since the models are differential equations, the output
function can be determined through the input response and
initial values given to solve the differential equation.

 Analytical solution cannot be guaranteed for a nonlinear or 
distributed parameter differential equation group.

 An analytical solution can always be determined for a linear, 
centralized, precisely defined, differential equation group.



Linear Differential Equation solution

Linear Differential Equation/Equation Group can be solved 
algebraically using Laplace transform

 Take Laplace transform of the system describing differential equations and 
system input quantities

 Solve the algebraic equation obtained for output to input relation

 Take Laplace inverse transform and get the output function in time domain. 

In control engineering applications, all time functions are 
assumed zero before the start of the time period: 
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Laplace transformation

 Definition: f(t) is the time domain function and F(s) is the corresponding 
Laplace domain function

 If the limit values exist, then 
 The final value theorem

 The initial value theorem

 Laplace tables are shown in different sources with slightly different 
expressions (usually either so that the time functions are easy to 
convert to Laplace domain or so that the Laplace domain form can be 
reversed easily.
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Laplace Transforms (common examples)
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Laplace Transforms (common examples)

Laplace functions Time functions
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Laplace Transforms (common examples)



Dirac deltaImpulse 

Step

Staircase





Deterministic inputs

 The system input u(t) is commonly modeled as the following 
functions:
 Unit Impulse function (Dirac delta function)

 Unit step function

 Staircase function
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Example: Mass block

An earlier example showed the mass equation:

Solve for the response, when

Mass force balance in time domain:

and in Laplace domain:
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Example: Mass block

Solving the expression for position of the mass block in Lapce domain 
X(s):

Taking reverse Laplace transform to get position equation in time domain:
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Free and Forced responses

 The response can be divided into initial y0(t) (Free response) 
and external control response yu(t) (Forced response). The 
overall response of the linear system is the sum of the two 
responses.

 Free response  y0(t) is the response when external controls 
do not affect the system ui(t) = 0. 

 Forced response yu(t) is the response when all initial values 
of the system y(n)(0) and ui(n)(0) are zero.

 Often, the term "response" refers to a forced response or 
response to a given input, ignoring initial values.
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Example 2: Mass block

 Separating the last example into free and forced responses:
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Example 2: Mass block

 The free response starts from the initial state due to the 
system's initial values (the position of the mass track at the 
start is 1 and its initial speed-1)

 The forced response moves away from rest as a result of 
external control or force (impulse-like nudge at the start)
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Transfer function

 Control techniques normally examine how external inputs 
and disturbances affect the response; The effect of the initial 
values is ignored and the focus is on the forced response.

 When initial values are zero, the expression of the response 
is given in the form of Laplace output Y(s) which is a product 
of the impulse response in Laplace domain G(s) and the 
Laplace input function U(s).

 The Laplace representation of the model G(s) is called the 
transfer function.

 U(s) Y(s)G(s)
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Block Diagram conversions: Signals

 In block diagrams, a single signal can be 
exported to more than one block (signal 
branching).
 A block diagram is an information chart and it 

can branch information, but it does not 
reduce that information.  Each branch has 
the same information.

 The different signals can be combined using 
a summation block.  The combination can 
be either an addition or subtraction of 
individual signals
 Signs on the summation block indicate the 

signs of the individual signals in the total.
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Passing a signal through a block

 As stated in previous lectures, in Laplace domain the output signal is 
obtained by multiplying the input signal with a transfer function

 This basic formula can be used to derive a transformation from the serial 
association of the equation blocks.  Introduce the auxiliary variable e (s), 
which is subsequently eliminated
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Passing a signal through a block

 The derivation for parallel blocks:
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Passing a signal through a block

 Loop relation (feedback) to the conversion formula is calculated as:

 

 

1 1

1 2 1 2

2 2

1 1 2 1 2 1

1 1

1 2 1 2

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

1 ( ) ( ) 1 ( ) ( )TOT TOT

Y s G s s

s U s s Y s G s U s G s Y s

s G s Y s

Y s G s U s G s G s Y s G s G s Y s G s U s

G s G s
Y s U s G s U s G s

G s G s G s G s

e
e e
e


     
 
     

    
 

G1(s)
U(s) e(s)

G2(s)

Y(s)+

e(s)
_

Y(s)

Y(s)U(s)

1 + G1(s)G2(s)

G1(s)
Thus, the overall transfer function is the  tf
of the forward path divided by the term (1 + 
open loop transfer function)  This will be 
essential in future.  


