# ECON-L1350 - Empirical Industrial Organization PhD II – Topics

Lecture 2

Tanja Saxell, Otto Toivanen, Janne Tukiainen, Nelli Valmari & Iivo Vehviläinen

- Solving uniform price equilibrium
- Identification of a more serious model
- Topics

# Example: Demand

| bid.id | date.time           | type | Р       | Q       |
|--------|---------------------|------|---------|---------|
| 1      | 2015-01-15 11:00:00 | D    | 0.011   | 144.215 |
| 2      | 2015-01-15 11:00:00 | D    | 0.029   | 79.928  |
| 3      | 2015-01-15 11:00:00 | D    | 0.042   | 63.523  |
|        |                     |      |         |         |
| 79     | 2015-01-15 11:00:00 | D    | 25      | 0.035   |
| 80     | 2015-01-15 11:00:00 | D    | 25.010  | 0.464   |
| 81     | 2015-01-15 11:00:00 | D    | 25.145  | 0.881   |
|        |                     |      |         |         |
| 165    | 2015-01-15 11:00:00 | D    | 120.900 | 30      |
| 166    | 2015-01-15 11:00:00 | D    | 123.203 | 25.400  |
| 167    | 2015-01-15 11:00:00 | D    | 126.257 | 45      |
|        |                     |      |         |         |

 Table 1: Demand bids in the Nordic electricity market.

# Example: Supply

| bid.id | date.time           | type | Р       | Q       |
|--------|---------------------|------|---------|---------|
| 1      | 2015-01-15 11:00:00 | S    | 0.011   | 146.371 |
| 2      | 2015-01-15 11:00:00 | S    | 0.029   | 272.917 |
| 3      | 2015-01-15 11:00:00 | S    | 0.042   | 205.597 |
|        |                     |      |         |         |
| 116    | 2015-01-15 11:00:00 | S    | 20.007  | 4.999   |
| 117    | 2015-01-15 11:00:00 | S    | 20.100  | 64.486  |
| 118    | 2015-01-15 11:00:00 | S    | 20.200  | 32.611  |
|        |                     |      |         |         |
| 583    | 2015-01-15 11:00:00 | S    | 100.100 | 5.107   |
| 584    | 2015-01-15 11:00:00 | S    | 108     | 0.569   |
| 585    | 2015-01-15 11:00:00 | S    | 110     | 4.689   |

Table 2: Supply bids in the Nordic electricity market.

# Market equilibrium given bids



# Structural model: The same as the market operators use

#### Useful trick: reformulate as an optimization problem

Given demand bids  $(p_i, q_i)_{i \in D_t}$  and supply bids  $(p_j, q_j)_{j \in S_t}$  exchange solves:

$$\begin{split} \max_{d^{i},s^{i}} \sum_{i} p^{i} d^{i} &- \sum_{j} p^{j} s^{j} \\ \text{s.t.} \quad d_{t} &= \sum_{i} d_{i}, \quad 0 \leq d_{i} \leq q_{i}, \ i \in \mathcal{D}_{t} \\ s_{t} &= \sum_{j} s_{j}, \quad 0 \leq s_{j} \leq q_{j}, \ j \in \mathcal{S}_{t}, \\ d_{t} - s_{t} &= 0 \end{split}$$

Or, because  $d_t = s_t$  at market price  $p^*$ ,

$$\Leftrightarrow \max_{d_i,s_j} \sum_i (p_i - p^*) d_i + \sum_j (p^* - p_j) s_j$$

Samuelson, 1952.

#### Maximizing the consumer and producer surplus from bids.



The shadow prices of the market clearing constraint  $d_t = s_t$  are market prices.

# Ryan 2021: Extension across space

#### I. The Indian Electricity Sector



FIGURE 1. INDIAN POWER GRID

*Notes:* The figure shows geographic and schematic representations of the bidding areas in the Indian day-ahead power market. Panel A represents the ten subregions in which bids are submitted, formed from five regions with two subregions apiece. Panel B represents the six functionally distinct regions that are ever separated by constrained transmission links and the structure of interregional transmission links may then.

### Surplus maximization, across regions

Solve the equilibria for all bidding areas simultaneously:

$$\max_{d_i, s_j} \sum_{g \in \mathcal{G}} \left[ \sum_{i \in \mathcal{D}_g} p_i d_i - \sum_{j \in \mathcal{S}_g} p_j s_j \right]$$

and relax the autarky supply-demand balance constraints with a possibility to trade at most a net quantity y from each market:

$$egin{aligned} & d_g - s_g = x_g, \quad orall g, \ & -y \leq x_g \leq y, \quad orall g, \ & \sum_{g \in \mathcal{G}} x_g = 0. \end{aligned}$$

# Ryan 2021: Even better bid data

#### I. The Indian Electricity Sector



## Note on complex bids

- Dynamic costs limit the ability of the firm to adjust output
- Market clearing allows for complex bids
  - e.g. revenue requirement over the day, or block bids
  - ties bids together, and breaks the convexity of market clearing
- Reguant (2014) imposes structure to identify costs, including start-up costs, and contract positions
  - separation of single bids and complex bids
  - parametrized cost function
  - simulated data used in identification

• Consider e.g. inverse demand P = 16 - 2Q and supply bids

• Then outcomes depend on how bids are handled

|                |         | Q   | Ρ | equlibrium |
|----------------|---------|-----|---|------------|
| Normal bids    | A+B+C/2 | 6.5 | 3 | *          |
| All-or-nothing | A+B     | 6   | 4 | *          |
|                | A+C     | 5   | 6 | *          |
|                | A+B+C   | 7   | 2 |            |

IID. Descriptive Evidence: Effect of Congestion on Bid Prices

|                             | TABLE 4—BIE | PRICES AND | Congestion   | I            |         |              |  |
|-----------------------------|-------------|------------|--------------|--------------|---------|--------------|--|
|                             |             | De         | ependent var | iable: Price | bid     |              |  |
| Sample:                     | All         | All firms  |              | Public firms |         | Nonstrategic |  |
|                             | OLS         | 2SLS       | OLS          | 2SLS         | OLS     | 2SLS         |  |
|                             | (1)         | (2)        | (3)          | (4)          | (5)     | (6)          |  |
| North region congested (=1) | 6.47        | 8.63       | 7.28         | 7.65         | 0.18    | 2.65         |  |
|                             | (0.63)      | (2.18)     | (0.77)       | (2.43)       | (0.25)  | (1.44)       |  |
| Mean in uncongested hours   | 106.37      | 106.37     | 105.82       | 105.82       | 111.63  | 111.63       |  |
| Observations                | 141,455     | 141,455    | 43,011       | 43,011       | 101,868 | 101,868      |  |

• Reduced form on how congestion affects bids of the firms

- Lower cost of trade affects efficiency of the market
  - true even in the competitive case
  - additional motivation: reduction of market power
- Additional structure needed

### Efficiency improvement: competitive case



• Gains from trade, including dynamic impacts to entry

Gonzales, Ito & Reguant (2021)

III. Model of Supplier Bidding with Transmission Constraints

Steps towards identification:

- 1. Market clearing demand
  - Residual demand = actual competitive fringe
- 2. Objective of the firms
  - First order condition for profit maximization
  - Assumption: Firms optimize against the residual demand in the congested price area, but do not try to cause congestion

**IV. Estimation** 

- 1. Contract positions ignored
- 2. Costs unknown, to be estimated
  - Constant marginal cost assumption
- 3. Dealing with uncertainty in bidding
  - Bootstrap demand and bids  $\rightarrow$  sample of residual demands
  - GMM with the bootstrapped data
  - Capacity constraints require optimization
- 4. Online appendix and codes tell the detail

# Ryan 2021: Simulated Cournot



Strategic firms optimize against smoothed residual demand

- Source of demand inelasticity
  - Contractual commitments, fixed price contract vs. real-time pricing (Borenstein & Holland, 2005; Joskow & Tirole, 2006)
  - Technology commitments: heating technology choices (Sahari, 2019), industrial processes, etc.
- New technologies: Improved allocative efficiency
  - Storage, ITC, cryptocurrency mining, data centers
- Efficiency over time instead of space

### Surplus maximization, across time

Solve the equilibria for all bidding areas simultaneously:

$$\max_{d_i, s_j} \sum_{t \in \mathcal{T}} \left[ \sum_{i \in \mathcal{D}_t} p_i d_i - \sum_{j \in \mathcal{S}_t} p_j s_j \right]$$

and relax the autarky supply-demand balance constraints with a possibility to "trade" at most a net quantity y from each hour:

$$d_t - s_t = x_t, \quad \forall t, \ -y \le x_t \le y, \quad \forall t, \ \sum_{t \in \mathcal{T}} x_t = 0.$$

# Data set: Bid curves



- Three markets with structural differences in existing generation
  - California: biggest in solar
  - Nordics: most hydro
  - Spain: largest share of wind
- 160+ million bids from the years 2011–2020

# Taming the duck in California



Illustration of how hourly prices in California converge as new efficiency improving technology is added to the market equilibrium calculation.

Liski & Vehviläinen (2023)

### **Price caps**



Optimal to implement price caps to correct for market misallocation.

# Recap: Identification in electricity markets

- Inelastic demand of homogenous good and competitive fringe
- Strategic firms optimize profits in multi-unit auctions
- Identifying assumptions
  - Wolak (2000): identification of marginal costs possible if contract positions are known
  - Hortaçsu & Puller (2008): identification of forward contract positions possible if marginal costs are known
- Additional structural assumptions on the primitives, nature of competition and availability of information

# Final remarks: Policy implications

- Industry where demand is inelastic, supply is concentrated and entry constrained
- Externality through common network
  - Overconsumption of one consumer risks blackout for everyone
  - Below efficient capacity levels by firms with market power
- Less than optimal market institutions
  - Price caps to limit market power and correct for the inelastic demand, but lead to further distortion in investment incentives
  - Non-convexities and complexity reduce transparency
- Current discussions: long-term contracting