
PHYS-E0463 Fusion Energy Technology January 23, 2023
Groth Kiviniemi Chandra Mäenpää Exercise set 1

General information

The exercise sessions will be held as blackboard sessions, where the participants will present
their solutions to the group. As such, the problems should be set up and solved before the
session. The focus of the exercises lies on analyzing and discussing the task at hand together
with the group: thus, a perfect solution is not required to be awarded points. A point will
be awarded for each completed exercise, and a person will be chosen to present their solution
from the pool. There are useful formulas at the bottom of this document!

Exercise 1.
The fusion reaction

(a) The chemical reaction describing the complete combustion of gasoline is

2 C8H18 + 25 O2 → 16 CO2 + 18 H2O+ 94 eV,

releasing an average energy of 0.9 eV per atom. The D-T fusion reaction

D+ T→ 4He + n + 17.6 MeV

releases, on average, 8.8 MeV per atom, a factor of 107 times more than the chemical
combustion of gasoline per atom. What are the reasons for this difference, and how do
these values compare to the ionization potential for e.g. hydrogen?

(b) Show that the neutron carries 14.05 MeV of the 17.6 MeV produced in D-T fusion.
What are the implications for fusion control of this? You may neglect the initial kinetic
energy of the D and T ions, and only consider the energy released in the reaction.

Solution 1.
(a) The reason for the large difference in the amount of energy released is due to the funda-

mentally different forces that hold together molecules and atomic nuclei. The atomic
nucleus is kept together by the nuclear force, which is short ranged (order of proton
radius) but also extremely strong (strong enough to overcome the Couloumb repul-
sion between positively charged protons in a nucleus, for example). The interatomic
bonds rearranged in chemical reactions, such as combustion, however, are based on
the Coulomb force, a much weaker interaction. The ionization energy of a hydrogen
atom is 13.6 eV, which is approximately an order of magnitude higher than the energy
released per atom in combustion. The ionization energy of hydrogen corresponds to
the energy difference between the electron in the ground state (as close as possible to
the nucleus) and an electron infinitely far away from the nucleus - typically electrons
do not undergo such large potential energy changes in chemical reactions. The ioniza-
tion energy for hydrogen is especially large, because the electron is very close to the
nucleus.
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(b) The energies required for fusion reactions are of the order of 10 keV, while the energy
released is of the order of Q = 10 MeV, allowing us to assume that Ei + Ef ≈ Ef .
We also observe that the energy is kinetic, and distributed between the products. This
allows us to ignore the initial momenta, and only consider the final momenta, which
has to be equally distributed between the products, and opposite in direction. Based
on these assumptions we can write
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Equation (1) can be re-arranged to
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where equation (2) has been used for the last two equivalences, since
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vHe
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Thus the energies for the products are
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Solving for the masses of the helium nucleus and the neutron, with Q = 17.6 MeV
yields Kn ≈ 14.05 MeV. Further, it can be shown that the ratio of the kinetic energies
of the products are

KHe

Kn

=
mn

mHe

. (7)

The same analysis can be applied to any fusion reaction with two products.
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Exercise 2.
Ignition (Lawson) criterion

(a) Ideal ignition: Find the ignition temperature of D-T fuel in a thermonuclear fusion
reaction, only considering losses due to Bremsstrahlung. Is this a stable or unstable
equilibrium? Assume a 50-50 D-T fuel mix and the low temperature (T < 25 keV)
approximation for the DT fusion velocity-averaged cross-section

〈σv〉DT ≈ 3.68× 10−18T−2/3 exp (−19.94T−1/3) m3 s−1,

for [T ] = keV.

(b) Ignition: Derive the ignition (Lawson) criterion for nτE, where τE is the energy con-
finement time, considering power losses due to Bremsstrahlung radiation and thermal
conduction Ptherm ≈ W/τE, were W denotes the plasma internal energy. Spectral line
radiation losses are not considered for simplicity. Plot the obtained relation, using the
same approximation for the velocity-averaged cross-section as above. At what tem-
perature does the minimum occur? Compare this to the reference value given in the
lecture slides. If there is a difference, why?

(c) Ideal operation: Using the reference values of minimum nτE and the temperature
where the minimum occurs, calculate the hydrostatic plasma pressure (p = 2nkBT , T
in Kelvin) assuming an ITER-like confinement time of 8 s. How does this pressure
compare to the pressure at the center of the sun and the atmospheric pressure?

Solution 2.
(a) Ideal ignition: Ideal ignition corresponds to a situation with negligible heat transport

losses and negligible external heating. The fusion power density for 50-50 DT fuel is
given by:

Pf =
1

4
n2
e 〈σv〉EDT. (8)

The resulting alpha heating power is

Pα =
1

20
n2
e 〈σv〉EDT. (9)

In power balance, the alpha heating power is equal to Bremsstrahlung radiation losses:

Pα = PBr, (10)

1

20
n2
e 〈σv〉EDT = cBn

2
eT

1/2
e , (11)

Equation 11 is plotted in Fig. 1, assuming ne = 1020 m−3, where it can be observed
that the ideal ignition temperature according to these calculations is 4.6 keV.
It is also observed that the equilibrium is unstable for small perturbations in temper-
ature. For a small reduction in temperature, the Bremsstrahlung losses become greater
than the fusion power, further lowering the plasma temperature. For a small increase
in temperature, fusion power increases faster than the Bremsstrahlung losses increase.
Therefore, the plasma temperature increases even more.
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(b) Ignition including thermal conduction The thermal energy content of the plasma
is

Wp =
3

2
neTeV +

3

2
niTiV ≈ 3neTV, (12)

where quasi-neutrality is assumed: ni ≈ ne. The thermal conductive losses from the
plasma can be represented by

Ptrans ≈
Wp

τE
≈ 3neTV

τE
. (13)

The power balance equation can now be written:

Pα = PBr + Ptransp (14)

1

4
〈σv〉EαV = cBn

2
eT

1/2
e V +

3neTV

τE
. (15)

This can be re-arranged to give

neτE =
12T

〈σv〉Eα − 4cBT
1/2
e

. (16)

This expression is illustrated in Fig. 2. The solid line uses the fit given in the exercise
sheet. The fit should only be used for low energies below T = 25 keV. Therefore,
discrete points with an accurate cross-section values are also given with red circles. It
is observed that the minimum value is of about 2e20 m−3s, and this occurs around
T = 20 keV.

It is also observed that the ignition criterion approaches asymptotically infinity at the
ideal ignition temperature, as expected.

(c) The ignition pressure assuming ITER-like confinement The minimum neτE ≈
1.5× 1020 sm−3. Assuming an ITER like confinement time of 8 s, therefore, means
that the ignition pressure is about 150 000Pa, or 1.5 times the atmospheric pressure.
The pressure at the core of the sun is ca. 265 billion atm.
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Figure 1: Fusion power density (black) and Bremsstrahlung loss power density (red). The
dashed blue line represent the point at which the ideal ignition occurs.
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Figure 2: Ignition criterion. The solid black line is drawn using the low temperature fit given
in the exercise sheet. The dots represent the accurate cross-section values also given in the
exercise sheet. The dashed blue line illustrates the ideal ignition temperature.
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Exercise 3.
Plasma power balance and impurity concentration

(a) Carbon contamination: Calculate the fusion power reduction due to fuel dilution
and impurity radiation density for a T = 10 keV, ne = 1020 m−3 plasma with 4% 6C6+

carbon concentration (nC/ne = 0.04), and compare the values to each other and to the
power density of a pure D-T plasma. The power radiated by carbon at T = 10 keV,
assuming coronal equilibrium, is RC = 10−34 Wm3 [1] and the impurity radiation losses
are given by

Prad = nZneRZ [Wm−3]

Set out from the quasi-neutrality condition for plasmas and assume the electron density
to have an upper density limit. Assume the carbon to be fully ionized.

(b) Tungsten contamination: Perform the same calculations and analysis as above,
assuming nW/ne = 10−5 and that all tungsten atoms are have charge state 50 (Z = 50).
The power radiated by tungsten at T = 10 keV, assuming coronal equilibrium, is
RW = 10−31 Wm3 [1].

(c) What can be said about impurity contamination and fuel dilution based on your find-
ings?
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Solution 3.
(a) Carbon contamination: Due to quasi-neutrality

ne = nDT + 6nC6+ , (17)

which gives
nDT

ne
= 1− 6nC6+

ne
= 1− 6 · 0.04 = 1− 0.24 = 0.76. (18)

In pure plasma conditions
nDT, pure plasma = ne. (19)

Therefore, the fractional reduction of fuel density due to impurity contamination is
nDT

nDT, pure plasma
= 0.76. (20)

Since the alpha power scales as n2
DT (Pα = 1

20
n2

DT 〈σv〉EDT),

P diluted
α

P pure
α

= (0.76)2 = 0.58. (21)

Therefore, the 4% carbon contamination reduced the alpha heating power by 42 %.

The radiative power loss density can be calculated as

Prad, Z = nC6+neRc = 0.04 · 1020 · 1020 · 10−34 W
m3

= 40
kW
m3

. (22)

The alpha power density in the pure plasma conditions is

Pα =
1

20
n2
e 〈σv〉EDT = 1.068× 105Wm−3 ≈ 100 kWm−3 (23)

Therefore, the radiative power losses due to carbon are about 40% of the alpha heating
power.

(b) Tungsten contamination: Repeating the same calculations for tungsten:

nDT

ne
= 1− 50nW50+

ne
= 1− 50 · 10−5 = 1− 0.0005 = 0.9995. (24)

Therefore, the fractional reduction of the alpha particle heating power is:

P diluted
α

P pure
α

= (0.9995)2 = 0.999. (25)

The reduction due to dilution is about 0.1 %. The radiative power loss density due to
tungsten is:

Prad, Z = nW50+neRW = 10−5 · 1020 · 1020 · 10−31 W
m3

= 10 kWm−3. (26)

This equals about 10 % of the undiluted alpha particle heating power.
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(c) Conclusions: The calculations show that for low charge state impurities, the fusion
performance is reduced both due to fuel dilution and radiation losses, whereas for high
charge state impurities, the dominant performance reduction mechanism is the strong
increase of radiative power losses.

Exercise 4.
The Lawson criterion and fuel dilution and impurity radiation.

For realistic approximation of the Lawson criterion fuel dilution and impurity radiation
must be considered when evaluating the operating space igniting the plasma. To investigate
these effects, download the .m files in the exercise repository of MyCourses. The main script
plotting_script_for_ntaue.m plots the viable ignition parameter regime for given helium
confinement time parameter ρ∗, impurity concentration fZ , and impurity charge state Z, with
a switch whether to include radiation losses or not. As the rate of fusion reactions and the
helium concentration are coupled, the function solve_fhe.m solves the helium concentration
fHe from equation (2.8) in [2].

(a) Investigate the parameter space for ignition for a pure plasma (no impurities, fZ = 0).
Try running the script with and without the radiation contribution for different values
of ρ∗. What drives the closure of the ignition domain for a pure plasma?

(b) Investigate the impact of carbon (Z = 6) and tungsten (Z = 74) impurities on the size
of the ignition domain. Run the plotting script with ρ∗ = 5 and try to replicate the
figures in the Fusion Principles lecture slides . The result should look similar, but the
models applied are necessarily not identical. Assume that the carbon impurities are
fully ionized, and that the dominant charge state for the tungsten impurities is about
50. How do your results compare to the calculations in the previous exercise?

Solution 4.
(a) Radiation losses are required to reach the closure of the ignition domain, as can be

observed in Fig. 3. However, the closure occurs also only if helium dilution is taken
into account and connected to the energy confinement time. Both radiation losses and
helium dilution are needed for the closure. The upper boundary in the ignition domain
represents the location in the parameter space, where the fusion power is reduced
below the Bremsstrahlung radiation power due to fuel dilution by helium (Fig. 4). In
the example case, the dilution value is about 27%.

(b) The impact of impurities on the ignition contour (ρ = 5) can be found in Fig. 5. The
left plot represents carbon contamination with fZ = 0, 1e− 2, 2e− 2, 3e− 2. The right
plot represent tungsten contamination with fZ = 0, 4e−5, 8e−5, and 1e−4, assuming
Z = 74
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Figure 3: Ignition contours for ρ = 1, 3, 9, and 13. The radiated power losses are neglected
in the left plot. In the right plot radiated power losses are included. The circles represent
pure DT plasma cases and include radiation in both cases.
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Figure 4: Fusion power density and the Bremsstrahlung radiation density as a function of
the plasma helium concentration at T = 15 keV, n = 1020 m−3, and 〈σv〉 ∼ 1.1e− 22 m3/s
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Figure 5: The impact of impurities on the ignition contour (ρ = 5). The left plot represents
carbon contamination with fZ = 0, 1e− 2, 2e− 2, 3e− 2. The right plot represent tungsten
contamination with fZ = 0, 4e− 5, 8e− 5, and 1e− 4, assuming Z = 74

Constants:
1 eV = 1.602 × 10−19 J
mp = 1.673 × 10−27 kg
mn = 1.675 × 10−27 kg
NA = 6.022 × 1023 mol−1

kB = 1.381 × 10−23 m2 kg s−2 K−1

σSB = 5.67× 10−8 W m−2 K−4

cB = 1.71 × 10−38 W m3 eV−1/2

Power equations assuming pure hydrogenic (Z=1) plasma:
Bremsstrahlung radiation: PBr = cBn

2
eT

1/2
e

Black body radiation: Pbb = σSBT
4
SA

Fusion power density: Pf = αninj〈σv〉Ef ,
where Ef represents the produced energy per a fusion reaction, ni and nj are the fuel isotope
densities, ne the electron density, TS the surface temperature of the black body, and A the
surface area of the black body. The α parameter in the fusion power density equation is 1 for
D-T fusion, and 1/2 for D-D fusion. This parameter arises due to the fact that when calculat-
ing the fusion cross-section integral (〈σv〉) for like particle collisions (D-D), every collision is
counted twice. This should not be confused with the 1/4-factor that arises in the D-T fusion
cross-section with 50-50 % fuel mixture due to nD = nT = ne/2 → nD × nT = (1/4) × n2

e.
More information can be found in e.g. [3].
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